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Abstract: Pair soliton interactions play a significant role in the dynamics of soliton turbulence. The
interaction of solitons with different polarities is particularly crucial in the context of abnormally large
wave formation, often referred to as freak or rogue waves, as these interactions result in an increase
in the maximum wave field. In this article, we investigate the features and properties of bipolar
solitary wave interactions within the framework of the non-integrable Schamel equation, contrasting
them with the integrable modified Korteweg-de Vries (mKdV) equation. We show that in bipolar
solitary wave interactions involving two solitary waves with significantly different amplitudes in
magnitude, the behavior closely resembles what is observed in the mKdV equation. However, when
solitary waves have similar amplitudes in modulus, the maximum value of their interaction remains
less than the sum of their initial amplitudes. This distinguishes these interactions from integrable
models, where the resulting impulse amplitude equals the sum of the soliton amplitudes before
interaction. Furthermore, in the Schamel equation, smaller solitary waves can transfer some energy
to larger ones, leading to an increase in the larger soliton amplitude and a decrease in the smaller
one amplitude. This effect is particularly prominent when the initial solitary waves have similar
amplitudes. Consequently, large solitary waves can accumulate energy, which is crucial in scenarios
involving soliton turbulence or soliton gas, where numerous solitons interact repeatedly. In this sense,
non-integrability can be considered a factor that triggers the formation of rogue waves.

Keywords: Schamel equation; modified Korteweg-de Vries equation; soliton interaction; soliton
turbulence

MSC: 76B15; 76B20; 76B25; 76B55

1. Introduction

The existence of coherent structures like solitons in nonlinear wave systems leads to a
problem of soliton gas or soliton turbulence, which has been the focus of investigations for
the last decade [1–5]. Such wave fields imply the presence of a large number of solitons
with random parameters that significantly determine the dynamics of the wave field.
The problem of soliton turbulence can be expanded to the breather turbulence or soliton-
breather turbulence if, apart from solitons, there is also another type of waves that conserve
their energy during propagation–oscillating wave packets called breathers [6–8]. The
study of soliton turbulence arose in the context of integrable equations through the inverse
scattering transform equations, the most known of which is the nonlinear Schrödinger (NLS)
equation, which describes the time evolution of the envelope of a quasi-monochromatic
wave train [9–12] and the Korteweg-de Vries equation [2,13]. The interaction of the solitons
in the framework of these equations is elastic, and there is no loss of energy after such
collisions.
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Two-soliton collisions and their properties were extensively studied in many articles,
for example, in [14,15] for KdV-like models, such as Korteweg-de Vries, modified Korteveg-
de Vries (mKdV), and extended Korteweg-de Vries (known as Gardner) equations. In the
work of Anco et al. [16], the collisions of two solitons were studied within a more exotic
equation of KdV-type: Sasa-Satsuma and Hirota equations. The most significant parameter,
which defines the character of the wave interaction is the polarity of the solitons. Solitons
with the same polarity repel each other and the amplitude of the resulting impulse in
the moment of interaction decreases and it is smaller than the amplitude of the largest
soliton. In the case of the interaction of solitons with different polarities, the amplitude
of the resulting impulse increases due to the attraction of solitons. Thus, the behavior of
soliton gas depends noticeably on the polarities of solitons. The wave field consisting of
bipolar solitons (i.e., positive and negative solitons) experiences anomalously large waves
formation [17,18]. Moreover, analytically, it was shown that in the case of very specific
soliton phases (or positions), all solitons (and breathers) have the potential to coalesce into
a single massive rogue wave, with its amplitude being the linear sum of the amplitudes
of the interacting waves [19,20]. However, in real systems, such situations should happen
rarely, and the soliton interactions are a quasi-chaotic process.

