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1. Introduction

Let z := K[x1, x2, . . . , xυ] be a polynomial ring over a field K with standard grading,
that is, deg(xi) = 1, for all i. Let M be a finitely generated graded z-module. Suppose that
M admits the following minimal free resolution:

0 −→
⊕
j∈Z

z(−j)βp,j(M) −→
⊕
j∈Z

z(−j)βp−1,j(M) −→ · · · −→
⊕
j∈Z

z(−j)β0,j(M) −→ M −→ 0.

The projective dimension of M is defined as pdim(M) = max{i : βi,j(M) 6= 0}. The depth
of M is defined to be the common length of all maximal M-sequences in the unique graded
maximal ideal (x1, x2, . . . , xυ). Let M be a finitely generated Zυ-graded z-module. For
a homogeneous element u ∈ M and a subset A ⊂ {x1, x2, . . . , xn}, uK[A] denotes the
K-subspace of M generated by all homogeneous elements of the form uv, where v is a
monomial in K[A]. The K-subspace, uK[A], is called a Stanley space of dimension |A| if it
is a free K[A]-module, where |A| denotes the number of indeterminates in A. A Stanley
decomposition D of M is a presentation of the K-vector space M as a finite direct sum of
Stanley spaces:

D : M =
s⊕

i=1

aiK[Ai].

The Stanley depth of decompositionD is defined as sdepth(D) = min{|Ai| : i = 1, 2, . . . , s}.
The Stanley depth of M is defined as

sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}.

Stanley conjectured in [1] that sdepth (M) ≥ depth (M); this conjecture was later disproved
by Duval et al. [2] in 2016. However, it is still important to prove Stanley’s inequality for
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some special classes of ideals. Herzog et al. gave a method in [3] to compute the Stanley
depth of modules of the form I/J, where J ⊂ I are monomial ideals. But in general, it is
still too hard to compute Stanley depth even using their method. For further details, we
refer the reader to [4–6].

Let G = (V(G), E(G)) be a graph, where V(G) = {x1, x2, . . . , xυ} is the vertex set
and E(G) is the edge set of graph G. All graphs considered in this paper are simple and
undirected. The edge ideal I(G) of the graph G is the ideal generated by all monomials
of the form xixj such that {xi, xj} ∈ E(G). In the last decade, the study of edge ideals has
gained considerable attention. Various findings on these ideals have demonstrated how
combinatorial and algebraic aspects interact; see, for instance, [7,8]. The algebraic invariant
depth, Stanley depth, and projective dimension have significant importance in the field of
commutative algebra. Establishing the relationship of these invariants with other invariants
of commutative algebra and invariants of graph theory are current trends in research.

In general, the invariant depth, Stanley depth, and projective dimension are hard to
compute. There are very few classes of ideals for which the formulae of these invariants
are known; see, for instance, [4,9,10]. We prove that when we consider the r-fold graph of a
ladder graph, circular ladder graph, some king’s graphs, and some circular king’s graphs,
then the value of depth, Stanley depth, and projective dimension of the quotients rings of the
edge ideals of these graphs are functions of r. We also prove that Stanley’s inequality also
holds for these quotient rings. Furthermore, our results give strong motivation for further
studies in this direction. For our main results, see Theorem 3, Corollary 4, Theorem 4,
Theorem 6, Corollary 4, and Theorem 7.

2. Preliminaries

In this section, we will recall some definitions and notations from graph theory. For
terminology and definitions from graph theory, we refer the reader to [11–14]. Some
known results related to depth and Stanley depth are also given in this section. If I is a
monomial ideal then G(I) denotes its unique minimal set of monomial generators. If u
is a monomial of z, then supp(u) := {xi : xi|u}, and for a monomial ideal I, we define
supp(I) := {xi : xi|u, for some u ∈ G(I)}. The degree of a vertex xi denoted by deg(xi)
is the number of edges that are incident to xi. Let υ ≥ 1, a path of length υ− 1, denoted
by Pυ, be a graph with V(Pυ) = {x1, x2, . . . , xυ} and E(Pυ) = {{xi, xi+1} : 1 ≤ i < υ} (if
υ = 1, then E(P1) = ∅). Let υ ≥ 3, a cycle of length υ denoted by Cυ, be a graph with
V(Cυ) = {x1, x2, . . . , xυ} and E(Cυ) = {{xi, xi+1} : 1 ≤ i < υ}⋃{{x1, xυ}}. A graph is
said to be a tree if it is acyclic. A vertex xi is called a pendant vertex if deg(xi) = 1. For r ≥ 2,
an r-star denoted by Sr is a tree with (r− 1) leaves and a single vertex with degree r− 1. A
caterpillar is a tree in which the removal of all pendants leaves a path.

Definition 1 ([15]). Let G be a graph and r ≥ 1 be an integer. The graph obtained by attaching r
pendant vertices to each vertex of G is called the r-fold bristled graph of G. The r-fold bristled graph
of G is denoted by Brsr(G).

Definition 2 ([16]). The Cartesian product G12G2 of graphs G1 and G2 is a graph with vertex set
V(G1)×V(G2) and {(t1, u1), (t2, u2)} ∈ E(G12G2), whenever

1. {t1, t2} ∈ E(G1) and u1 = u2;
2. t1 = t2 and {u1, u2} ∈ E(G2).

Definition 3 ([16]). The strong product G1 � G2 of graphs G1 and G2 is a graph with vertex set
V(G1)×V(G2) and {(t1, u1), (t2, u2)} ∈ E(G1 � G2), whenever

1. {t1, t2} ∈ E(G1) and u1 = u2;
2. t1 = t2 and {u1, u2} ∈ E(G2);
3. {t1, t2} ∈ E(G1) and {u1, u2} ∈ E(G2).
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Here we introduce some notations that will be used throughout the paper. For υ ≥ 1,
let Dυ := Pυ2P2 and Lυ := Pυ � P2 be graphs. The graph Dυ is known as a ladder graph,
whereas the graph Lυ is called (υ× 2)-king’s graph. See Figure 1 for examples of Dυ and Lυ.
For υ ≥ 3, let Hυ := Cυ2P2 and Tυ := Cυ � P2; the graph Hυ is called a circular ladder graph.
We define the graph Tυ as circular (υ× 2)-king’s graph.

y1 y2 y3 y4

x1 x2 x3 x3

(a) D4

y1 y2 y3 y4

x1 x2 x3 x4

(b) L4

Figure 1. Ladder graph and king’s graph.

