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1. Introduction

The calculation and estimate of geometric quantities (e.g., volume, diameter, and
curvature tensor [1]) play essential roles in the study of Riemannian geometry. It is also
important and interesting to study the uniform properties of these geometric quantities
under a family of Riemannian metric g(t) with t ∈ [0, T) for some T ∈ (0,+∞]. One of the
most famous examples is Ricci flow

∂gij

∂t
(x, t) = −2Rij(x, t), (1)

introduced by Hamilton [2]. It is a nonlinear weakly parabolic equation along which the
Riemannian metric is evolved, and is a powerful theoretic tool to research geometric prob-
lems such as the Poincaré conjecture (see Perelman [3–5]). Up to now, we understand the κ
non-collapsing property proved by Perelman [3], the improved non-collapsing property
of Ricci flow proved by Jian [6], the κ non-inflated property proved by Zhang [7] (see also
Chen-Wang [8]), and the uniform (logarithmic) Sobolev inequality along the Ricci flow
proved by Zhang [9] and Ye [10]. It was also proved by Perelman that the diameter is
uniformly bounded along the (normalized) Kähler–Ricci flow, which is the Ricci flow with
the Kähler metric as its initial metric on Fano manifolds (see Sesum-Tian [11]). Recently,
Jian-Song [12] proved that if the canonical line bundle KM of the Kähler manifold M is
semi-ample, then the diameter is uniformly bounded for long-time solutions of the normal-
ized Kähler–Ricci flow (see Jian-Song-Tian [13] for the most recent results in this direction).
In [14], the author demonstrated a lower bound for the diameter along the Ricci flow with
nonzero H1(Mn,R). For the Ricci flow (1) on a compact Riemannian manifold M with
dimR M = n, Topping [15] showed that there is a uniform constant C = C(g0, T) such
that if

diam(M, g(t)) ≥ C, ∀ t ∈ [0, T),

then, it yields that

diam(M, g(t)) ≤ C
∫

M
|R|

n−1
2 dµ(t),

where R denotes the scalar curvature of the Levi–Civita connection of g(t). More details
about the constant C can be found in [15]. Recently, Zhang [16] proved that the upper
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bound for the diameter of (M, g(t)) on compact Riemannian manifolds depends only on
the L

n−1
2 norm of the scalar curvature of g, the volume and the Sobolev constants (see [16]).

Zhang [16] also deduced the lower bound for the diameter of (M, g(t)), which depends
only on the time t, the initial metric, and the L∞ norm of the scalar curvature (see more
details in Remark 1 and Theorem 1).

Motivated by [15,16], we investigate the geometric flow

∂gij

∂t
(x, t) = −2Sij(x, t), ∀ (x, t) ∈ M× [0, T), (2)

where T ∈ (0,+∞] and g(0) = g0 is a Riemannian metric. Here, Sij(x, t)’s denote the
components of a symmetric 2-tensor S . We deduce the bound of the diameter of a compact
manifold (M, g(t)) with dimR M = n(n ≥ 3) and a family of Riemannian metrics g(t)
satisfying the geometric flow (2) under certain assumptions. For later use, we need to
define a tensor quantity D2 associated to the tensor S (see [17], Definition 1.3).

Definition 1. Let g(t) be a family of smooth Riemannian metrics satisfying the geometry flow (2)
on M× [0, T). Then, we define

D2(S , X) :=
∂S
∂t
− ∆g(t)S− 2|S|2g(t) (3)

+ 4(∇iSij)X j − 2Xi∇iS + 2RijXiX j − 2SijXiX j, ∀X ∈ X(M),

where S =
n
∑

i,j=1
gij(t)Sij(t). Here, ∇ and Rij denote the Levi–Civita connection and the Ricci

curvature, respectively, of the Riemannian metric g(t).
If

D2(S , X) ≥ 0, ∀ X ∈ X(M)

on [0, T), then we say that D2(S , ·) is non-negative.

