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Abstract: The twisted hypersurfaces x with the (0, 0, 0, 0, 1) rotating axis in five-dimensional Euclidean
space E5 is considered. The fundamental forms, the Gauss map, and the shape operator of x are
calculated. In E5, describing the curvatures by using the Cayley–Hamilton theorem, the curvatures
of hypersurfaces x are obtained. The solutions of differential equations of the curvatures of the
hypersurfaces are open problems. The umbilically and minimality conditions to the curvatures of x
are determined. Additionally, the Laplace–Beltrami operator relation of x is given.
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1. Introduction

Twisted hypersurfaces, including helical or helicoidal ones, and related objects such
as rotational, ruled, and minimal hypersurfaces, are of interest to mathematicians and have
been studied extensively for a long time.

Obata [1] offered a relation for the manifold isometric to the sphere. Takahashi [2]
served a Euclidean sub-manifold as a one-type if it is minimal or minimal of a hypersphere
in En. Chern et al. [3] studied the minimal sub-manifolds of a sphere. Lawson [4] researched
the minimal sub-manifolds and the Laplace–Beltrami operator.

In space forms, Chen et al. [5] served the 40 years of one-type sub-manifolds and a
one-type Gauss map.

In E3, Bour [6] determined the deformation of helical rotational surfaces. Kenmotsu [7]
described the rotational surfaces having prescribed mean curvature. Do Carmo and Da-
jczer [8] studied the helical surfaces. Ferrandez et al. [9] considered the surfaces supplying
∆H = AH, A denoting a matrix of order three. Baikoussis and T. Koufogiorgos [10] focused
the helical surfaces having prescribed mean or Gaussian curvature. Ikawa [11] served the
Bour’s theorem and the Gauss map. Choi and Kim [12] researched the minimal helicoid.
Garay [13] investigeted the surfaces of revolution. Dillen et al. [14] focused the surfaces
supplying ∆r = Ar + B, where A is 3× 3, and B is a 3× 1 matrix. Güler et al. [15] worked
Bour’s theorem on a Gauss map. Stamatakis and Zoubi [16] described the surfaces of
revolution supplying ∆I I I x = Ax. Kim et al. [17] researched the Cheng–Yau operator of
the surfaces of revolution.

In Minkowski 3-space E3
1, Dillen and Kühnel [18] worked the ruled Weingarten sur-

faces. Ikawa [19] determined Bour’s theorem. Beneki et al. [20] studied the helical surfaces.
Güler and Turgut Vanlı [21] served Bour’s theorem. Güler [22] worked the helical surfaces
with a light-like generating curve. Mira and Pastor [23] presented the helical maximal
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surfaces. Kim and Yoon [24–26] considered the ruled and rotation surfaces. The readers
can see [2,27,28] for details.

In E4, Moore [29,30] introduced the rotational surfaces in a general form. Hasanis and
Vlachos [31] focused the hypersurfaces holding the mean curvature of the harmonic.

In Minkowski 4-spaceE4
1, Ganchev and Milousheva [32] determined the corresponding

surfaces of Moore [29,30]. Arvanitoyeorgos et al. [33] introduced ∆H = αH (H denotes the
mean curvature, α is a constant). Güler [34] introduced the helical hypersurface determined
by a space-like axis in E5

1. Li and Güler [35,36] studied a hypersurfaces of revolution family
in pseudo-Euclidean spaces E5

2 and E7
3. Other related works can be found in [37–47].

The aim of this study is to investigate the properties of twisted (i.e., helical) hypersur-
faces in five-dimensional Euclidean space E5 with a x5-rotating axis. Specifically, we focus
on determining the fundamental forms, the Gauss map, and the shape operator of these
hypersurfaces, as well as describing their curvatures using the Cayley–Hamilton theorem.
We also address the open problem of finding solutions to the differential equations govern-
ing the curvatures of these hypersurfaces. Furthermore, we examine the umbilicality and
minimality conditions associated with the curvatures of the helical hypersurfaces. Finally,
we aim to establish the Laplace–Beltrami operator relation of x, providing further insights
into the geometric properties of these intriguing hypersurfaces.

We focus the twisted hypersurfaces x = x(r, θ1, θ2, θ3) constructed by the (0, 0, 0, 0, 1)
rotating axis in Euclidean 5-space E5. We offer some properties of E5 in Section 2. We
formulate the components of the fundamental forms, the Gauss map, the shape operator of
any hypersurface of E5. We describe the twisted hypersurfaces x of E5 in Section 3.