Now we recall some known results that are frequently used in this paper. The follow-
ing lemma, which is also known as the Depth Lemma, has a crucial role in all proofs of our
results concerning depth.

Lemma 1 ([17]). If 0→ U → M→ N → 0 is a short exact sequence of modules over a local ring
z, or a Noetherian graded ring with z0 local, then

1. depth(M) ≥ min{depth(N), depth(U)}.
2. depth(U) ≥ min{depth(M), depth(N) + 1}.
3. depth(N) ≥ min{depth(U)− 1, depth(M)}.

A similar result for Stanley depth as given in the subsequent lemma is proved by Rauf.

Lemma 2 ([18]). Let 0→ U → V →W → 0 be a short exact sequence of Zυ-graded z-module.
Then sdepth (V) ≥ min{sdepth (U), sdepth (W)}.

Here is a list of some preliminary lemmas that are referred to many times in the proofs
of our results.

Lemma 3 ([3]). Let I ⊂ z be a monomial ideal. If z′ = z ⊗K K[xυ+1] ∼= z[xυ+1], then
depth (z′/Iz′) = depth(z/I) + 1 and sdepth (z′/Iz′) = sdepth(z/I) + 1.

Lemma 4 ([19]). If I = I(Sυ) ⊆ z is an edge ideal of υ-star, then

depth (z/I) = sdepth (z/I) = 1.

Lemma 5 ([20]). Let I ⊂ z′ = K[x1, . . . , xr], J ⊂ z′′ = K[xr+1, . . . , xυ] be monomial ideals,
where 1 ≤ r < υ and z = z′ ⊗K z′′. Then

depth (z′/I ⊗K z′′/J) = depth (z/(Iz+ Jz))) = depthz′ (z
′/I) + depthz′′ (z

′′/J).

Lemma 6 ([20]). Let I ⊂ z′ = K[x1, . . . , xr] and J ⊂ z′ = K[xr+1, . . . , xυ] be monomial ideals,
where 1 ≤ r < υ and z = z′ ⊗K z′′. Then

sdepth (z′/I ⊗K z′′/J) = sdepth (z/(Iz+ Jz))) ≥ depthz′ (z
′/I) + depthz′′ (z

′′/J).

The following results are useful in finding upper bounds for depth and Stanley depth.

Corollary 1 ([18]). Let I ⊂ z be a monomial ideal. Then depth(z/(I : u)) ≥ depth (z/I) for
all monomials u /∈ I.
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Proposition 1 ([21]). Let J ⊂ z be a monomial ideal. Then for all monomials u /∈ J,

sdepth (z/J) ≤ sdepth (z/(J : u)).

Lemma 7 ([22]). Let I ⊂ z be a squarefree monomial ideal with supp (I) = {x1, x2, . . . , xυ},
let µ := xi1 xi2 . . . xiq ∈ z/I, such that xhµ ∈ I, for all xh ∈ {x1, x2, . . . , xυ} \ supp (µ). Then
sdepth(z/I) ≤ q.

The following result says that once the value of depth of a module is know then one
can find its projective dimension.

Theorem 1 ([17]). (Auslander–Buchsbaum formula) If z is a commutative Noetherian local ring
and M is a non-zero finitely generated z-module of finite projective dimension, then

pdim (M) + depth (M) = depth (z).

For r ≥ 1 and υ ≥ 1, if Pυ,r := Brsr(Pυ), then clearly Pυ,r is a caterpillar and we have
the following values for depth and Stanley depth.

Theorem 2 ([23]). Let r ≥ 1 and υ ≥ 1. Then

depth
(
K[V(Pυ,r)]/I(Pυ,r)

)
= sdepth

(
K[V(Pυ,r)]/I(Pυ,r)

)
= dυ− 1

2
er + dυ

2
e.

Throughout this paper, we set zυ,r := K[
⋃υ

i=1{xi, yi}
⋃⋃r

j=1{x1j, x2j . . . , xυj, y1j, y2j,
. . . , yυj}], where r and υ are positive integers. Also, |V(zυ,r)| = 2υ(1 + r).

3. Depth and Stanley Depth of r-Fold Bristled Graph of Ladder Graph and Some
King’s Graph

In this section, we determine depth, projective dimension, and Stanley depth of the
quotient rings associated with edge ideals of r-fold bristled graphs of graphs Dυ and Lυ.
See Figures 2a and 3 for 2-fold bristled graph of graphs D4 and L4, respectively. We label
the vertices of Brsr(Dυ) and Brsr(Lυ), as shown in Figure 2a and Figure 3, respectively. For
υ, r ≥ 1, let Iυ,r := I(Brsr(Dυ)) and Lυ,r := I(Brsr(Lυ)). If G(I) denotes the minimal set of
monomial generators of the monomial ideal I, using our labeling, we have

G(I1,r) = {x1y1}
⋃ r⋃

j=1

{x1x1j, y1y1j},

and

G(L1,r) = {x1y1}
⋃ r⋃

j=1

{x1x1j, y1y1j}.

If υ ≥ 2, then we have

G(Iυ,r) =
υ−1⋃
i=1

{xixi+1, yiyi+1}
⋃ υ⋃

i=1

{xiyi}
⋃ r⋃

j=1

{y1y1j, . . . , yυyυj, x1x1j, . . . , xυxυj},

and

G(Lυ,r) =
υ−1⋃
i=1

{xixi+1, yiyi+1}
⋃ r⋃

j=1

{x1x1j, .., xυxυj, y1y1j, .., yυyυj}
⋃

υ⋃
i=1

{xiyi}
⋃
{y1x2, yυxυ−1}

⋃ υ−1⋃
i=2

{yixi−1, yixi+1}.
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Note that Brsr(D1) ∼= Brsr(L1) ∼= P2,r and z1,r/I1,r ∼= z1,r/L1,r ∼= K[V(P2,r)]/I(P2,r).
We also define a modified graph of Brsr(Dυ) denoted by Aυ,r with the set of vertices
V(Aυ,r) = V(Brsr(Dυ))

⋃{yυ+1}
⋃{y(υ+1)1, y(υ+1)2, . . . , y(υ+1)r} and E(Aυ,r) = E(Iυ,r)

