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Abstract: The aim of this paper is manifold. We first define the new class of operators called MR-
Kannan interpolative type contractions, which includes the Kannan, enriched Kannan, interpolative
Kannan type, and enriched interpolative Kannan type operators. Secondly, we prove the existence of a
unique fixed point for this class of operators. Thirdly, we study Ulam-Hyers stability, well-posedness,
and periodic point properties. Finally, an application of the main results to the variational inequality
problem is given.
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highly regarded, representing an adaptable and foundational contribution to fixed point
theory. This principle not only initiated significant research in the field but also spurred
exploration by numerous scholars from 1922 to the present. A notable extension of the BCP
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with) <a < % Then, P has a unique fixed point.

In 2018, Karapinar [3] generalized Theorem 1 by introducing the concept of interpola-

Copyright: © 2023 by the authors.  tive Kannan type contraction (IKTC).
Licensee MDPI, Basel, Switzerland. In the framework of Banach spaces, the primary finding of [3] can be summarized as

This article is an open access article follows:
distributed under the terms and

conditions of the Creative Commons ~ Theorem 2 ([3]). Let (©, || - ||) be a Banach space, and P : © — © be an interpolative Kannan
Attribution (CC BY) license (https://  type contraction. This means that P satisfies the following condition:

creativecommons.org/licenses /by /

40/). |Pg — Ps

<a(|g— P (I8 - P8¢, Vg €O, )

Mathematics 2023, 11, 4694. https:/ /doi.org/10.3390/math11224694 https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11224694
https://doi.org/10.3390/math11224694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2864-6730
https://orcid.org/0000-0002-6689-0355
https://doi.org/10.3390/math11224694
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11224694?type=check_update&version=2

Mathematics 2023, 11, 4694

20f 11

when P§ # ¢, where a € [0,1) and 0 < § < 1. As a consequence, it can be concluded that the
operator P possesses a unique fixed point.

For further outcomes in this regard, (see [3-16]).

In 2020, Berinde and P&curar [17] improved Theorem 1 by introducing the concept of
enriched Kannan contraction.

The principal outcome highlighted in [17] is presented as follows:

Theorem 3 ([17]). Let (©, ||-||) be a Banach space and P : ® — © be an enriched Kannan
contraction, that is an operator satisfying

1b(g — §) + P§ — P§ §—Ps

<af

+

¢ —Pg }, V$,5€0, (©)]

where 0 < b <ocoand0 <a < % Then, P has a unique fixed point.

Remark 1. By substituting b = 0 into Theorem 3, we can derive Theorem 1. Therefore, Theorem 3
is a generalization of Theorem 1.

The above Theorem 3 has been studied and generalized by many researchers
(see [17-21]). Theorem 3 is generalized by Abbas et al. [4] in 2022 as follows:

Theorem 4 ([4]). Let (O, ||-||) be a Banach space and P : @ — © be an (a, b, §)-enriched IKTC,
that is an operator satisfying

$—Pg) (18— P&, vgseo, @

with § # P¢, where0 < § <1,0<a < 1land0 <b < oo. Then, P has a unique fixed point.

16(§ =) + (P§ — P%)

<a(

Remark 2. By substituting b = 0 into Theorem 4, we can derive Theorem 2. Moreover, it follows
from Corollary 2.8 of [4] that Theorem 4 is a generalization of Theorem 3.

On the other hand, in 2023, Anjum et al. [22] generalized Theorem 4 by introducing
the concept of (71,4)-MR-Kannan type contraction.
The principal outcome highlighted in [22] is presented as follows:

Theorem 5 ([22]). Let (O, ||-||) be a Banach space and P : © — © be an (71, a)-MR-Kannan type

contraction, that is an operator satisfying
1 1
<a||-——=—=|l§ — P§ — , 5
so([lie P+l -ra). @

forall §,5 € © where0 <a<iandTen={T1:0 > R:7(§) # -1, V$ € O}. Then, P
has a unique fixed point.

g +Pg  $T(8) +PS
1+7(¢) 1+ 71(9)

& — Ps

Remark 3. If we take 7(¢) = 0 and 71(§) = b, for all § € ©, in Theorem 5, we obtain Theorem 1
and Theorem 3, respectively.