By way of the theorem of Cayley–Hamilton, we obtain all the formulas of curvatures
of any hypersurface, and also compute the curvatures of twisted hypersurfaces x. We also
determine some relations for curvatures Kj=0,...,4 of x. We present the umbilical relations to
the hypersurfaces in Section 4.

Moreover, in Section 5, we obtain ∆x = Qx, where Q is the 5× 5 matrix. We serve
some examples to all findings. In the last section, we offer a conclusion.

2. Preliminaries

We assume M to be a hypersurface in Euclidean space En+1, S denotes its shape
operator, and x its position vector. We suppose {e1, e2, . . . , en} to be a local orthonormal
frame consisting the principal directions of M corresponding with the principal curvature
κi for i = 1, 2, . . . , n.

We consider sj = τj(κ1, κ2, . . . , κn), where τj is the jth elementary symmetric function
defined by

τj(q1, q2, . . . , qn) = ∑
1≤i1<i2<...<ij≤n

qi1 qi2 . . . qij .

The following notation works:

α
j
i = τj(κ1, . . . , κi−1, κi+1, . . . , κn),

with α0
i = 1, sn+1 = sn+2 = · · · = 0. Function sk denotes the kth mean curvature, H = 1

ns1
and K = sn denote the mean and Gauss–Kronecker curvatures of M, respectively. If sj ≡ 0
on M, M is named j-minimal. The readers can refer to Alias and Gürbüz [41], Kühnel [46]
for details.

In En+1, the characteristic polynomial Equation P of the shape operator S is deter-
mined by

PS(δ) = 0 = det(S− δIn) =
n

∑
k=0

(−1)kskδn−k. (1)

Here, i = 0, . . . , n, In describes the identity matrix of order n. The curvature formulas
are given by (n

i )Ki = si. Here, (n
0)K0 = s0 = 1 (by definition), (n

1)K1 = s1, . . . , (n
n)Kn = sn.

Also, (n
r) =

n!
r!(n−r)! .
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Next, we present some notions to Riemannian geometry. The readers can see Küh-
nel [46] for details. A vector with its transpose is regarded identical in this paper. We let
x = x(r, θ1, θ2, θ3) be an immersion from M4 ⊂ E4 to E5.

Definition 1. In E5, a Euclidean inner product of two vectors
−→
υ1 = (υ1

1, . . . , υ1
5) and

−→
υ2 =

(υ2
1, . . . , υ2

5) of E5 is described by〈−→
υ1 ,
−→
υ2
〉

= υ1
1υ2

1 + υ1
2υ2

2 + υ1
3υ2

3 + υ1
4υ2

4 + υ1
5υ2

5.

Definition 2. A Euclidean vector product of
−→
υ1 , . . . ,

−→
υ4 of E5 is defined by

−→
υ1 ×

−→
υ2 ×

−→
υ3 ×

−→
υ4 = det


e1 e2 e3 e4 e5
υ1

1 υ1
2 υ1

3 υ1
4 υ1

5
υ2

1 υ2
2 υ2

3 υ2
4 υ2

5
υ3

1 υ3
2 υ3

3 υ3
4 υ3

5
υ4

1 υ4
2 υ4

3 υ4
4 υ4

5

.

Here, ei denotes the generator elements of E5.

Definition 3. In E5, any hypersurface x has the following matrices, respectively:

I =


E F A D
F G B J
A B C Q
D J Q S

, II =


L M P X
M N T Y
P T V Z
X Y Z U

,

where the components are indicated by

E = 〈xr, xr〉, F =
〈
xr, xθ1

〉
, A =

〈
xr, xθ2

〉
, D =

〈
xr, xθ3

〉
, G =

〈
xθ1 , xθ1

〉
,

B =
〈
xθ1 , xθ2

〉
, J =

〈
xθ1 , xθ3

〉
, C =

〈
xθ2 , xθ2

〉
, Q =

〈
xθ2 , xθ3

〉
, S =

〈
xθ3 , xθ3

〉
,

L = 〈xrr,G〉, M =
〈
xrθ1 ,G

〉
, P =

〈
xrθ2 ,G

〉
, X =

〈
xrθ3 ,G

〉
, N =

〈
xθ1θ1 ,G

〉
,

T =
〈
xθ1θ2 ,G

〉
, Y =

〈
xθ1θ3 ,G

〉
, V =

〈
xθ2θ2 ,G

〉
, Z =

〈
xθ2θ3 ,G

〉
, U =

〈
xθ3θ3 ,G

〉
,

xr =
∂x
∂r , xrθ1 = ∂2x

∂r∂θ1
, xθ3θ3 = ∂2x

∂θ2
3
, etc.; the Gauss map of x is denoted by

G =
xr × xθ1 × xθ2 × xθ3∥∥xr × xθ1 × xθ2 × xθ3

∥∥ .