⋃
{{yυ, yυ+1}}

⋃⋃r
j=1{{yυ, y(υ+1)1}, {yυ, y(υ+1)2}, . . . {yυ, y(υ+1)r}}. See Figure 3b for an ex-

ample of graph Aυ,r and labeling of vertices of this graph. We set z∗υ,r := zυ,r[yυ+1, y(υ+1)1,
y(υ+1)1, . . . , y(υ+1)r] and I∗ := I(Aυ,r). Clearly, G(I∗υ,r) = G(Iυ,r)

⋃{yυyυ+1, yυy(υ+1)1,
yυy(υ+1)2, . . . , yυy(υ+1)r}. Note that Aυ,r ∼= P3,r, z∗1,r/I∗1,r = K[V(P3,r)]/I(P3,r) and |V(z∗υ,r)|
= (2υ + 1)(1 + r). To determine depth and Stanley depth of zυ,r/Iυ,r, we shall first deter-
mine the depth and Stanley depth of z∗υ,r/I∗.

y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

(a) Brs2(D4)

y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

y5

y51 y52

(b) A4,2

Figure 2. 2-Fold bristled graph of a ladder graph and its modification by adding some vertices
and edges.

y1 y2 y3 y4

y11 y12 y21 y22 y31 y32 y41 y42

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

Figure 3. Brs2(L4).

Remark 1. Let I be a squarefree monomial ideal of z whose monomial generators have degrees of
at most 2. We associate a graph GI to the ideal I with V(GI) = supp (I) and E(GI) = {{xi, xj} :
xixj ∈ G(I)}. Let xu ∈ z be a variable of the polynomial ring z such that xu /∈ I. Then (I : xu)
and (I, xu) are monomial ideals of z such that G(I:xu) and G(I,xu) are subgraphs of GI . See Figure
4a and Figure 4b for graphs G(I∗4,2 : y5)

and G(L3,2, x3)
, respectively.
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y1 y2 y3 y4

y11 y12 y21 y22 y31 y32

x1 x2 x3 x4

x11 x12 x21 x22 x31 x32 x41 x42

y51 y52

(a) G(I∗4,2 :y5)

y1 y2 y3

y11 y12 y21 y22 y31 y32

x1 x2 x3

x11 x12 x21 x22

(b) G(L3,2,x3)

Figure 4. Graphs corresponding to ideals (I∗4,2 : y5) and (L3,2, x3).

Remark 2. While proving our results by induction on υ, the special cases, say z0,r/L0,r and
z∗0,r/I∗0,r, that might appear in the proofs need to be addressed first. We define z0,r/L0,r := K and
z∗0,r/I∗0,r := K[V(Sr+1)]/I(Sr+1). Thus, we have depth (z0,r/L0,r) = sdepth (z0,r/L0,r) = 0,
and by Lemma 4, we have depth (z∗0,r/I∗0,r) = sdepth (z∗0,r/I∗0,r) = 1.

Lemma 8. Let υ, r ≥ 1. Then depth (z∗υ,r/I∗υ,r) = sdepth (z∗υ,r/I∗υ,r) = (r + 1)υ + 1.

Proof. First we will prove the result for depth. We will prove this by induction on υ. We
consider the following short exact sequence:

0 −→ z∗υ,r/(I∗υ,r : yυ)
·yυ−→ z∗υ,r/I∗υ,r −→ z∗υ,r/(I∗υ,r, yυ) −→ 0.

By the Depth Lemma,

depth (z∗υ,r/I∗υ,r) ≥ min{depth (z∗υ,r/(I∗υ,r : yυ)), depth (z∗υ,r/(I∗υ,r, yυ))}. (1)

If υ = 1, then by Theorem 2, depth (z∗1,r/I∗1,r) = depth (K[V(P3,r)]/I(P3,r)) = r + 2,
as required. Let υ ≥ 2. After renumbering the variables, we have

z∗υ,r/(I∗υ,r : yυ) ∼= z∗υ−2,r/I∗υ−2,r
⊗

K
K[yυ,∪r

j=1{xυj, y(υ−1)j, y(υ+1)j}].

Thus, by induction and Lemma 3,

depth (z∗υ,r/(I∗υ,r : yυ)) = depth (z∗υ−2,r/I∗υ−2,r) + 3r + 1 = (r + 1)(υ− 2) + 1 + 3r + 1 = (r + 1)υ + r.

Also,

z∗υ,r/(I∗υ,r, yυ) ∼= z∗υ−1,r/I∗υ−1,r
⊗

K
K[V(Sr+1)]/I(Sr+1)

⊗
K

K[yυ1, yυ2, . . . , yυr].

By Lemmas 3 and 5,

depth (z∗υ,r/(I∗υ,r, yυ)) = depth (z∗υ−1,r/I∗υ−1,r) + depth (K[V(Sr+1)]/I(Sr+1)) + r.

Using induction and Lemma 4,

depth (z∗υ,r/(I∗υ,r, yυ)) = (r + 1)(υ− 1) + 1 + 1 + r = (r + 1)υ + 1.
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By Equation (1), we have depth (z∗υ,r/(I∗υ,r)) ≥ (r + 1)υ + 1. Now we prove the other
inequality. We have z∗υ,r/(I∗υ,r : yυ+1) ∼= z∗υ−1,r/I∗υ−1,r

⊗
K K[yυ+1, yυ1, yυ2, . . . , yυr], by

Lemma 3, depth (z∗υ,r/(I∗υ,r : yυ+1)) = depth (z∗υ−1,r/I∗υ−1,r)+ r+ 1. By induction, we have

depth (z∗υ,r/(I∗υ,r : yυ+1)) = (r + 1)(υ− 1) + 1 + r + 1 = (r + 1)υ + 1.

As yυ+1 /∈ I∗υ,r, so by Corollary 1 depth (z∗υ,r/I∗υ,r) ≤ depth (z∗υ,r/(I∗υ,r : yυ+1)) =
(r + 1)υ + 1. This completes the proof for depth.

Now we prove the result for Stanley depth. If υ = 1, then by Theorem 2, sdepth (z∗1,r/I∗1,r)
= r + 2. For υ ≥ 2, the required result follows by applying Lemma 2 instead of the Depth
Lemma, Lemma 6 instead of Lemma 5, and Proposition 1 instead of Corollary 1.

Corollary 2. Let υ, r ≥ 1. Then pdim (z∗υ,r/I∗υ,r) = r(υ + 1) + υ.

Proof. The required result follows by using Lemma 8 and Theorem 1.

Now using the previous lemma, we are able to prove one of the main results of
this section.