Remark 1. In fact, the quantity D2 is the difference between two differential Harnack-type quan-
tities for the symmetric tensor S [17]. Hence, the non-negativity of D2 is equivalent to the corre-
sponding differential Harnack-type inequality for the tensor S under the geometric flow.

We note that, if D2(S , ·) and (Ric− S) are non-negative, then there also hold a κ non-
collapsing property, the so-called κ non-inflated property, and the uniform (logarithmic)
Sobolev inequality along the geometric flow (2) (see [17–23] and the references therein).
Thanks to [24,25], the many properties of the heat kernel also hold along the geometric
flow (2) under the same assumptions, similar to those of the heat kernel along the Ricci
flow (1). Given these preliminaries, we can consider the diameter estimate along the
geometric flow (2).

Let g(t) be a family of smooth Riemannian metrics satisfying the geometry flow (2) on
M× [0, T). Then, we use the notations

dµ(t) :=the volume element of g(t), and sometimes we also write dµ(g(x, t))

to emphasize the space variants,

Volg(t)(M) :=the volume of M with respect to g(t),

(p, q, t) :=the distance between p and q with respect to g(t),

B(p, r, t) :=the geodesic ball with center p and radius r with respect to g(t),

Volg(t)(B(p, r, t)) :=the volume of B(p, r, t) with respect to g(t).

Moreover, we will write the trace S as St or S(x, t) to emphasize the time(-space)
variant(s). Now, we state our main theorem.
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Theorem 1. Let g(t) be a family of smooth Riemannian metrics satisfying (2) on M× [0, T) with
dimR M = n(≥ 3). Assume that D2(S , ·) defined in (3) and (Ric− S) are non-negative. For the
upper bound on the diameter of (M, g(t)), we have

diam(M, g(t)) ≤ C
(

Volg(t)(M) + 1 +
∫

M

(
S+

t
) n−1

2 dµ(t)
)

, (4)

where C denotes a constant depending only on n, A and B defined in (8). Here, S+
t = max{0, St}.

For the lower bound on the diameter of (M, g(t)), we have either diam(M, g(t)) ≥
√

t or

diam(M, g(t)) ≥c2e
1
n [−αt−β−t‖S−(·,0)‖∞]e−

2
n
∫ t

0 ‖S(·,s)‖∞ds (5)

×
[

1 +
2t
n
‖S−(·, 0)‖∞

]− 1
2 [

Volg0(M)
] 1

n .

Here, S−(x, t) = min{0, S(x, t)} and c2 are constants depending only on n. The constants
α and β are positive constants which depend only on the infimum of the F functional defined by (7)
for (M, g0) and the Sobolev constant of (M, g0). Furthermore, if S(·, 0) ≥ 0, then we have α = 0,
which implies

diam(M, g(t)) ≥c2e−
β
n e−

2
n
∫ t

0 ‖S(·,s)‖∞ds(Volg0(M)
) 1

n . (6)

Remark 2. Our theorem will reduce to Zhang’s result [16] for the Ricci flow totally if the symmetric
2-tensor S is the Ricci curvature of g(t).

Remark 3. Our theorem can also be applied to the following geometric flows except for the Ricci flow.
The geometric and physical meanings of these geometric flows and more details of the calculation of
(Ric− S) and D2(S , ·) can be found in [17,21,26].

i. List–Ricci flow (see List [27]).
∂gij

∂t
(x, t) =− 2Rij(x, t) + 4(dφ⊗ dφ)(x, t),

∂φ

∂t
(x, t) =

(
∆g(x, t)φ

)
(x, t),

with φ ∈ C∞(M×R, R). In this case, it follows that

Ric− S = 2dφ⊗ dφ ≥ 0

and
D2(S , X) = 4|∆φ−∇Xφ|2 ≥ 0.

ii. Harmonic-Ricci flow (see Müller [28]).
∂gij

∂t
(x, t) =− 2Rij(x, t) + 2α(t)(∇ψ⊗∇ψ)(x, t),

∂ψ

∂t
(x, t) =

(
τg(x,t)ψ

)
(x, t),

where M and N are compact manifolds with the Riemannian metrics g(·, t) and h, respectively,

ψ(·, t) : (M, g(·, t))→ (N, h)

are a family of smooth maps, τgψ is the intrinsic Laplacian of ψ, and α(t) is a smooth, positive
and non-increasing function defined on R. In this case, there holds

Ric− S = αdψ⊗ dψ ≥ 0
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and
D2(S , X) = 2α|τgψ−∇Xψ|2 − α̇|∇ψ|2 ≥ 0.