Definition 4. In E5, hypersurface x = x(r, θ1, θ2, θ3) supplies the following relations:

S = I−1.II = II−1.III = III−1.IV = IV−1.V,

where S denotes the shape operator, and I, II, III, IV,V describe the fundamental forms of x.

Definition 5. In E5,

PS(δ) =
4

∑
k=0

(−1)kskδ4−k = det(S− δI4) = 0

determines the characteristic polynomial P of S, and I4 denotes the identity matrix. The curvature
formulas are described by (4

i)Ki = si. Here, (4
0)K0 = s0 = 1 , (4

1)K1 = s1, . . . , (4
4)K4 = s4. K1,

K4 denote the mean, Gauss–Kronecker curvatures, respectively.

Definition 6. When Kj = 0, j = 1, . . . , 4 on a hypersurface x, x is named j-minimal.
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See [45] for details of Kj, and dimension four.
Next, we reval the formulas of the curvatures Kj of x in E5.

Theorem 1. The formulas of the curvature of a hypersurface in a five-space are given, respectively,
by K0 = 1 (by definition),

4K1 = tr(S)

=
1

det I [(EN + GL− 2FM)
(

CS−Q2
)
+
(

EG− F2
)
(SV + UC)

−(GU + NS)A2 − (LS + EU)B2 − (CN + GV)D2 − (EV + CL)J2

+2(A2 JY + B2XD + D2BT + J2 AP + F2QZ + CJMD− ABYD

−BJPD + ANQD− AJTD− BMQD + AGZD− BFZD + CFYD

−AGPS− CGXD + FJVD + GQPD + BJZE− CJYE + BFPS

−BSTE− FQTD + BQYE + JQTE + AGQX− BFQX− GQZE

+ABFU − FJPQ + AFST − AFQY + ABMS− ABJX− AJMQ

+BJLQ + CFJX− AFJZ)],

6K2 =
1

det I [(EN + GL− 2FM)CU −
(

EG− F2
)

Z2 −
(

LN −M2
)

Q2

+
(

B2 − CG
)

X2 +
(

A2 − EC
)

Y2 +
(

P2 − LV
)

J2 +
(

T2 − NV
)

D2

−
(

CM2 + GP2
)

S−
(

A2N + B2L + F2V
)

U − ST2E

+GVEU + CLNS + GLSV + NSVE + 2(ANZD− BMZD

+CMYD− CNXD− BPYD + JMVD− ATYD− JPTD

+NPQD + GPZD−MQTD− FTZD + FVYD− GVXD

+BYZE + JTZE− JVYE− NQZE + QTYE + ABMU − AGPU

+BFPU + AFTU − BTEU − AJMZ− ANPS + BJLZ + BMPS

−CJLY + CJMX− ABXY− BJPX + AMST − BLST

−AJTX− AMQY + ANQX + BLQY− BMQX− JMPQ

−AFYZ + AGXZ− BFXZ + CFXY− FJPZ + JLQT − FMSV

+FPST + FJVX− GLQZ− FPQY + GPQX− FQTX)

+4(FMQZ + BTXD + AJPY)],

4K3 =
1

det I [(EN + GL− 2FM)Z2 + (CL + VE)Y2 + (CN + GV)X2

+(EU + LS)T2 + (NS + GU)P2 + (SV + CU)M2

−(CN + GV)UL− (LS + UE)VN + 2(MTZD−M2QZ

−T2XD− JP2Y− APY2 − BTX2 − NPZD−MVYD

+NVXD + PTYD− TYZE + ANPU − BMPU − AMTU

+BLTU + FMVU − FPTU + AMYZ− ANXZ− BLYZ

+BMXZ− CMXY + JMPZ + BPXY− JLTZ−MPST

+JLVY− JMVX + LNQZ + ATXY + JPTX + MPQY

−NPQX + FPYZ− GPXZ− LQTY + MQTX

+FTXZ− FVXY)],

K4 = det(S) = det II
det I =

det III
det II =

det IV
det III =

detV
det IV ,
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where

det I =
(

EG− F2
)(

CS−Q2
)
+
(

J2 − GS
)

A2 +
(

D2 − ES
)

B2

+2((CF− AB)DJ + (EB− FA)JQ + (GA− FB)DQ)

−
(

EJ2 + GD2
)

C + 2FABS,

det II =
(

LN −M2
)(

UV − Z2
)
+
(

Y2 −UN
)

P2 +
(

X2 −UL
)

T2

+2((VM− PT)XY + (LT −MP)YZ + (NP−MT)XZ)

−
(

LY2 + NX2
)

V + 2MUPT.