Theorem 3. Let υ, r ≥ 1. Then depth (zυ,r/Iυ,r) = sdepth (zυ,r/Iυ,r) = (r + 1)υ.

Proof. First we will prove the result for depth. Consider the following short exact sequence:

0 −→ zυ,r/(Iυ,r : xυ)
·xυ−→ zυ,r/Iυ,r −→ zυ,r/(Iυ,r, xυ) −→ 0.

When υ = 1, it is clear from Theorem 2 that depth (z1,r/I1,r) = depth (K[V(P2,r)]/I(P2,r)) =
r+ 1. Let υ ≥ 2. We havezυ,r/(Iυ,r : xυ) ∼= (z∗υ−2,r/I∗υ−2,r)

⊗
K K[{xυ}

⋃⋃r
j=1{yυj, x(υ−1)j}].

By Lemma 3, we have

depth (zυ,r/(Iυ,r : xυ)) = depth (z∗υ−2,r/I∗υ−2,r) + 2r + 1.

By Lemma 8, depth (zυ,r/(Iυ,r : xυ)) = (r + 1)(υ− 2) + 1 + 2r + 1 = (r + 1)υ. Now
clearlyG(Iυ,r, xυ) = {G(I∗υ−1), xυ} andzυ,r/(Iυ,r, xυ) ∼= z∗υ−1,r/I∗υ−1,r

⊗
K K[xυ1, xυ2, . . . , xυr],

and using Lemma 3, depth (zυ,r/(Iυ,r, xυ)) = depth (z∗υ−1,r/I∗υ−1,r) + r. By Lemma 8,

depth (zυ,r/(Iυ,r, xυ)) = (r + 1)(υ− 1) + 1 + r = (r + 1)υ.

Applying the Depth Lemma, depth (zυ,r/Iυ,r) = (r + 1)υ.
Now we prove the result for Stanley depth. If υ = 1, then by Theorem 2, we have

sdepth (z1,r/I1,r) = sdepth (K[V(P2,r)]/I(P2,r)) = r + 1.

Let υ ≥ 2. Applying Lemma 2 on the short exact sequence, we obtain

sdepth (zυ,r/Iυ,r) ≥ min{sdepth (zυ,r/(Iυ,r : xυ)), sdepth (zυ,r/(Iυ,r, xυ))}. (2)

Proceeding on the same lines as we did for the depth, we obtain sdepth(zυ,r/(Iυ,r :
xυ)) ≥ υ(r + 1) and sdepth(zυ,r/(Iυ,r, xυ)) ≥ υ(r + 1) and by Equation (2), we have
sdepth (zυ,r/Iυ,r) ≥ υ(r + 1). For the other inequality, since xυ /∈ Iυ,r and
sdepth (zυ,r/(Iυ,r : xυ)) = sdepth (z∗υ−2,r/I∗υ−2,r) + 2r + 1, by Lemma 8,

sdepth (zυ,r/(Iυ,r : xυ)) = (r + 1)(υ− 2) + 1 + 2r + 1 = (r + 1)υ.

By Proposition 1, we have

sdepth (zυ,r/Iυ,r) ≤ sdepth (zυ,r/(Iυ,r : xυ)) = (r + 1)υ.
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This completes the proof for Stanley depth.

Corollary 3. Let υ, r ≥ 1. Then pdim (zυ,r/Iυ,r) = (r + 1)υ.

Proof. The required result follows by using Theorem 3 and Theorem 1.

Now we find the depth and Stanley depth of zυ,r/Lυ,r.

Theorem 4. Let υ, r ≥ 1. Then depth (zυ,r/Lυ,r) = sdepth (zυ,r/Lυ,r) = b 3υ
2 cr + d

υ
2 e.

Proof. First we will prove the result for depth. We will prove this by induction on υ.
Consider the following short exact sequence:

0 −→ zυ,r/(Lυ,r : xυ)
·xυ−→ zυ,r/Lυ,r −→ zυ,r/(Lυ,r, xυ) −→ 0.

By the Depth Lemma,

depth (zυ,r/Lυ,r) ≥ min{depth (zυ,r/(Lυ,r : xυ)), depth (zυ,r/(Lυ,r, xυ))}. (3)

When υ = 1, it is clear from Theorem 2 that depth (z1,r/L1,r) = depth (K[V(P2,r)]/I(P2,r)) =
r + 1.

Let υ ≥ 2, zυ,r/(Lυ,r : xυ) ∼= zυ−2,r/Lυ−2,r
⊗

K K[{xυ}
⋃⋃r

j=1{yυj, x(υ−1)j, y(υ−1)j}].
Using Lemma 3 and induction on υ, clearly

depth (zυ,r/(Lυ,r : xυ)) = depth (zυ−2,r/Lυ−2,r) + 3r + 1 = b3(υ− 2)
2

cr + dυ− 2
2
e+ 3r + 1

= b3υ

2
cr + dυ

2
e.

Now let J := (Lυ,r, xυ) and G(J) = G(Lυ−1,r)
⋃{yυxυ−1, yυyυ−1, xυ}

⋃{yυyυ1, yυyυ2, . . . ,
yυyυr}. Consider the following short exact sequence:

0 −→ zυ,r/(J : yυ)
·yυ−→ zυ,r/J −→ zυ,r/(J, yυ) −→ 0.

Again, using the Depth Lemma, we have

depth (zυ,r/J) ≥ min{depth (zυ,r/(J : yυ)), depth (zυ,r/(J, yυ))}. (4)

Here zυ,r/(J : yυ) ∼= zυ−2,r/Lυ−2,r
⊗

K K[{yυ}
⋃⋃r

j=1{y(υ−1)j, x(υ−1)j, xυj}]. Using
Lemma 3 and induction on υ, we have

depth (zυ,r/(J : yυ)) = depth (zυ−2,r/Lυ−2,r) + 3r + 1 = b3(υ− 2)
2

cr + dυ− 2
2
e+ 3r + 1

= b3υ

2
cr + dυ

2
e.

As G((J, yυ)) = G(Lυ−1,r)
⋃{xυ, yυ} and zυ,r/(J, yυ) ∼= zυ−1,r/Lυ−1,r

⊗
K K[

⋃r
j=1

{yυj, xυj}]. By Lemma 3 and induction on υ, we obtain

depth (zυ,r/(J, yυ)) = depth (zυ−1,r/Lυ−1,r) + 2r = b3(υ− 1)
2

cr + dυ− 1
2
e+ 2r

= b3υ + 1
2
cr + dυ− 1

2
e.
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By Equation (4), we have

depth (zυ,r/J) ≥ min{b3υ

2
cr + dυ

2
e, b3υ + 1

2
cr + dυ− 1

2
e} = b3υ

2
cr + dυ

2
e.