See Tadano [29] for a lower bound of the diameter for shrinking the Ricci-harmonic soliton.

iii. Lorentzian mean curvature flow (see Holder [30] and Müller [17]). Let M be a compact space-
like hyper-surface with dimR M = n in an ambient Lorentzian manifold L with dimR L =
n + 1, and let

F0 : M −→ L

denote a smooth immersion from M into L. We denote by

F(·, t) : Mn −→ Ln+1

a family of smooth immersions with F(·, 0) = F0(·) and

∂F
∂t

(p, t) = H(p, t)ν(p, t), ∀ (p, t) ∈ M× [0, T),

where ν(p, t) and H(p, t) are the future-oriented, time-like normal vector and the mean curva-
ture of the hyper-surface Mt = F(Mn, t) at the point F(p, t), respectively. It follows that

∂gij

∂t
= 2HAij,

where A = (Aij) denotes the second fundamental form on Mt. In this setup, one has

Sij = −HAij, S = −H2.

Mark the curvature tensor of L with a bar. If L has non-negative sectional curvature, then one
can deduce that

D2(S , X) =2Ric(Hν− X, Hν− X) + 2〈Rm(X, ν)ν, X〉+ 2|∇H − A(X, ·)|2 ≥ 0

and that

Ric(X, X)− S(X, X) =Ric(X, X) + 〈Rm(X, ν)ν, X〉+ Xi Ai`A`jX j ≥ 0, ∀ X ∈ X(M).

2. Proof of Main Theorem

We need some preliminaries in order to prove Theorem 1. Let (M, g) be a compact
Riemannian manifold with dimR M = n and the Riemannian metric g. Then, fixing a
smooth function S ∈ C∞(M,R), we can define the F entropy by

F (g, h) =
∫

M

(
S + |∇h|2g

)
e−hdµ, ∀ h ∈ C∞(M,R) with

∫
M

e−hdµ = 1, (7)

where dµ is the volume element of the Riemannian metric g. When we take S to be the
scalar curvature R of the Levi–Civita connection of the Riemannian metric g,, the F entropy
defined in (7) is exactly the one defined by Perelman [3].

Let v = e−
h
2 . Then, we have

F (g, h) = F ∗(g, v) =
∫

M

(
4|∇v|2g + Sv2

)
dµ,

∫
M

v2dµ = 1.

We define

4λ0(g) := inf
{
F ∗(g, v) : v ∈ C∞(M,R),

∫
M

v2dµ = 1
}

= inf
{
F (g, h) : h ∈ C∞(M,R),

∫
M

e−hdµ = 1
}

.
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It follows from the standard theory partial differential equations that 4λ0(g) is the first
eigenvalue of the operator −4∆g + S. Let u0 ∈ C∞(M,R) be a first positive eigenfunction
of the operator −4∆g + S with

−4∆gu0 + Su0 = 4λ0(g)u0.

Then, h0 = −2 log u0 satisfies

4λ0(g) = F (g, h0)

with
−2∆gh0 + |∇h0|2g − S = −4λ0(g).

Lemma 1 (Part of Lemma 3.1 in [21]). Let g(x, t) be a family of Riemannian metrics along the
geometric flow (2) on M× [0, T) and let h(x, t) be a positive solution to the backward heat equation

∂

∂t
h(x, t) = −∆g(x, t)h + |∇h|2g(x, t) − S(x, t).

Then, we have

dF
dt

=
∫

M

(
2|hij + Sij|2 +D2(S ,∇h)

)
e−hdµ(t)

where D2(S ,∇h) is defined by (3).
In particular, the F entropy is non-decreasing in t ifD2(S , ·) is non-negative for all t ∈ [0, T),

from which we can obtain that λ0(g(t)) is non-decreasing of t.