Here, tr(S) = ∑4
i=1 sii.

Proof. By using Definition 3, Definition 4, and Definition 5, and by direct computations,
the characteristic polynomial is obtained. Then, Kj values are found.

3. Twisted Hypersurfaces Family with the (0, 0, 0, 0, 1) Rotating Axis in E5

We describe the twisted hypersurfaces family. The readers can refer to Do Carmo and
Dajczer [42] for some results about the rotational hypersurfaces of Riemannian spaces.

Definition 7. We let I be an open interval I ⊂ R, γ : I −→ Π be a curve in plane Π, and ` be
a line in Π. A rotational hypersurface is determined by a generating curve γ rotating about line
(named axis) `. While the generating curve γ rotates about `, it concurrently replaces parallel lines
orthogonal to `. The speed of rotating commensurates to the speed of replacement. The construcing
hypersurface is named the twisted hypersurfaces family with axis ` and pitches a, b, c ∈ R−{0}.

Readers can see Kühnel [46] for details. Next, we describe the twisted hypersurfaces
of E5.

The rotation matrixM =M(θ1, θ2, θ3) obtained by rotating axis (0, 0, 0, 0, 1) in E5 is
described by

M =


C1C2C3 −S1 −C1S2 −C1C2S3 0
S1C2C3 C1 −S1S2 −S1C2S3 0
S2C3 0 C2 −S2S3 0
S3 0 0 C3 0
0 0 0 0 1

.

Here, Ci = cos θi, Si = sin θi, θi ∈ [0, 2π), i = 1, 2, 3, andM holds:

M.` = `, MT .M =M.MT = I5, detM = 1.

The generating curve is determined by

γ(r) = ( f (r), 0, 0, 0, ϕ(r)). (2)

Here, f , ϕ denote the differentiable functions of R. In E5, the twisted hypersurface x =
x(r, θ1, θ2, θ3) determined by (0, 0, 0, 0, 1) is described by x =M.γT + (aθ1 + bθ2 + cθ3)`

T ,
where r ∈ I, θ1, θ2, θ3 ∈ [0, 2π), a, b, c ∈ R−{0}. The parametric representation of twisted
hypersurfaces M is determined by

x(r, θ1, θ2, θ3) = ( fC1C2C3, fS1C2C3, fS2C3, fS3, ϕ + aθ1 + bθ2 + cθ3). (3)

We note that we describe the following different hypersurfaces in lower dimensions.

1. If b = c = θ2 = θ3 = 0, we have a twisted surface with a (0, 0, 1) axis in E3.
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2. When a = b = c = θ2 = θ3 = 0, we obtain a rotational surface with a (0, 0, 1) axis
in E3.

3. When c = θ3 = 0, we obtain a twisted hypersurface with a (0, 0, 0, 1) axis in E4.
4. If a = b = c = θ3 = 0, we find a rotational hypersurface with a (0, 0, 0, 1) axis in E4.

Next, we describe the curvature formulas for hypersurface x = x(r, θ1, θ2, θ3) in E5.

Theorem 2. Hypersurface x = x(r, θ1, θ2, θ3) in Euclidean 5-space E5 has the following curvatures:

K0 = 1, 4K1 = −a1

a0
, 6K2 =

a2

a0
, 4K3 = −a3

a0
, K4 =

a4

a0
, (4)

where PS(δ) = a4δ4 + a3δ3 + a2δ2 + a1δ + a0 = 0 describes the characteristic polynomial of the
shape operator matrix S, a0 = det I, a4 = det II, and I, II denote the fundamental form matrices
described by Definition 3.

Proof. I−1.II determines S of x in E5. We compute PS(δ) = det(S− δI4) = 0 of S. Hence,
we obtain jth curvatures Kj:(

4
0

)
K0 = 1,(

4
1

)
K1 =

4

∑
i=1

κi = −
a1

a0
,

(
4
2

)
K2 =

4

∑
1=i1<i2

κi1 κi2 =
a2

a0
,

(
4
3

)
K3 =

4

∑
1=i1<i2<i3

κi1 κi2 κi3 = −a3

a0
,

(
4
4

)
K4 =

4

∏
i=1

κi =
a4

a0
.