Now by using Equation (3), we obtain

depth (zυ,r/Lυ,r) ≥ min{b3υ

2
cr + dυ

2
e, b3υ

2
cr + dυ

2
e} = b3υ

2
cr + dυ

2
e.

For upper bound as xυ /∈ zυ,r and depth (zυ,r/(Lυ,r : xυ)) = b 3υ
2 cr + d

υ
2 e. By Corol-

lary 1, depth (zυ,r/Lυ,r) ≤ depth (zυ,r/(Lυ,r : xυ)) = b 3υ
2 cr + d

υ
2 e. This completes the

proof for depth. Now we prove the result for Stanley depth. When υ = 1, it is clear from
Theorem 2 that sdepth (z1,r/L1,r) = r + 1. For υ ≥ 2, the required result follows by apply-
ing Lemma 2 instead of the Depth Lemma and Proposition 1 instead of Corollary 1.

Corollary 4. Let υ, r ≥ 1. Then pdim (zυ,r/Lυ,r) = d υ
2 er + b

3υ
2 c.

Proof. The result follows by using Theorem 4 and Theorem 1.

Example 1. If υ = 9 and r = 4, then by Theorem 4, we have depth(z9,4/L9,4) = sdepth(z9,4/L9,4)

= b 3(9)
2 c(4) + d

9
2e = 52 + 5 = 57. Also, by Corollary 4, we have pdim(z9,4/L9,4) =

d 9
2e(4) + b

3(9)
2 c = 20 + 13 = 33.

4. Depth and Stanley Depth of r-Fold Bristled Graph of Circular Ladder Graph and
Some Circular King’s Graph

In this section, we determine the depth and Stanley depth of the quotient rings
associated with the edge ideal of r-fold bristled graph of circular ladder graph and Tυ

graph. Figure 5a,b are examples of 2-fold bristled graphs of a circular ladder graph
and T6 graph, respectively. For positive integers r, υ such that r ≥ 1 and υ ≥ 3, the
minimal set of monomial generators of the edge ideal Cυ,r = I(Brsr(Hυ)) is given as
G(Cυ,r) = G(Iυ,r)

⋃{x1xυ, y1yυ}. For υ ≥ 1, we also define a new graph A′υ,r with V(A′υ,r) =⋃υ
i=1{xi, yi}

⋃{yυ+1, yυ+2}
⋃⋃r

i=1{x1i, . . . , xυi, y1i, . . . , y(υ+2)i} and

E(A
′
υ,r) =

υ−1⋃
i=1

{{xi, xi+1}}
⋃ υ+1⋃

i=1

{{yi, yi+1}}
⋃ υ⋃

i=1

{{xi, yi+1}}
⋃

υ+2⋃
i=1

{{yi, yi1}, {yi, yi2}, . . . , {yi, yir}}
⋃ υ⋃

i=1

{{xi, xi1}, {xi, xi2}, . . . {xi, xir}}.

See Figure 6 for an example of A′υ,r graph. We setz∗∗υ,r := zυ,r[{yυ+1, yυ+2}
⋃⋃r

j=1{y(υ+1)j,

y(υ+2)j}] and |V(z∗∗υ,r)| = 2(υ + 1)(1 + r). Let Eυ,r := I(A
′
υ,r) and Cυ,r := I(Brsr(Tυ)).

Clearly, G(Cυ,r) = G(Lυ,r)
⋃{x1xυ, y1yυ, x1yυ, xυy1}.

To determine the depth and Stanley depth of the quotient rings associated with the
edge ideal of the r-fold bristled graph of the circular ladder graph, we shall first determine
the depth and Stanley depth of the quotient ring associated with the edge ideal of A′υ,r
graph. In Figure 7 we give examples of graphs associated to squarefree monomial ideals
(E1,2 : y3), (E1,2, y3), (C6,2 : x6) and (C6,2, x6), as discussed in Remark 1. These examples
will be helpful in understanding the proofs of our next results.
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y1

y6y2

y5y3

y4

y12y11

y21

y22

y32

y31

y41 y42

y51

y52

y61

y62

x1

x6x2

x5x3

x4

x12x11
x21

x22
x31

x32
x41 x42

x61
x62
x51

x52

(b) Brs2(T6)

Figure 5. 2-fold bristled graphs of circular ladder and circular king’s graphs.
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Figure 6. A′3,2.

Remark 3. While proving our results by induction on υ, we have special case z∗∗0,r/E0,r, so we define
z∗∗0,r/E0,r := K[V(P2,r)]/I(P2,r). By using Theorem 2, depth (z∗∗0,r/E0,r) = sdepth (z∗∗0,r/E0,r) =
r + 1.

Theorem 5. Let r, υ ≥ 1. Then

depth (z∗∗υ,r/Eυ,r) = sdepth (z∗∗υ,r/Eυ,r) =

{
(υ + 1)(r + 1), if υ is even;
υ(r + 1) + 2, if υ is odd.

Proof. First we will prove the result for depth by using induction on υ. Consider the
following short exact sequence:

0 −→ z∗∗υ,r/(Eυ,r : yυ+2)
·yυ+2−−−→ z∗∗υ,r/Eυ,r −→ z∗∗υ,r/(Eυ,r, yυ+2) −→ 0.

Let υ = 1. We have z∗∗1,r/(E1,r : y3) ∼=
⊗2

i=1 K[V(Sr+1)]/I(Sr+1)
⊗

K K[y3, y21, y22, . . . ,
y2r], and by Lemmas 3–5, we have

depth (z∗∗1,r/(E1,r : y3)) = 2 · depth (K[V(Sr+1)]/I(Sr+1)) + r + 1 = 2 + r + 1 = r + 3.

Also, we can see that z∗∗1,r/(E1,r, y3) ∼= K[V(P3,r)]/I(P3,r)
⊗

K K[y31, y32, . . . , y3r]. By
Lemma 3 and Theorem 2, we have

depth(z∗∗1,r/(E1,r, y3)) = depth (K[V(P3,r)]/I(P3,r)) + r = r + 2 + r = 2r + 2.
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Since depth (z∗∗1,r/(E1,r : y3)) ≤ depth (z∗∗1,r/(E1,r, y3)), then by then Depth Lemma,

depth (z∗∗1,r/E1,r) = depth (z∗∗1,r/(E1,r : y3)) = r + 3.