There are non-integrable modifications of KdV equations, which have soliton solutions.
However their interaction is inelastic and there is additional radiation, which occurs after
the soliton interactions. Here, apart from the other equations, the number of the Schamel-
like equations, describing ion acoustic waves due to resonant electrons, nonlinear wave
dynamics of cylindrical shells, and longitudinal waves in the walls of an annular channel
can be listed [21–25]. Unlike the KdV equation, the nonlinear term of the Schamel equation
contains a module of the wave elevation function. This equation allows the existence of
solitons with both positive and negative polarity; thus, the problem of soliton turbulence
can be relevant to the wave systems described by this equation. The article about the
study of the process of positive pair soliton interaction within the Schamel equation was
published recently [26]. It was shown that some features of solitary wave interactions, like
the evolution of wave moments or phase shifts that acquire solitons after the interaction,
are similar to ones within integrable KdV-like models due to small dispersion. Also, it
was shown previously that the dynamics of the wave field consisting of a large number
of solitons with the same polarity is very close in the case of integrable KdV-equation and
non-integrable BBM-equation [27]. Although there have been numerous studies dedicated
to investigating soliton interactions of the same polarity in both integrable systems [14,15]
and non-integrable systems [28,29], as well as bipolar interactions in integrable systems [17].
The interaction of solitons with different polarities is particularly crucial in the context
of abnormally large wave formation, often referred to as freak or rogue waves, as these
interactions result in an increase in the maximum wave field. A noticeable gap exists
in the literature concerning the exploration of bipolar soliton interactions within non-
integrable systems. This gap underscores the need for further research in this area, as well
as understanding the dynamics of bipolar solitons in non-integrable systems.

In this study, our goal is to examine the primary characteristics of bipolar soliton inter-
actions within the Schamel equation and subsequently compare these findings with those of
the integrable mKdV equation. The structure of the present article is as follows: Section 2
contains the description of two-soliton collision within the Schamel equation. The main
results on the soliton collisions for the Schamel equation are presented in Section 3. The
comparison of the properties of two-soliton interactions for integrable and non-integrable
models is given in Section 4. The analysis of the evolution of moments of the wave fields is
presented in Section 5. Finally, there are concluding remarks at the end of the article.
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2. Mathematical Model

In our research, we investigate solitary wave interactions by focusing on the Schamel
equation in its canonical form

ut +
√
|u|ux + uxxx = 0. (1)

Within this equation, the variable u represents the wave field at a specific position x and
time t.

The Schamel Equation (1) supports solitary waves as its solutions. These solitary
waves can be described by the following expressions [21,26]

u(x, t) = a sech4(k(x− ct)), where c =
8
√
|a|

15
and k =

√
c

16
. (2)

Here, a stands for the amplitude of the solitary wave, which can be positive or negative.
The parameter c denotes the speed of the solitary wave and k characterizes its wavenumber.

We set the initial wave field as a linear superposition of two solitons, taking into
account that solitons are located far enough from each other soliton field at t = 0

u(x, 0) = u1(x + x0) + u2(x− x0), (3)

where u1, u2 represent one-soliton solutions with amplitudes A1 and A2 crests located at
x = −x0 and x = x0, respectively. Solutions are computed numerically using the standard
pseudospectral method with integrating factors presented in [30]. The time advance is
computed through the Runge–Kutta fourth-order method. In what follows, the phase (x0)
is always taken as x0 = 30.

3. Bipolar Soliton Interactions

Pair soliton interactions constitute a fundamental component of the intricate dynamics
underlying soliton turbulence. These interactions take on a heightened significance when
we delve into the realm of abnormally large wave formations, commonly termed freak
or rogue waves. The pivotal role they play becomes evident as they contribute to the
augmentation of the maximum wave field [17]. In this section, our primary objective is to
conduct a comprehensive numerical exploration of the essential characteristics of bipolar
soliton collisions. We carry out this investigation using the Schamel Equation (1). Through
this analysis, we aim to gain a deeper understanding of the behavior and consequences of
solitons with differing polarities coming into contact with one another and positioned as in
Equation (3).