Utilizing the ideas from Theorem 2 and Theorem 4, we now present the following.
Question
Under which condition can we attain an equivalent conclusion as stated in Theorem 5

I8 = P3|

by substituting the multiplication between the terms ’ H%(@ ’ Il§ — Pg| and ‘ ﬁ
on the right-hand side of (5)?

This paper has multiple objectives. We first define the new class of operator called MR-
Kannan interpolative type contraction, which includes the contractive conditions (1)—(5).
Additionally, the existence of a unique fixed point for this class of operators is proven.
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Furthermore, the study encompasses Ulam-Hyers stability, well-posedness, and periodic
point properties. Finally, the main results are applied to a variational inequality problem.

2. Approximating Fixed Points of MR-Kannan Type Interpolative Contractions

We introduce the following definition.

Definition 1. Let (O, ||-||) be a normed space. A operator P : © — @ is said to be MRKI type
contraction, if there exist 1€ 1,0 < a < 1and 0 < & < 1, such that for all §,$ € © with P§ # g,

(S (R

To emphasize the role of 4,71 and ¢ in (28), we shall also call P a (a, 7, ¢)-MRKI
type contraction.

Before proceeding with the proof of the main theorem of our paper, the following
findings are required from [22].

Recall that we denote the set {§ € ® : P§ = ¢} of fixed points of P by F(P).

Let

H +Pg $7(8)
1+1 1+1

1+‘I

={F:©—>R:F(§) #0, V¢ €O} (7)

Let Py : ® — © be an operator defined as

Pré=Q0-F($)§+F (P V€O, ®)

where /- € Bis called a generalized averaged operator ([22,23]). We would like to direct the
reader’s attention to the fact that the term generalized averaged operator refers to a specific
type of admissible perturbations [23,24]. It is worth noting that the class of generalized
averaged operators includes the class of averaged operators (a term coined in [25]) . This is
demonstrated by considering A € (0,1) and defining f (¢) = A forall § € ©®.
Consequently, the condition (28) is reduced to

PA(§) :=Prg¢ = (1-2A)§+ AP, V¢ € ©. )

Lemma 1 ([22]). Let P: @ — © and Py be a generalized averaged operator as given in (8). Then,
forany F € B,

F(P) = F(Pr). (10)

Now, we present the following principal result of our paper:

Theorem 6. Let (O, ||-||) be a Banach space and P : @ — © be a (a, 71, {)-MRKI type contraction.
Then, P has a unique fixed point.

Proof. Let us denote F (§) = Hlii(g)' for all ¢ € ©. Obviously, F € B and the (a,7,¢&)-
MBRKI type contraction condition (28) satisfies the following

Fo((rm—)sere) —ro((mo )+l

<a(|lF ()& —POIN(IF (§)E— PSS,

Hr<g°)<1 —F@NEHF@PE (1= r(gpg)f(ﬁ)pso)

a(IF (&) P& (IF (§)(E— PSS,
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we have,
1P & — Pri|| <allg—Prgll*Is—Prs' %, Vg seo. (11)
We defined the Krasnoselskii iterative sequence as follows:
$cr1=Prge, ¢=>0. (12)
Take ¢ := ¢. and § := .1 in (11) to get
1§c+1 = &l = [|Pr&e — Prie|
. . . . 1-
<allg; - PF&HgHggfl = Prée|| ‘
. . E1l e . 1-¢
< al|& =&l &e1 — &l
This concludes that
. . 11-¢ . . 1-¢
8o+ — el < allge— — & (13)
Given that § € (0,1),
18e+1 = &cll < allge — el (14)
Inductively,
§e1 = &l < a%llgo — &all- (15)
Using the Equation (15) and the triangular inequality, we can conclude that
. a e
8 — evrll < 70— &ill, rEN 621, (16)