This prove the result for υ = 1.
Let υ ≥ 2, and J∗ := (Eυ,r : yυ+2). Now consider the following short exact sequence:

0 −→ z∗∗υ,r/(J∗ : xυ)
·xυ−→ z∗∗υ,r/J∗ −→ z∗∗υ,r/(J∗, xυ) −→ 0.

We have

z∗∗υ,r/(J∗ : xυ) ∼= z∗∗υ−2,r/Eυ−2,r
⊗

K
K[{xυ, yυ+2}

⋃ r⋃
j=1

{y(υ+1)j, x(υ−1)j}],

and

z∗∗υ,r/(J∗, xυ) ∼= z∗υ−1,r/I∗υ−1,r
⊗

K
K[{yυ+2}

⋃ r⋃
j=1

{xυj, y(υ+1)j}].

Thus, by using Lemma 3, we obtain depth (z∗∗υ,r/(J∗ : xυ)) = depth (z∗∗υ−2,r/Eυ−2,r) +
2r + 2 and depth (z∗∗υ,r/(J∗, xυ)) = depth (z∗υ−1,r/I∗υ−1,r) + 2r + 1. We consider two cases:

Case 1. If υ is even, then by induction on υ,

depth (z∗∗υ,r/(J∗ : xυ)) = depth (z∗∗υ−2,r/Eυ−2,r) + 2r + 2

= (n− 2 + 1)(r + 1) + 2r + 2

= υ(r + 1)− r− 1 + 2r + 2

= (υ + 1)(r + 1).

Similarly, by induction on υ, we have

depth (z∗∗υ,r/(J∗, xυ)) = depth (z∗υ−1,r/I∗υ−1,r) + 2r + 1

= (υ− 1)(r + 1) + 1 + 2r + 1

= υ(r + 1)− r− 1 + 1 + 2r + 1

= (υ + 1)(r + 1).

Since depth (z∗∗υ,r/(J∗ : xυ)) = depth (z∗∗υ,r/(J∗, xυ)) Applying the Depth Lemma,
we obtain

depth(z∗∗υ,r/(Eυ,r : yυ+2)) = depth (z∗∗υ,r/J∗) = (υ + 1)(r + 1).

Now z∗∗υ,r/(Eυ,r, yυ+2) ∼= z∗υ,r/I∗υ,r
⊗

K K[y(υ+2)1, y(υ+2)2, . . . , y(υ+2)r]. By Lemmas 3
and 8, we have depth (z∗∗υ,r/(Eυ,r, yυ+2)) = depth (z∗υ,r/I∗υ,r) + r = (r + 1)υ + 1 + r =
(υ + 1)(r + 1). Again, since depth (z∗∗υ,r/(Eυ,r : yυ+2)) = depth (z∗∗υ,r/(Eυ,r, yυ+2)), then by
the Depth Lemma,

depth (z∗∗υ,r/Eυ,r) = (υ + 1)(r + 1).

Case 2. If υ is odd, then by induction on υ,

depth (z∗∗υ,r/(J∗ : xυ)) = depth (z∗∗υ−2,r/Eυ−2,r) + 2r + 2

= (υ− 2)(r + 1) + 2 + 2r + 2

= υ(r + 1)− 2r− 2 + 2 + 2r + 2

= υ(r + 1) + 2.
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Also, by induction on υ, we have

depth (z∗∗υ,r/(J∗, xυ)) = depth (z∗υ−1,r/I∗υ−1,r) + 2r + 1

= (υ− 1)(r + 1) + 1 + 2r + 1

= υ(r + 1)− r− 1 + 1 + 2r + 1

= υ(r + 1) + r + 1.

By the Depth Lemma, depth (z∗∗υ,r/J∗) ≥ υ(r+ 1)+ 2. It is easy to see thatz∗∗υ,r/(Eυ,r, yυ+2)
∼= z∗υ,r/I∗υ,r

⊗
K K[y(υ+2)1, y(υ+2)2, . . . , y(υ+2)r]. By Lemma 3, we have depth (z∗∗υ,r/(Eυ,r,

yυ+2)) = depth (z∗υ,r/I∗υ,r)+ r = υ(r+ 1)+ 1+ r. Using the Depth Lemma, depth (z∗∗υ,r/Eυ,r)
≥ υ(r + 1) + 2. For upper bound as xυ /∈ Eυ,r, and

z∗∗υ,r/(Eυ,r : xυ) ∼= z∗∗υ,r/Eυ−2,r
⊗

K
K[V(Sr+1)]/I(Sr+1)

⊗
K

K[xυ, y(υ+1)1, . . . , y(υ+1)r, x(υ−1)1, . . . , x(υ−1)r].

Thus, by Lemmas 3 and 4 and induction on υ,

depth (z∗∗υ,r/(Eυ,r : xυ)) = depth (z∗∗υ,r/Eυ−2,r) + depth (K[V(Sr+1)]/I(Sr+1)) + 2r + 1

= (υ− 2)(r + 1) + 2 + 1 + 2r + 1

= υ(r + 1)− 2r− 2 + 2 + 2r + 2

= υ(r + 1) + 2.

Using Corollary 1, depth (z∗∗υ,r/Eυ,r) ≤ depth (z∗∗υ,r/(Eυ,r : xυ)) = υ(r + 1) + 2. This
completes the proof for depth.

For Stanley depth, when υ = 1, by applying Lemma 2 instead of the Depth Lemma and
Lemma 6 instead of Lemma 5 on the short exact sequence, we obtain sdepth (z∗∗1,r/E1,r) ≥
r + 3. For upper bound, consider µ = y21 . . . y2ry1y3x1 ∈ z∗∗1,r/E1,r; clearly xµ ∈ E1,r, for all
x ∈ supp(E1,r) \ supp(µ). Therefore, by Lemma 7, sdepth (z∗∗1,r/E1,r) ≤ r + 3. For υ ≥ 2,
the required result follows by applying Lemma 2 instead of the Depth Lemma, Lemma 6
instead of Lemma 5, and Proposition 1 instead of Corollary 1. If υ is even, then we obtain
sdepth (z∗∗υ,r/Eυ,r) ≥ (υ + 1)(r + 1). For upper bound, consider

µ = y11 . . . y1r . . . y(υ−1)1 . . . y(υ−1)ry(υ+1)1 . . . y(υ+1)rx11 . . . x1r . . .

x(υ−3)1 . . . x(υ−3)rx(υ−1)1 . . . x(υ−1)ry2y4 . . . yυyυ+2x2x4 . . . xυ−2xυ ∈ z∗∗υ,r/Eυ,r.