The properties of pair soliton interactions can be found in Figure 1. The bottom of this
figure (left plot) demonstrates the evolution of the maximum of the wave field. It can be
clearly seen that before interaction, the value of is equal to the value of the amplitude of the
largest soliton; at the moment of interaction, it increases up to the value 1.53; however, after
the separation, it does not return to its original value and remains at the level of 1.09. This
means that a positive soliton increases its energy after the soliton collision. Consequently,
the negative one loses its energy as is clearly seen in Figure 1 (bottom left), where the value
increases after the soliton interaction and becomes equal to −0.8. There is no radiation that
attenuates both solitons. In comparison with the integrable mKdV case, it is an inelastic
collision with energy transfer from smaller to larger soliton. Thus, it can play a dramatic
role in the soliton gas, when the energy concentrates in the biggest soliton which grows
with time. It can be considered a new mechanism of rogue wave generation due to non-
integrability. In fact, when the solitons have the same polarity [26], the dynamics of the
wave field resemble the KdV-collisions except for the small radiation produced during the
collision. In other words, the amplitudes are almost conserved.

Another intriguing finding is that the angle formed with the positive axis Ox and the
soliton trajectory changes after the collisions (Figure 1, bottom right). For instance, the
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change for the negative soliton is 90◦ − 103◦ = −13◦, while for the positive soliton it is
88◦ − 87◦ = 1◦. There is a big difference in comparison with the mKdV equation where
only a phase shift occurs after the collision and the trajectories have the same angle.

The features of soliton interactions depend a lot on the amplitudes of the solitons.
Another example of pair soliton interactions is presented in Figure 2. Here, the value almost
returns to its original value, and the angle between the positive axis Ox and the soliton
trajectory does not change after the collisions. The value also restores after the solitons
become separated.
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Figure 1. (Top): Overtaking collision of two solitary waves for the Schamel equation. (Bottom): (Left)
The maximum value of the solution as a function time. (Right): The crest trajectories of the solitary
waves. Parameters A1 = 1.0 and A2 = −0.9.

To study the dependence of extrema (maximum and minimum) of wave fields against
the ratio of the amplitudes of the interacted solitons, as well as the values of amplitudes
of the largest and smallest solitons after the soliton interaction, Figure 3 is analyzed. The
amplitude of the largest soliton before the soliton collision was kept constant and equal to 1.
The amplitude of the second soliton was changed from −0.9 to −0.1. It is observed that the
minimum of the wave field for all considered ratios A2/A1 is equal to the amplitude of the
smallest soliton and does not fall below this value over time. Thus, the straight red line can
be seen in the left plot of Figure 3. The value of umin before and after the soliton interaction
is not the same for all ratios A2/A1. This difference can be seen for amplitudes A2 less
than −0.7 (see red line on the right plot of Figure 3). This means that the negative soliton
transfers part of its energy to the positive one only when their amplitudes are comparable
in modulus. Accordingly, this effect does not appear when the amplitude of the negative
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soliton is considerably smaller than the amplitude of the large positive soliton. A similar
conclusion can be made for the wave field maxima: the amplitude of the largest soliton
after the soliton interaction exceeds its initial value (which is equal to 1) only for ratio
|A2/A1| bigger than 0.7.
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Figure 2. (Top): Overtaking collision of two solitary waves for the Schamel equation. (Bottom): (Left)
The maximum value of the solution as a function time. (Right): The crest trajectories of the solitary
waves. Parameters A1 = 1.0 and A2 = −0.5.
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Figure 3. (Left): Extrema of wave fields consisting of bipolar solitons described by the Schamel
equation as a function of the ratio A2/A1. Here, umax denotes the maximum values of the wave field
and umin its minimum value over the solitary wave interaction. (Right): The amplitude of the solitary
waves after the interaction as a function of the ratio A2/A1.
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4. Comparison of the Process of the Soliton Interaction within the Schamel and the
mKdV Equation

In the present section, the qualitative differences between the interaction of bipolar
solitons within the non-integrable Schamel equation and integrable modified Korteweg-de
Vries equation are analyzed.