κi denotes the principal curvatures of x where i = 1, . . . , 4.

See [44,45] for the cases of dimension four.
The curvatures of the twisted hypersurfaces with rotating axis (0, 0, 0, 0, 1) are given

by the following theorem.

Theorem 3. In E5, the curvatures of the twisted hypersurfaces x described by Equation (3) are,
respectively, given by

K0 = 1 (by definition),

K1 =
1

4C3 f W3/2 [
(

β1 f 2 − β2β3

)
f 2 f ′ϕ′′ + 3β1 f 3 ϕ′3 + β4β5 f 2 f ′ϕ′2

+
[(
−β1 f 2 + β2β3

)
f 2 f ′′ +

(
3β1 f 2 + 4β2β3

)
f f ′2

]
ϕ′ +

(
β4β5 f 2 + β6

)
f ′3],

K2 =
1

6C3 f 2W2 [
(

3 f 2ξ1 + 2β3ξ2

)
f 3 f ′ϕ′ϕ′′ −

(
f 2β5ξ3 + β6ξ4

)
f f ′2 ϕ′′

+3ξ1 f 4 ϕ′4 − 2β5ξ3 f 3 f ′ϕ′3 +
[(

3 f 2ξ1 + ξ5

)
f ′2 −

(
3 f 2ξ1 + 2β3ξ2

)
f ′′
]

f 2 ϕ′2

−
[(

2 f 2β5ξ3 + 3β6ξ4

)
f ′2 −

(
f 2β5ξ3 + β6ξ4

)
f ′′
]

f f ′ϕ′ +
(

ξ6 f 2 + ξ7

)
f ′4],
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K3 = − C2

4C3 f 2W5/2 [β
2
2

(
β3 + 3β4 f 2

)
f 3 f ′ϕ′2 ϕ′′ − β2

(
2β4β5 f 2 + β6

)
f 2 f ′2 ϕ′ϕ′′

+
(

η6 f 2 + η7

)
f f ′3 ϕ′′ − β1β2 f 4 ϕ′5 − β1β5 f 3 f ′ϕ′4

+
[
−
(

3ξ2
2 f 2 + β2

2β3

)
f f ′′ −

(
ξ2

2 f 2 + η10

)
f ′2
]

f 2 ϕ′3

+
[(

ρ1 f 2 + ρ2

)
f f ′ f ′′ +

(
ρ3 f 2 + ρ4

)
f ′3
]

f ϕ′2

+
[(

ρ7 f 2 + ρ8

)
f ′4 +

(
ρ5 f 2 + ρ6

)
f f ′2 f ′′

]
ϕ′ + ρ9 f f ′5],

K4 =
C2

2
f 2W3 [ξ

2
2 f 5 f ′ϕ′3 ϕ′′ + β1β5 f 4 f ′2 ϕ′2 ϕ′′ + η1 f 3 f ′3 ϕ′ϕ′′ + η2 f 2 f ′4 ϕ′′

+β1β2 f 5 f ′′ϕ′4 − β1β5 f 4 f ′ f ′′ϕ′3 −
(

η1 f ′′ + β3β4 f ′2
)