This concludes that, a Cauchy sequence {§}¢” is converges to ©. This can be denoted as
follows:
¢" = lim g.. (17)

Note that

ok

s

| <& — &erall + llge+r — e
<|1§* —&call + I1Préc — Prg|
<|g" = gear ]l +allge — Préeltlg” —Prgrl e
< 18" = gell +allge — gel|SNg" — Prg e

—Pr g

By taking the limit (¢ — o0) on both sides of the aforementioned inequality, we get

8°,* — PF8°,*
Let $* be another fixed point of P. Next, as shown by (11), we possess

§ =8l =1Prg = Pré'l| <allg = PrgIFlls — Pt *
<a go*_go*|é &% _ g* 1—5,

which, gives ¢* = §*. O

We obtain Theorem 5 as a corollary of our main result.

Corollary 1 ([22]). Let P: © — © be a (7, a)-MR-Kannan type contraction. Then, P possesses a
unique fixed point.
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Proof. Take F (§) = T+ g) —7 forall ¢ € ©. Then, condition (5) becomes
o/ 1 o o
g(F(g) 1) + P§ - s(% 1) + Ps
1+(H 1) 1+(ﬁ§—U
_ps s _ pe
< a( 88 |4 | ——= ),vg§e®,
1+(F7 1) 14 (75— 1)
which can be written in an equivalent form as follows;
P}, v §, 8 0. (18)

By (18), Pr is a Kannan contraction. Py satisfies condition (18) and condition (11). Since,
F(8) = W, for all ¢ € O, the inequality (11) is same as the condition (28).
As a result, Theorem 6 refers to the conclusion. [

We obtain Theorem 4 as a consequence of our main result.

Corollary 2 ([4]). Let P: © — © bea (a, b, {)-enriched IKTC on a Banach space (©, ||-||) . Then,
P has a unique fixed point.

Proof. Let 71(§) = b, for all ¢ € @. Clearly, 7 € 5. In this scenario, the contraction
condition (28) becomes (4).

Indeed,
bg+Pg b8+ PE|| _ (||§—P§ —pg|\'¢
1+b  1+b ||~ 1+5b 1+b
o o ¢+1-¢ 4 1-¢
(by + P$) <a 1 §— Py
140 1+0b
1

)5.

¢ (118 — Ps

—(bs°+Ps°)||<a( -

1) (oo

(1§ -

Moreover, generalized Krasnoselskii iterative method [25] related to P reduces to Kras-
noselskii iterative method [26]. Hence, the conclusion follows from Theorem 6. [J

This can be expressed equivalently as:

|b($ —§) + P§ — P§ )1=¢. (19)

Corollary 3 ([3]). Let P : © — © be IKTC on a Banach space (©, ||-||) . Then, P possesses a
unique fixed point.

Proof. Let 71(§) = 0, forall ¢ € ®. Clearly, 1 € 7. In this case, the contraction condition (28)
reduces to (1).
Hence, the conclusion follows from Theorem 6. [

3. Well-Posedness, Perodic Point Property and Ulam-Hyers Stability

We start this section with the following definition:

3.1. Well-Posedness

Recall that the goal of solving the fixed point problem of the operator P, represented
by FPP(P), is to demonstrate the nonemptiness of F(P).
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Definition 2 ([27]). Consider a normed space (©,|-||) and an operator P : ® — ©. Then,
FPP(P) is claimed to be well-posed if:

L F(P)={¢}
2. Jasequence {g.} in O such that im¢ .|| P§c — $¢|| = 0, we can conclude that im0 §c =

g
Theorem 7. Let P be an operator as defined in Theorem 6. Then, FPP(P) is well-posed.

Proof. Because F(P) = F(P; ), we may derive that operator P is well-posed if and only if
operator Pr is well-posed.
As Theorem 6 states that F(P) = {¢*}. Assume that

gl_f){}oprgg — &l =0.