Now, we can state the uniform Sobolev inequality along the geometric flow (2).

Lemma 2 (Theorem 1.5 in [21]). Let g(t) be a family of smooth Riemannian metrics satisfying (2)
on M × [0, T) and assume that D2(S , ·) defined in (3) is non-negative. Then, for each u ∈
W1,2(M, g(t)), there holds

(∫
M
|u|

2n
n−2 dµ(t)

) n−2
n
≤ A

∫
M

(
4|∇u|2g(t) + Stu2

)
dµ(t) + B

∫
M

u2dµ(t), (8)

where A and B are positive constants which depend only on M, g(0), n, t, S(·, 0) and the Sobolev
constant of (M, g(0)). In particular, if λ0(g(0)) > 0, then B = 0 and A are independent of t.

The second ingredient of the proof can be considered as a quantified version of the
non-collapsing theorem along the geometric flow (2) (see also Theorem 1.6 in [21]).

Lemma 3. Let g(t) be a family of smooth Riemannian metrics satisfying (2) on M× [0, T), and
assume that D2(S , ·) defined in (3) is non-negative. Then, it yields that

Volg(t)(B(x, r, t)) ≥4−
n2
4

(
64A + 4AM2(x, t, S+

t , r) + 4Br2
)− n

2 rn, (9)

where A and B are the constants in (8) and M2(x, t, S+
t , r) is defined by (12).

Proof. Motivated by [31], define

u(y) =
{

r− (x, y, t), y ∈ B(x, r, t),
0, otherwise.

Substituting this u into (8), we obtain
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∫
M

4|∇u|2g(t)dµ(t) =4Volg(t)(B(x, r, t)), (10)∫
M

Stu2dµ(t) ≤r2
∫

B(x,r,t)
S+

t dµ(t) (11)

=Volg(t)(B(x, r, t))
r2

Volg(t)(B(x, r, t))

∫
B(x,r,t)

S+
t dµ(t)

≤M2(x, t, S+
t , r)Volg(t)(B(x, r, t)),

where M2(x, t, S+
t , r) is a maximal type function defined by (see [15,16])

M2(x, t, S+
t , r) = sup

0<ρ≤r

ρ2

Volg(t)(B(x, ρ, t))

∫
B(x,ρ,t)

S+
t dµ(t). (12)

Note that ∫
B(x,ρ,t)

u2dµ(t) ≤ r2Volg(t)(B(x, ρ, t)). (13)

Since u ≥ r
2 on B(x, r

2 , t), from (8) and the Hölder inequality, we can deduce

r2

4
Volg(t)

[
B
(

x,
r
2

, t
)]

(14)

≤
∫

B(x,r,t)
u2dµ(t)

≤
(

Volg(t)(B(x, r, t))
) 2

n
(∫

B(x,r,t)
u

2n
n−2

) n−2
n

≤
(

Volg(t)(B(x, r, t))
) 2

n
(

A
∫

M
(4|∇u|2g(t) + Stu2)dµ(t) + B

∫
M

u2dµ(t)
)

.

Substituting (10), (11) and (13) into (14) yields

(
4A + AM2(x, t, S+

t , r) + Br2
)(

Volg(t)(B(x, r, t))
) n+2

n ≥ r2

4
Volg(t)

[
B
(

x,
r
2

, t
)]

,

i.e.,

Volg(t)(B(x, r, t)) ≥r
2n

n+2

(
Volg(t)

[
B
(

x,
r
2

, t
)]) n

n+2 (15)(
16A + 4AM2(x, t, S+

t , r) + 4Br2
)− n

n+2 .

Note that, for any s ∈ (0, r], Equation (15) still holds by replacing r with s. Since

M2(x, t, S+
t , s) ≤ M2(x, t, S+

t , r), s2 ≤ r2,

we arrive at

Volg(t)(B(x, s, t)) ≥
(

Volg(t)

[
B
(

x,
s
2

, t
)]) n

n+2 s
2n

n+2 (16)[
16A + 4AM2(x, t, S+

t , s) + 4Bs2
]− n

n+2 .