f 2 f ′2 ϕ′2

+
(
−η2 f ′′ + β2β6 f ′2

)
f f ′3 ϕ′ − ξ7 f ′6],

where

β1 = −C3
2C4

3 , β2 = C2C2
3 , β3 = a2 + b2C2

2 + c2C2
2C2

3 , β4 = C2
2C2

3 ,

β5 = bS2 + 2cC2C3S3, β6 = bS2β8 + cC2C3S3β9,

β7 = C2
2S2

3

(
a2 + b2C2

2 − c2C2
2C2

3

)
+ S2

(
a2S2 − bcC3

2C3S3

)
,

β8 = 2a2 + b2C2
2 + c2C2

2C2
3 , β9 = 3a2 + 3b2C2

2 + 2c2C2
2C2

3 ,

ξ1 = C4
2C5

3 , ξ2 = C2
2C3

3 , ξ3 = C3
2C3

3 , ξ4 = C2C3, ξ5 = C3(5β3β4 − β7),

ξ6 = −C3(β3β4 + β7), ξ7 = −a2c2S2
2C3 + ξ8,

ξ8 = −c2C2
2S2

3 ξ9 − bcC2S2S3ξ10,

ξ9 = 2a2 + 2b2C2
2 + c2C2

2C2
3 , ξ10 = 4a2 + 2b2C2

2 + c2C2
2C2

3 ,

η1 = −C2
3 β7, η2 = C2S2

3

(
a2η9 + b2C2

2 η8

)
, η3 = S2

(
a2S2

(
c2C3 + 1

)
− bcC3

2C3S3

)
,

η4 = bcS2C2S3C3, η5 = c2C2
2S2

3C2
3 , η6 = −C2

3 (η3 + C3β7),

η7 = η4ξ10 + η5ξ9, η8 = bS2 + cC2C3S3, η9 = 2bS2 + cC2C3S3,

η10 = C2
3

(
S2

(
bcC3

2C3S3 − a2S2

)
+ 2C2

3C2
2 β3 − β7

)
,

ρ1 = 2C3
2C4

3 β5, ρ2 = C2C2
3 (bS2β8 + cC2C3S3β9), ρ3 = β1β5,

ρ4 = −2bC2S2C2
3 β8 − 2cC2

2S3C3
3 β9 + ρ10, ρ5 = C2

3

[
S2

(
a2S2 − bcC3

2C3S3

)
+ β7

]
,

ρ6 = cC3

(
a2cS2

2C3 − cC2
2C3S2

3 ξ9 − bC2S2S3ξ10

)
, ρ7 = −2C2

2C4
3 β3 − C2

3 β7,

ρ8 = −2ρ6, ρ9 = bS2C2C2
3 β8 + C2

(
ρ10 + cC2C3

3S3β9

)
,

ρ10 = cC2C3S3
3

(
a2 + b2C2

2

)
+ bS2S2

3

(
2a2 + b2C2

2

)
,

W = C2
2C2

3 f 2 ϕ′2 +
[
a2 + C2

2
(
b2 + C2

3
(
c2 + f 2))] f ′2, a, b, c ∈ R−{0}, ϕ = ϕ(r), ϕ′ = dϕ

dr ,

ϕ′′ = d2 ϕ

dr2 , f = f (r), f ′ = d f
dr , f ′′ = d2 f

dr2 , r ∈ I ⊂ R, Ck = cos θk, Sk = sin θk, C2
k = (cos θk)

2,
S2

k = (sin θk)
2, etc., θk ∈ [0, 2π), k = 2, 3.
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Proof. Regarding Definition 3, and by using the first derivatives w.r.t. r, θ1, θ2, θ3 of the
hypersurface determined by (3), we find the components of I:

E = ϕ′2 + f ′2,
F = aϕ′,
A = bϕ′,
D = cϕ′,
G = f 2C2

2C2
3 + a2,

B = ab,
J = ac,
C = f 2C2

3 + b2,
Q = bc,
S = f 2 + c2.

(5)

We then have
det I = C2

3 f 4W, (6)

where
W = C2

2C2
3 f 2 ϕ′2 +

[
a2 + C2

2

(
b2 + C2

3

(
c2 + f 2

))]
f ′2 > 0.

Hence, det I > 0. Regarding the Gauss map formula indicated by Definition 3, we find
the Gauss map

G =
1

W1/2


−C1C2

2C2
3 f ϕ′ +

(
aS1 + C1

(
bS2C2 + cC2

2S3C3
))

f ′

−S1C2
2C2

3 f ϕ′ +
(
aC1 + S1

(
bS2C2 + cC2

2S3C3
))

f ′

−S2C2
2C2

3 f ϕ′ − C2
2 (bC2 − cS2S3C3) f ′

−C2C3S3 f ϕ′ − cC2C2
3 f ′

C2C3 f f ′

 (7)

of the twisted hypersurface x given by Equation (3).
Next, regarding the Gauss map of x given by Equation (7), taking the second deriva-

tives of x depending on r, θ1, θ2, θ3, we find the components of II given by Definition 3:

L = C2C3 f ( f ′ϕ′′ − f ′′ϕ′)/W1/2,
M = −aC2C3 f ′2/W1/2,
P = −bC2C3 f ′2/W1/2,
X = −cC2C3 f ′2/W1/2,
N = −C2

2C3 f (( f ϕ′C3 − c f ′S3)C2C3 − b f ′S2)/W1/2,
T = −aS2C3 f f ′/W1/2,
Y = −aC2S3 f f ′/W1/2,
V = −C2C2

3 f ( f ϕ′C3 − c f ′S3)/W1/2,
Z = −bC2S3 f f ′/W1/2,
U = −C2C3 f 2 ϕ′/W1/2.