The mKdV equation
ut + u2ux + uxxx = 0. (4)

also admits solitary waves as solutions described by the formulas

u(x, t) = a sech((k(x− ct)), where v =
a2

6
and k =

√
a2

6
. (5)

The soliton solutions of the Schamel equation are much narrower than the mKdV
solitons with small amplitudes (Figure 4). Large solitons within the Schamel equation are
a bit wider at the top of the soliton and narrower at the bottom in comparison with the
mKdV solitons. Schamel solitons propagate faster than mKdV ones. These differences in
shapes and velocities contribute to the difference in the interaction processes of solitons.
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Figure 4. Soliton profile of the Schamel Equation (2) and the KdV Equation (5).

The process of two soliton interactions in an integrable mKdV model and non-
integrable Schamel equation is presented in Figures 5 and 6 for the simulations presented
in Figure 1, and Figure 2 correspondingly. The interaction of bipolar solitons leads to an
increase in the amplitude of the resulting impulse. However, within the mKdV model, the
resulting amplitude presents the linear superposition of the modules of amplitudes of the
initial solitons. The amplitude of the resulting impulse within the Schamel equation is less
due to the additional radiation that occurs because of the non-integrability of this equation
and the inelastic interaction of solitons. Also, in the mKdV model, the interacting solitons
restored their shapes and amplitudes after the interaction, and the biggest wave which
can form in the soliton gas has an amplitude equal to the sum of all solitons; this scenario
requires very specific soliton phases and order of solitons [19,20]. In the framework of the
Schamel equation, when solitons have close amplitudes by modulus (Figure 5), the scenario,
on the one hand, is less extreme than the mKdV case because the resulting impulse is less
than in the mKdV case. On the other hand, the amplitude of the largest soliton increases
after the interaction. This may lead to the consumption of the energy of the largest soliton in
soliton gas and, as a result, it may be considered a new mechanism of a freak or rogue wave
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formation due to the non-integrable effects. When the initial amplitudes of the solitons
significantly differ from each other, the resulting impulse in the Schamel equation is again
less than in the mKdV case, but not significantly, because the non-integrable radiation is
small in this case (Figure 6). Moreover, after the interaction, the solitons have similar shapes
as they had before the interaction.
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Figure 5. A series of snapshots of the interaction of the solitary waves for the Schamel (in blue) and
mKdV equation (in red). Parameters A1 = 1.0 and A2 = −0.9.

Figures 5 and 6 are plotted in the Schamel time, and the corresponding mKdV time is
computed as

tm =
c1 − c2

v1 − v2
. (6)

Here, c1 represents the positive Schamel soliton speed, while c2 corresponds to the negative
Schamel soliton speed. Similarly, v1 denotes the speed of positive mKdV solitons, and v2
represents the speed of negative mKdV solitons.
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Figure 6. A series of snapshots of the interaction of the solitary waves for the Schamel (in blue) and
mKdV equation (in red). Parameters A1 = 1.0 and A2 = −0.5.

5. Moments of the Wave Fields

With the aim of understanding the contribution and the influence of pair interactions
on the statistical moments of the wave field, the following integrals that correspond to four
statistical moments were studied

Mn(t) =
∫ +∞

−∞
un(x, t), for n = 1, 2, 3, 4. (7)

The first invariant (n = 1) is known as the Casimir invariant or the mass invariant. It
characterizes the mass or the total “amount" of the wave field at any given time t. The
second invariant (n = 2) is the momentum invariant. These invariants play a crucial role
in evaluating the accuracy and reliability of numerical methods employed to solve the
Schamel Equation (1). Their evolution within the Schamel equation is presented in Figure 7.
It can be seen that the accuracy of the calculations is quite high, and the first and second
integrals are preserved with an accuracy equal to 10−7 and 10−8.