≥
(

Volg(t)

[
B
(

x,
s
2

, t
)]) n

n+2 s
2n

n+2[
16A + 4AM2(x, t, S+

t , r) + 4Br2
]− n

n+2 .

Iterating (16) with s = r, r
2 , · · · , r

2k−1 for positive integers k gives
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Volg(t)(B(x, r, t)) ≥4
−

k
∑

i=1
(i−1)( n

n+2 )
i(

Volg(t)

[
B
(

x,
r

2k , t
)])( n

n+2 )
k

(17)

[
r2
{

16A + 4AM2(x, t, S+
t , r) + 4Br2

}−1
] k

∑
i=1
( n

n+2 )
i

.

Letting k −→ ∞ in (17) implies (9).

We set

d(t) := the diameter of M with respect to the Riemannian metric g(t)

V(t) := the volume of M with respect to the Riemannian metric g(t)

for t ∈ (0, T]. For any x ∈ M, we write

κ = κ(x, r) :=
Volg(t)(B(x, r, t))

rn .

Also set

κ0 := min
{

4−
n2
4 (24A + 4Br2)−

n
2 ,

ωn

2

}
,

where ωn denotes the volume of the unit ball in Rn. Now, we give the lower bound of
M2(x, t, S+

t , r).

Lemma 4. Let g(t) be a family of smooth Riemannian metrics satisfying (2) on M× [0, T) and
assume that D2(S , ·) defined in (3) is non-negative. If r ≤ d(t)

2 and κ ≤ κ0, then we have

M2(x, t, S+
t , r) ≥ 2. (18)

In particular, if d(t) ≥ 2 and r ≤ 1, then κ0 can be taken as

κ0 := min
{

4−
n2
4 (24A + 4B)−

n
2 ,

ωn

2

}
. (19)

Proof. From (9), we have

16A + 4AM2(x, t, S+
t , r) + 4Br2 ≥ 4−

n
2 κ−

2
n . (20)

This means, for r ≤ d(t)
2 ,

M2(x, t, S+
t , r) ≥ 4−

n
2 κ−

2
n − 4Br2 − 16A

4A
. (21)

Finally, Equation (18) follows from the definition of κ0 and κ ≤ κ0.

Based on the preliminaries as above, we can prove Theorem 1.

Proof of Theorem 1. For the upper bound of the diameter, let

N := max
{

n ∈ N : n ≤ d(t)
4

}
.

We choose two points a, b ∈ M with (a, b, t) = d(t). Denote by γ a minimal geodesic
connecting a and b. Choose p ∈ γ such that

(a, p, t) = (p, b, t) =
d(t)

2
.
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We claim that, if

d(t) ≥ V(t)4n+3

κ0
, (22)

then, for at least N many positive integers ij in {1, 2, · · · , 2N}, we have∣∣∣Volg(t)(B(p, ij, t))−Volg(t)(B(p, ij − 1, t))
∣∣∣ ≤ κ04−n, j = 1, · · · , N.

Indeed, if the claim is not right, then there exist at least (N + 1) integers k j in
{1, 2, · · · , 2N} such that∣∣∣Volg(t)(B(p, k j, t))−Volg(t)(B(p, k j − 1, t))

∣∣∣ ≤ κ04−n, j = 1, · · · , N + 1,

which implies

d(t)κ04−n−2 ≤ (N + 1)κ04−n ≤
2N

∑
i=1

∣∣∣Volg(t)(B(p, i, t))−Volg(t)(B(p, i− 1, t))
∣∣∣ ≤ V(t).