I−1.II gives the following:

S =
1

W3/2

(
sij
)

4×4. (8)

We obtain the characteristic polynomial of (8) as follows:

δ4 + t1δ3 + t2δ2 + t3δ + t4 = 0,



Mathematics 2023, 11, 4612 9 of 17

where

t1 = − 1
W3/2 (s11 + s22 + s33 + s44),

t2 =
1

W3 (s11s22 − s12s21 + s11s33 − s13s31 + s11s44 + s22s33

−s14s41 − s23s32 + s22s44 − s24s42 + s33s44 − s34s43),

t3 =
1

W9/2 (s11s23s32 − s11s22s33 + s12s21s33 − s12s31s23

−s21s13s32 + s13s22s31 − s11s22s44 + s11s24s42 + s12s21s44

−s12s41s24 − s21s14s42 + s22s14s41 − s11s33s44 + s11s34s43

+s13s31s44 − s13s41s34 − s31s14s43 + s14s41s33 − s22s33s44

+s22s34s43 + s23s32s44 − s23s42s34 − s32s24s43 + s24s33s42),

t4 =
1

W6 (s11s22s33s44 − s11s22s34s43 − s11s23s32s44 + s11s23s42s34

+s11s32s24s43 − s11s24s33s42 − s12s21s33s44 + s12s21s34s43

+s12s31s23s44 − s12s31s24s43 − s12s23s41s34 + s12s41s24s33

+s21s13s32s44 − s21s13s42s34 − s21s14s32s43 + s21s14s33s42

−s13s22s31s44 + s13s22s41s34 + s13s31s24s42 − s13s32s41s24

+s22s31s14s43 − s22s14s41s33 − s31s14s23s42 + s14s23s32s41).

Here, t1 = −4K1, t2 = 6K2, t3 = −4K3, t4 = K4. Finally, we obtain the components of
S:

s11 = −C2C3[
[

a2 + b2C2
2 +

(
c2 + f 2

)
C2

2C2
3

]
f f ′ϕ′′

+
[(

a2 + b2C2
2 + c2C2

2C2
3

)(
f ′2 − f f ′′

)
− C2

2C2
3 f 3 f ′′

]
ϕ′],

s12 = aC2C3W,

s13 = C3

[
−b f 2 ϕ′2C3

2C2
3 − a2S2 f f ′ϕ′ + bC2

(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
f ′2
]
,

s14 = C2

[
−cC2

2C3
3 f 2 ϕ′2 − S3

(
a2 + b2C2

2

)
f f ′ϕ′ + cC3

(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
f ′2
]
,

s21 = aC2C3

[
f f ′ϕ′ϕ′′ +

(
f ′2 − f f ′′

)
ϕ′2 − f ′4

]
,

s22 =
1
C3 f

[
(bS2 + cC2C3S3) f ′ − C2C2

3 f ϕ′
]
W,

s23 =
aS2 f ′

C3 f

[
C2

3 f 2 ϕ′2 −
(

b2 + c2C2
3 + C2

3 f 2
)

f ′2
]
,

s24 =
aC2S3 f ′

f

[
f 2 ϕ′2 −

(
c2 + f 2

)
f ′2
]
,

s31 = bC3
2C3

[
f f ′ϕ′ϕ′′ +

(
f ′2 − f f ′′

)
ϕ′2 − f ′4

]
,

s32 = − aS2 f ′

C3 f
W,

s33 =
1
C3 f

[C3
2C4

3 f 3 ϕ′3 − cC3
2C3

3S3 f 2 f ′ϕ′2 − C2C2
3

[
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

]
f f ′2 ϕ′

+
[

a2bS2 + cC2C3S3

(
a2 + b2C2

2

)
+ cC3

2C3
3S3

(
c2 + f 2

)]
f ′3],
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s34 =
bC3

2S3

f

[
f 2 ϕ′2 −

(
c2 + f 2

)
f ′2
]
,

s41 = cC3
2C3

3

[
f f ′ϕ′ϕ′′ +

(
( f ′)2 − f f ′′

)
ϕ′2 − f ′4

]
,

s42 = − aC2S3 f ′

f
W,

s43 =
f ′

f

[
bC3

2C2
3S3 f 2 ϕ′2 +

[
a2cC3S2 − bC2S3

(
a2 + b2C2

2 + C2
2C2

3

(
c2 + f 2

))]
f ′2
]
,

s44 =
C2

f

[
C2

2C3
3 f 3 ϕ′3 − C3

(
a2 + b2C2

2 +
(

c2 + f 2
)
C2

2C2
3

)
f f ′2 ϕ′ + cS3

(
b2C2

2 + a2
)

f ′3
]
.