The third and fourth moments corresponding to the skewness and the kurtosis in the
theory of turbulence vary in time and change their values during the soliton interaction.
Their evolution and comparison for the two equations are shown in Figure 8 (top plot—in
case of the simulation displayed in Figure 1) (bottom plot—in case of the simulation
displayed in Figure 2). These moments increase in the moment of soliton interactions
due to the increase in amplitude of the resulting impulse. The peaks of the moments are
predictably higher within the mKdV equation than in the Schamel equation because the
growth of impulses is larger in the mKdV equation as was shown in the previous section.
By analogy with the maxima of wave fields, in the integrable mKdV equation, due to
elastic soliton interactions, the values of the third and fourth moments before and after
the interaction are identical. The same conclusion can be made for the Schamel equation
in case of large differences in amplitudes of interacted solitons. The radiation due to the
non-integrability of this equation is small enough. However, when the amplitudes of
solitons are close in modulus (A2/A1 is bigger than 0.7), the value of the moments after
the interaction becomes bigger than before the interaction. This means that in the case of
the mKdV soliton interaction, the amplitudes of interacted solitons are higher than in the
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Schamel case. However, if in the Schamel equation, a large time of evolution of the wave
field consisting of a large number of solitons is considered, the accumulation of energy in
large solitons can contribute to the emergence of unexpectedly large waves in the system.
Thus, non-integrability can be considered as a factor provoking the rogue wave formation.
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Figure 7. The variation of moments M1 and M2 as functions of time during interaction of the solitary
waves of the Schamel equation for the collisions displayed in Figure 1.

0 500 1000 1500 2000 2500

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

10

20

30

40

50

60

0 500 1000

6

8

10

12

14

16

18

20

0 500 1000

5

10

15

20

25

30

Figure 8. Moments M3 and M4 as functions of time during interaction of the solitary waves
of the Schamel equation (in blue) and mKdV equation (in red) for the collisions displayed in
Figure 1 (top) and Figure 2 (bottom), respectively.
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6. Conclusions

We conducted an investigation into the collision dynamics of two solitons with dif-
ferent polarities, an essential aspect of soliton turbulence. This study involved numerical
simulations using the non-integrable Schamel equation, and we compared the results to
those obtained from the modified Korteweg-de Vries (mKdV) equation. Our findings
revealed that when the amplitudes of the two solitons significantly differ in magnitude, the
behavior of bipolar soliton interactions closely resembles that of the mKdV equation. In this
scenario, despite the inelastic nature of soliton interaction, minimal radiation is generated
within the Schamel equation. However, when the soliton amplitudes are close in magni-
tude, a distinctive effect emerges during the bipolar soliton interaction. Specifically, the
amplitude of the resultant impulse increases, but it remains less than the sum of the soliton
amplitudes prior to their interaction. Notably, in the case of close-magnitude amplitudes,
the smaller soliton transfers a portion of its energy to the larger one. Consequently, the
larger soliton amplitude increases while the smaller soliton amplitude decreases compared
to their initial values. This phenomenon becomes especially pronounced in scenarios
involving the interaction of bipolar solitons with similar amplitudes. As a result, large soli-
tons have the potential to accumulate additional energy. This observation holds particular
significance in the context of soliton turbulence or soliton gas, where a multitude of solitons
interact repeatedly within the system.

Previously, it was shown that in the integrable KdV-like models, the bipolar soliton
interactions can be a mechanism of rogue wave formation since the optimal focusing
promotes the formation of the wave with an amplitude equal to the sum of amplitudes of
interacted solitons even if their number is bigger than two. Within the Schamel equation,
this effect is less pronounced due to the non-integrable radiation that occurs after the
interaction. However, the energy accumulation in the largest solitons may contribute to the
rogue wave formation in the case of long-term wave dynamics.
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