By utilizing (11), we get
e = &1l < llgc — Précll- (20)
By applying limit ¢ — oo in (20), we conclude that

lim §, = ¢".

G—00

O

3.2. Perodic Point Result

Obviously, a fixed point ¢* of the operator P satisfies F(P¢) = {¢*} for all ¢ € N;
however, the reverse assertion does not hold. An operator P possesses a periodic point
property ([28]) if it satisfies the condition F(P) = F(P¢) for every ¢ € N.

Theorem 8. Let P be an operator defined in Theorem 6. Then, P possesses a preodic point property.
Proof. Because F(P) = F(P; ), we may derive that
P has preodic point property < Pr has preodic point property.

Since P possesses a unique fixed point, then $* € F(P¢). Now referring to Equation (11),
we have

18 = P 8°[| = [|Pps™ — Pr (P757))|
—1, .
= ||Pr (PF15) — P (P8 |
_ ¢ 1-¢
<al|pits - pps| | prer - P
that is,
g _ ¢
|Pest = pits | <af|pr s - e (21)
Since ¢ € (0,1), then (21) becomes
0% ok || G 9% g-l—l 0% g—l ok G ox
§* —PrsT|| = HPFS —Pr 8T < aHPF §" —PrsT|| <

< aZHP;*ZS"* sl < <af )¢ — Brsr

Now, 0 < a < 1implies that ||§* — Pr$*|| = 0 and hence §* = Ps*. O

3.3. Ulam-Hyers Stability
Before presenting the definition, let’s establish the following concept from [29].
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Let (O, ||-||) be a normed space and P : @ — © be an operator such that a point s* € ©
as an g-solution to the FPP(P), if it satisfies the inequality

Is* — Ps"ll <,

where ¢ > 0.
Let
S ={x:[0,00) = [0,00), x(0) =0, x isan increasing and continuous function}.

Let us begin with definition.

Definition 3 ([29]). The FPP(P) exhibits generalized Ulam-Hyers stability if there exist x €
such that for every g-solution s* € © and there is also a solution §* € © of P(¢) = ¢ in ©
such that

187 =571 < x(¢)-
where ¢ > 0.

Remark 4 ([29]). The fixed point equation P¢ = & is considered to be Ulam-Hyers stable if the
function x is defined as x(g) = mg for all ¢ > 0, where m > 0.

Theorem 9. Let P be an operator as in the Theorem 6. Then, FPP(P) possesses a Ulam-Hyers
stability.

Proof. Because F(P) = F(P; ), we may derive that
P has Ulam-Hyers stability <> the operator F(P; ) has Ulam-Hyers stability.
Taking s* as an g-solution to the FPP(P), we can infer the following:
Is* = Prs™|| <. (22)
Utilizing (11) and (22), we obtain:
18" ="l = [IPF&" —s"|| < [[Prg” — Prs™|| + || Prs™ — ™|
<allg = Prg'*lls" = Prs| "+
=c.
O

4. Application to Variational Inequality Problems

The theory of variational inequalities, independently demonstrated by Stampac-
chia [30] and Ficchera [31], has evolved into a captivating branch of applied mathematics.
Its diverse applications span across industry, social sciences, economics, finance and both
pure and applied sciences. The Variational Inequality Problem, as discussed [32-42] a, has
been and remains a focal point in nonlinear analysis.

Let H be a Hilbert space with the inner product denoted by (-, -), and consider a
nonempty, closed, and convex subset C of H. This article is dedicated to exploring the
classical variational inequality, seeking the presence of a point ¢* within C that satisfies

(5(87), §-8) =0, V§eC, (23)

where S : H — H represents an operator. We denote VIP(S, C) as the variational inequality
problem associated with S and C. According to [33], it is well known that when Y is a
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positive number, then ¢* € C is a solution to VIP(S,C) if and only if ¢* satisfies the
fixed-point problem:
§=Pc(I-YG)g, (24)

Here, the closest point projection onto C is indicated by Pc.