We can conclude that

d(t) ≤ V(t)4n+2

κ0
,

which contradicts (22).
From now on, without loss of generality, assume that d(t) ≥ 2 and (22) hold. We pick

N integers i1, i2, · · · , iN with

{i1, i2, · · · , iN} ⊂ {1, 2, · · · , 2N}

and satisfying∣∣∣Volg(t)(B(p, ik, t))−Volg(t)(B(p, ik − 1, t))
∣∣∣ ≤ 4−nκ0, k = 1, · · · , N. (23)

For i ∈ {i1, i2, · · · , iN}, we set γi := γ ∩ [B(p, i, t) \ B(p, i− 1, t)], and the middle
point of γi is denoted by pi. Then, there holds

B
(

pi,
1
2

, t
)
⊂ [B(p, i, t) \ B(p, i− 1, t)],

which implies that, for any x ∈ B
(

pi, 1
4 , t
)

, we have

B
(

x,
1
4

, t
)
⊂ B

(
pi,

1
2

, t
)
⊂ [B(p, i, t) \ B(p, i− 1, t)]. (24)

Combining (23) and (24), we derive

Volg(t)(B(x, 1/4, t))
(1/4)n ≤ κ0. (25)

Note that

lim
ρ↘0

Volg(t)(B(x, ρ, t))
ρn = ωn ≥ 2κ0, (26)

where we use the definition of κ0 in (19). From (25) and (26), there exists a positive number
s = s(x) ∈ (0, 1/4] such that
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Volg(t)(B(x, s(x), t))

[s(x)]n
= κ0 (27)

and for 0 < ρ ≤ s(x),

Volg(t)(B(x, ρ, t))
ρn ≥ κ0. (28)

From (18) and (27), we arrive at

M2(x, t, S+
t , s(x)) ≥ 2,

which implies that there exists s1(x) ∈ (0, s(x)] such that

[s1(x)]2

Volg(t)(B(x, s1(x), t))

∫
B(x,s1(x),t)

S+
t dµ(t) ≥ 1. (29)

From (28), we also have

Volg(t)(B(x, s1(x), t))
[s1(x)]n

≥ κ0. (30)

Denote by σ the disjoint curves

⋃
i=i1,··· ,iN

[
γi
⋂

B
(

pi,
1
4

, t
)]

.

Since N ≥ d(t)
8 , we know that

lengthg(t)(σ) ≥
d(t)
16

.

A family of balls {B(x, s1(x), t) : x ∈ σ} covers σ. By Lemma 5.2 in [15], there exist
a sequence of points {x` : ` = 1, 2, · · · } ⊂ σ such that each of the balls B(x`, s(x`), t) is
disjoint from each other and these balls cover at least 1

3 of σ. Therefore, we can deduce

d(t) ≤ 16lengthg(t)(σ) ≤ 96 ∑
`

|s1(x`)|. (31)

By (29) and the Hölder inequality, we obtain

Volg(t)(B(x`, s1(x`), t))
[s1(x`)]2

≤
∫

B(x`,s1(x`),t)
S+

t dµ(t)

≤
(∫

B(x`,s1(x`),t)

(
S+

t
) n−1

2 dµ(t)
) 2

n−1 [
Volg(t)(B(x`, s1(x`), t))

] n−3
n−1 ,

which, combining (30), leads to

κ0s1(x`) ≤
Volg(t)(B(x`, s1(x`), t))

[s1(x`)]n−1 ≤
∫

B(x,s1(x`),t)

(
S+

t
) n−1

2 dµ(t). (32)

Thanks to (31) and (32), we obtain

d(t) ≤ 96κ−1
0

∫
M

(
S+

t
) n−1

2 dµ(t).
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This inequality implies the desired upper bound (4) together with the assumptions
d(t) ≥ 2 and (22).