Clearly xµ ∈ Eυ,r, for all x ∈ supp(Eυ,r) \ supp(µ); therefore, by Lemma 7, sdepth (z∗∗υ,r/Eυ,r)
≤ (υ + 1)r + υ + 1 = (υ + 1)(r + 1). Hence, sdepth (z∗∗υ,r/Eυ,r) = (υ + 1)(r + 1). If υ is
odd, then we obtain sdepth (z∗∗υ,r/Eυ,r) ≥ υ(r + 1) + 2. For upper bound, consider

µ = y21 . . . y2r . . . y(υ−1)1 . . . y(υ−1)ry(υ+1)1 . . . y(υ+1)rx21 . . . x2r . . .

x(υ−3)1 . . . x(υ−3)rx(υ−1)1 . . . x(υ−1)ry1y3 . . . yυyυ+2x1x3 . . . xυ−2xυ ∈ z∗∗υ,r/Eυ,r.

Clearly xµ ∈ Eυ,r, for all x ∈ supp(Eυ,r) \ supp(µ); therefore, by Lemma 7, sdepth (z∗∗υ,r/Eυ,r)
≤ υr + υ + 2 = υ(r + 1) + 2. This completes the proof for Stanley depth.
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Figure 7. Graphs corresponding to ideals (E1,2 : y3), (E1,2, y3), (C6,2 : x6) and (C6,2, x6).

Corollary 5. Let r ≥ 1 and υ ≥ 1. Then

pdim (z∗∗υ,r/Eυ,r) =

{
(υ + 1)(r + 1), if υ is even;
υ(r + 1) + 2r, if υ is odd.

Proof. The required result can be obtained by using Theorem 5 and Theorem 1.

Now we find depth, Stanley depth, and projective dimension of the edge ideals of the
r-fold bristled graph of the circular ladder graph.

Theorem 6. Let υ ≥ 3 and r ≥ 1. Then

depth (zυ,r/Cυ,r) = sdepth (zυ,r/Cυ,r) =

{
υ(r + 1), if υ is even;
υ(r + 1) + r− 1, if υ is odd.

Proof. First we will prove the result for depth. Consider the following short exact sequence:

0 −→ zυ,r/(Cυ,r : xυ)
·xυ−→ zυ,r/Cυ,r −→ zυ,r/(Cυ,r, xυ) −→ 0. (5)
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After a suitable renumbering of variables, we have

zυ,r/(Cυ,r : xυ) ∼= z∗∗υ−3,r/Eυ−3,r
⊗

K
K[{xυ}

⋃ r⋃
j=1

{x(υ−2)j, x(υ−1)j, yυj}].

By Lemma 3,

depth (zυ,r/(Cυ,r : xυ)) = depth (z∗∗υ−3,r/Eυ−3,r) + 3r + 1.

Let A∗ := (Cυ,r, xυ) and G(A∗) = G(Iυ−1,r)
⋃{y1yυ, yυyυ−1, xυ}

⋃{yυyυ1, yυyυ2, . . . ,
yυyυr}. Consider the following short exact sequence:

0 −→ zυ,r/(A∗ : yυ)
·yυ−→ zυ,r/A∗ −→ zυ,r/(A∗, yυ) −→ 0.

After renumbering of variables, we have

zυ,r/(A∗ : yυ) ∼= z∗∗υ−3,r/Eυ−3,r
⊗

K
K[{yυ}

⋃ r⋃
j=1

{xυj, y(υ−2)j, y(υ−1)j}],

and
zυ,r/(A∗, yυ) ∼= zυ−1,r/Iυ−1,r

⊗
K

K[xυ1, xυ2, . . . , xυr, yυ1, yυ2, . . . , yυr].

Case 1. When υ is even, using Lemma 3, depth (zυ,r/(A∗ : yυ)) = depth (z∗∗υ−3,r/Eυ−3,r) +
3r + 1. As υ is even, so υ− 3 will be an odd number. So by Theorem 5, we have

depth (zυ,r/(A∗ : yυ)) = (υ− 3)(r + 1) + 2 + 3r + 1

= υ(r + 1)− 3r− 3 + 3r + 3

= υ(r + 1).

Similarly, by Lemma 3 and Theorem 3,

depth (zυ,r/(A∗, yυ)) = depth (zυ−1,r/Iυ−1,r) + 2r

= (υ− 1)(r + 1) + 2r

= υ(r + 1)− r− 1 + 2r

= υ(r + 1) + r− 1.

By the Depth Lemma, depth (zυ,r/A∗) ≥ υ(r + 1). Now by Theorem 5,

depth (zυ,r/(Cυ,r : xυ)) = depth (z∗∗υ−3,r/Eυ−3,r) + 3r + 1

= (υ− 3)(r + 1) + 2 + 3r + 1

= υ(r + 1)− 3r− 3 + 3r + 3

= υ(r + 1).

Applying the Depth Lemma on short exact sequence 5, we obtain depth (zυ,r/Cυ,r) =
υ(r + 1). This completes the proof when υ is even.

Case 2. If υ is odd, using Lemma 3, depth (zυ,r/(A∗ : yυ)) = depth (z∗∗υ−3,r/Eυ−3,r) +
3r + 1. As υ is odd, so υ− 3 will be an even number. So by Theorem 5, we have

depth (zυ,r/(A∗ : yυ)) = (n− 3 + 1)(r + 1) + 3r + 1

= υ(r + 1)− 2r− 2 + 3r + 1

= υ(r + 1) + r− 1.
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Now by Lemma 3 and Theorem 3,

depth (zυ,r/(A∗, yυ)) = depth (zυ−1,r/Iυ−1,r) + 2r

= (υ− 1)(r + 1) + 2r

= υ(r + 1)− r− 1 + 2r

= υ(r + 1) + r− 1.

By the Depth Lemma, depth (zυ,r/A∗) = υ(r + 1) + r− 1. By Theorem 5,

depth (zυ,r/(Cυ,r : xυ)) = depth (z∗∗υ−3,r/Eυ−3,r) + 3r + 1

= (υ− 3 + 1)(r + 1) + 3r + 1

= υ(r + 1)− 2r− 2 + 3r + 1

= υ(r + 1) + r− 1.