We choose an alternative approach by investigating VIP(S, C) with (a, 7, ¢)-MRKI
contraction operators, which can exhibit discontinuity, unlike nonexpansive operators, that
are inherently continuous. According to the next theorem, we expect that VIP(S, C) will
have a unique solution in this situation. In addition, we anticipate substantial convergence
of the algorithm outlined in (25) towards the VIP(S, C) solution.

Theorem 10. Let Y be a positive value and P : C — C represent a (a, 71, {)-MRKI type operator
satisfying
Pg¢ =2+ [glNPc(I=YS)(§) —& - ¢lIgll, V¢ <C, (25)

Then, the iterative sequence {§¢}2 is given by
§er1 =1 —=F(§))&c + 1 (§c)P&c, V6 =0 (26)

where [ € B, exhibits strong convergence towards the unique solution ¢* of the VIP(S, C), for any
§O e C.

Proof. As C is a closed set, let ® = C and employ the definition of P as given in (24).
Subsequently, we apply Theorem 6. Consequently, there exists an element §* € C such that

( FNPe(I=YS)(8) =& = &"IIE7
@+ 1g )P ( )(g )=
Pc(I=YS)(8")

g
28"

O

Example 1. Let @ = R? and the inner product for any ¢ = ($1,8>) and § = (§1,%) in ©, is
defined as follows:

($,8) = &181 + 282
With this definition, © becomes a Hilbert space. The associated norm is given by:

1/2.

gl =(<48>)

Let’s define the operator S : ® — © as follows:

L0V s
s(g) = LO+E '0\){+g v§eo,

where Y is a fixed positive real number.
Next, consider the operator Pc : ©@ — C defined by

& .
g - { 4 €
§ ;8¢€C
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where C = {¢ € O: < is (a, 1, &)-MRKI type operator.
Certainly, when 7(§) = 1+ |8, V¢ € O, the left-hand side of (28) transforms to,

_ ‘g"(1+ gl)+Pg  S$(1+I8]) + Ps

2+ I¥]

. . . .
— | s e + pg) - 3 (a+ e+ )|
| (fe st x50 =141 )

2+ 3]

((S° +8118] + 2+ 181D Pc(I = YS)(8) — 8 — 8|8

||>>H

= [[Pc(§ = YS(§)) = Pc(s = YS(3))|
= [Pc(§ = (1,0) + &) — Pc($ = (1,0) +9)
= [[(=(1,0) + (1,0)] = 0.

Therefore, we obtain that

[EST RS ARSI o
248
It follows from (27) the condition in (28) satisfy for 71(¢) = 1 + ||¢]|, V¢ € ©. Hence,

F(P) is a singleton set, which becomes a solution for VIP(S, C).

5. Conclusions

We provide a broad class of contractive operators called contractions of the MR-
Kannan interpolative kind. Interpolative Kannan type, enriched interpolative Kannan
type, Kannan, and enhanced Kannan are among the operators included in this class.
A Krasnoselskii-type technique has been developed by us to estimate fixed points of MR-
Kannan interpolative type operators. Our exploration involves the analysis of the set of
fixed points (see Theorem 6). Furthermore, we have derived Theorems 7-9, which address
well-posedness, periodic points, and Ulam-Hyers stability for the fixed-point problem of
MR-Kannan interpolative type operators, respectively. Moreover, leveraging our primary
findings (see Corollary 10), we have introduced Krasnoselskii projection-type algorithms
to solve variational inequality problems within the class of MR-Kannan interpolative
type operators.

Here, we now present an open problem.

Open Problem: Following the approach proposed in [9] for the interpolation technique,
we present a new problem. Suppose we have positive numbers a and b, wherea +b < 1,
and consider the following condition instead of (28):

(=50 (FE=l) e

The open problem is whether the conclusion of Theorem 6 still holds under this
new condition.

§— P3§
1+7(5)

+Pg $7(9)
1+_I 1+-I
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