For the lower bound for the diameter of (M, g(t)), denote by G(p, s; x, t) (0 ≤ s < t)
the fundamental solution to the conjugate heat equation

∂s f (p, s) + ∆g(p,s) f (p, s)− S(p, s) f (p, s) = 0,

where G(p, s; x, t) is seen as a function of (p, s).
From Lemma 6.5 in [21], we know that

G(p, s; x, t) ≥ c1 J(t)
(t− s)

n
2

e−
2(p,x,t)

t−s e−
1√
t−s

∫ t
s
√

t−vS(z,v)dv, (33)

where c1 depends only on n. Here,

J(t) = exp[−αt− β + t inf
y∈M

S−(y, 0)], (34)

where α and β are positive constants which depend only on the infimum of the F functional
for (M, g0) and the Sobolev constant of (M, g0). Furthermore, if S(·, 0) ≥ 0, then we have
α = 0. From (33), we can deduce

G(p, s; x, t) ≥ c1 J(t)
(t− s)

n
2

e−
2(p,x,t)

t−s e−
∫ t

s ‖S(·,v)‖∞dv. (35)

Fix a time t0 > 0 and a point x0 ∈ M. Denote by r the diameter of (M, g(t0)). Without
loss of generality, we assume r <

√
t0. Choosing p = x0, t = t0, s = t0 − r2 in (35), for any

x ∈ M, we have (x0, x, t0) ≤ r and arrive at

G(x0, t0 − r2; x, t0) ≥
c1 J(t0)

rn e−1−
∫ t0

0 ‖S(·,v)‖∞dv. (36)

From (3.20) in [21], we know that

‖S−(·, t)‖∞ ≤
1

1
‖S−(·,0)‖∞

+ 2t
n

. (37)

It follows from the adjoint property of the fundamental solution (see [32]) that, for
fixed p and s, G(p, s; x, t) is a function of (x, t), and is the fundamental solution of the
heat equation

∂tG(p, s; x, t)− ∆g(x,t)G(p, s; x, t) = 0.

This yields that

d
dt

∫
M

G(p, s; x, t)dµ(g(x, t))

=
∫

M
∆g(x,t)G(p, s; x, t)dµ(g(x, t))−

∫
M

S(x, t)G(p, s; x, t)dµ(g(x, t))

≤‖S−(·, t)‖∞

∫
M

G(p, s; x, t)dµ(g(x, t)),

which, combining (37), yields

∫
M

G(p, s; x, t)dµ(g(x, t)) ≤
[

1 +
2
n
‖S−(·, 0)‖∞(t− s)

] n
2
. (38)

It follows from (36) and (38) that
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(
2r2

n
‖S−(·, 0)‖∞ + 1

) n
2

(39)

≥
∫

M
G(x0, t0 − r2; y, t0)dµ(g(y, t0))

≥
∫
(x0,y,t0)≤r

G(x0, t0 − r2; y, t0)dµ(g(y, t0))

≥ c1 J(t0)

rn e−1−
∫ t0

0 ‖S(·,v)‖∞dv
∫
(x0,y,t0)≤r

dµ(g(y, t0)).

Noting that r = diam(M, g(t0)), we know∫
(x0,x,t0)≤r

dµ(g(x, t0)) = Volg(t0)
(M). (40)

In addition, we have

d
dt

Volg(t)(M) = −
∫

M
S(x, t)dµ(g(x, t)) ≥ −‖S(·, t)‖∞Volg(t)(M),

which implies

Volg(t0)
(M) ≥ e−

∫ t0
0 ‖S(·,t)‖∞dtVolg0(M). (41)

Combining (39)–(41) leads to[
1 +

2
n
‖S−(·, 0)‖∞r2

] n
2
rn ≥ c1 J(t0)e−1−2

∫ t0
0 ‖S(·,s)‖∞dsVolg0(M). (42)

Since r = diam(M, g(t0)) and r <
√

t0, by assumption, we can obtain

diam(M, g(t0)) ≥c2e
1
n [−αt0−β−t0‖S−(·,0)‖∞]e−

2
n
∫ t0

0 ‖S(·,s)‖∞ds

×
[

1 +
2t0

n
‖S−(·, 0)‖∞

]− 1
2 [

Volg0(M)
] 1

n .

If S(·, 0) ≥ 0, then we have α = 0 and S−(·, 0) = 0, which implies that

diam(M, g(t0)) ≥c2e−
β
n e−

2
n
∫ t0

0 ‖S(·,s)‖∞ds[Volg0(M)
] 1

n .

Since t0 is arbitrary, we can deduce (5) and (6).
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