Applying the Depth Lemma on short exact sequence 5, we obtain depth (zυ,r/Cυ,r) =
υ(r + 1) + r− 1. This completes the proof for depth.

For Stanley depth, the required result follows by applying Lemma 2 instead of the Depth
Lemma and Lemma 6 instead of Lemma 5. When υ is even, we have sdepth (zυ,r/Cυ,r)
≥ υ(r + 1). For upper bound as xυ /∈ Cυ,r and sdepth (zυ,r/(Cυ,r : xυ)) =
sdepth (z∗∗υ−3,r/Eυ−3,r) + 3r + 1, by Theorem 5 and Proposition 1 sdepth (zυ,r/Cυ,r) ≤
sdepth (zυ,r/(Cυ,r : xυ)) = υ(r + 1). Similarly, when υ is odd, we obtain sdepth (zυ,r/Cυ,r)
≥ υ(r + 1) + r− 1. For upper bound as xυ /∈ Cυ,r and sdepth (zυ,r/(Cυ,r : xυ)) = sdepth
(z∗∗υ−3,r/Eυ−3,r) + 3r + 1, by Theorem 5 and Proposition 1, sdepth (zυ,r/Cυ,r) ≤ sdepth
(zυ,r/(Cυ,r : xυ)) = υ(r + 1) + r− 1. Hence,

sdepth (zυ,r/Cυ,r) = υ(r + 1) + r− 1.

Corollary 6. Let υ ≥ 3 and r ≥ 1. Then

pdim (zυ,r/Cυ,r) =

{
υ(r + 1), if υ is even;
υ(r + 1)− r + 1, if υ is odd.

Proof. The required result can be obtain by using Theorem 6 and Theorem 1.

We also have formulae for values of depth, Stanley depth, and projective dimension
of the quotient rings of the edge ideals of the Tυ graph, as given in the next theorem
and corollary.

Theorem 7. Let υ ≥ 3 and r ≥ 1. Then

depth (zυ,r/Cυ,r) = sdepth (zυ,r/Cυ,r) = b
3υ + 1

2
cr + dυ− 1

2
e.

Proof. First we will prove the result for depth. We will prove this for υ ≥ 3. Consider the
following short exact sequence:

0 −→ zυ,r/(Cυ,r : xυ)
·xυ−→ zυ,r/Cυ,r −→ zυ,r/(Cυ,r, xυ) −→ 0. (6)

After renumbering the variables, we have

zυ,r/(Cυ,r : xυ) ∼= zυ−3,r/Lυ−3,r
⊗

K
K[{xυ}

⋃ r⋃
j=1

{x(υ−2)j, x(υ−1)j, y(υ−2)j, yυj, y(υ−1)j}].
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Using Lemma 3 and Theorem 4,

depth (zυ,r/(Cυ,r : xυ)) = depth (zυ−3,r/Lυ−3,r) + 5r + 1

= b3(υ− 3)
2

cr + dυ− 3
2
e+ 5r + 1

= b3υ + 1
2
cr + dυ− 1

2
e.

Let J′ := (Cυ,r, xυ), where G(J′) = G(Iυ−1)
⋃{xυ−1yυ, yυ−1yυ, yυy1, yυx1, xυ}

⋃r
j=1

{yυyυj}. Consider the following short exact sequence:

0 −→ zυ,r/(J′ : yυ)
·yυ−→ zυ,r/J′ −→ zυ,r/(J′, yυ) −→ 0.

After renumbering the variables, we have

(zυ,r/(J′ : yυ)) ∼= zυ−3,r/Lυ−3,r
⊗

K
K[{yυ}

⋃ r⋃
j=1

{y(υ−2)j, x(υ−2)j, xυj, x(υ−1)j, y(υ−1)j}].

By Lemma 3 and Theorem 4,

depth (zυ,r/(J′ : yυ)) = depth (zυ−3,r/Lυ−3,r) + 5r + 1

= b3(υ− 3)
2

cr + dυ− 3
2
e+ 5r + 1

= b3υ + 1
2
cr + dυ− 1

2
e.

Now G(J′, yυ) = G(Lυ−1,r)
⋃{yυ, xυ} and zυ,r/(J′, yυ) ∼= zυ−1,r/Lυ−1,r

⊗
K K[

⋃r
j=1

{xυj, yυj}]. Using Lemma 3 and Theorem 4, we have depth (zυ,r/(J′, yυ)) = depth (zυ−1,r/

Lυ−1,r) + 2r = b 3(υ−1)
2 cr + d υ−1

2 e+ 2r. = b 3υ+1
2 cr + d

υ−1
2 e. By the Depth Lemma,

depth (zυ,r/J′) = depth (zυ,r/(Cυ,r, xυ)) = b
3υ + 1

2
cr + dυ− 1

2
e.

Applying the Depth Lemma on short exact sequence 6, depth (zυ,r/Cυ,r) = b 3υ+1
2 cr +

d υ−1
2 e. This completes the proof for depth.

For Stanley depth, the required result follows by applying Lemma 2 instead of the
Depth Lemma. We obtain sdepth (zυ,r/Cυ,r) ≥ b 3υ+1

2 cr + d
υ−1

2 e. For upper bound as
xυ /∈ Cυ,r we have

sdepth (zυ,r/(Cυ,r : xυ)) = sdepth (zυ−3,r/Lυ−3,r) + 5r + 1,

by Theorem 4 and Proposition 1,

sdepth (zυ,r/Cυ,r) ≤ sdepth (zυ,r/(Cυ,r : xυ)) = b
3υ + 1

2
cr + dυ− 1

2
e.

This completes the proof.

Corollary 7. Let υ ≥ 3 and r ≥ 1. Then

pdim (zυ,r/Cυ,r) = d
υ− 1

2
er + b3υ + 1

2
c.

Proof. The required result can be obtain by using Theorem 7 and Theorem 1.
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Example 2. If υ = 9 and r = 4, then by Theorem 7, we have depth(z9,4/C9,4) = sdepth
(z9,4/C9,4) = b 3(9)+1

2 c(4) + d 9−1
2 e = 56 + 4 = 60. Also, by Corollary 4 we have pdim

(z9,4/C9,4) = d 9−1
2 e(4) + b

3(9)+1
2 c = 16 + 14 = 30.
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