From Definition 5, the curvatures Kj of the twisted hypersurfaces with the x5 rotating
axis described by (3) in the five-dimensional Euclidean space are obtained.

Next, we offer some corollaries for the curvatures of the twisted hypersurfaces defined
by Equation (3) with the x5 rotating axis.

Corollary 1. By taking f (r) = c = const., we obtain the following curvatures of the twisted
hypersurfaces determined by Equation (3) with the x5 rotating axis:

K0 = 1 (by definition), K1 = − 3
4c

, K2 =
1

2c2 , K3 = − 1
4c3 , K4 = 0.

Then,
K0 = 1, 29(K1)

6 = 36(K2)
3 = 362(K3)

2, K4 = 0.

Corollary 2. By choosing ϕ(r) = c = const., we find the following curvatures of the twisted
hypersurfaces given by Equation (3) with the x5 rotating axis:

K0 = 1 (by definition),

K1 =
β4β5 f 2 + β6

4 fC3
((

a2 + C2
2
(
b2 + C2

3 (c
2 + f 2)

)))3/2 ,

K2 =
ξ6 f 2 + ξ7

6 f 2C3
((

a2 + C2
2
(
b2 + C2

3 (c
2 + f 2)

)))2 ,

K3 = − C2ρ9

4 fC3
((

a2 + C2
2
(
b2 + C2

3 (c
2 + f 2)

)))5/2 ,

K4 = − ξ7

f 2
((

a2 + C2
2
(
b2 + C2

3 (c
2 + f 2)

)))3 .

Here, βi, ξ j, ρk described by Theorem 3. Then,

K0 = 1,
(

4 fC3

β4β5 f 2 + β6
K1

)20
=

(
6 f 2C3

ξ6 f 2 + ξ7
K2

)15

=

(
4 fC3

C2ρ9
K3

)12
=

(
f 2

ξ7
K4

)10

.

We present a condition to the curvatures determined by Theorem 2 with the funda-
mental forms decribed by Definition 4.

Theorem 4. Hypersurface x = x(r, θ1, θ2, θ3) in Euclidean space E5 has

K0V− 4K1IV+ 6K2III− 4K3II+K4I = O, (9)
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where I, II, . . . ,V describe the fundamental form matrices, and O determines the zero matrix with
order four of x.

Proof. With the help of the theorem of Cayley–Hamilton, we obtain PS(δ) =
4
∑

k=0
(−1)kskδ4−k =

det(S− δI4) = 0. Hence, we have

K0δ4 − 4K1δ3 + 6K2δ2 − 4K3δ +K4 = 0.

We note that the three dimension effects of Theorem 4 are determined by

K0III− 2K1II+K2I = O,

and
K0δ2 − 2K1δ +K2δ = 0,

Here, O describes the zero matrix of order two, K1 = H denotes the mean curvature,
K2 = K determines the Gaussian curvature of a surface of dimension three. Also, the acts
of dimension four of Theorem 4 are described as follows:

K0IV− 3K1III+ 3K2II−K3I = O,

and
K0δ3 − 3K1δ3 + 3K2δ2 −K3δ = 0.

Here, O denotes the zero matrix of order three.

4. The Umbilical Hypersurfaces in E5

Next, we present the umbilical acts of the hypersurfaces of E5.
From Theorem 1, the following occurs:

K0 = 1,

4K1 = κ1 + κ2 + κ3 + κ4,

6K2 = κ1κ2 + κ1κ3 + κ1κ4 + κ2κ3 + κ2κ4 + κ3κ4,

4K3 = κ1κ2κ3 + κ1κ2κ4 + κ1κ3κ4 + κ2κ3κ4,

K4 = κ1κ2κ3κ4.

Then, we obtain the the following.

Corollary 3. In E5, the following holds:

κ1 = κ2 = κ3 = κ4 ⇔ (K1)
2 = K2, K1K2 = K3, K1K3 = (K2)

2 = (K1)
4 = K4.

See [34,46] for details of umbilical facts.

Theorem 5. The twisted hypersurfaces given by Equation (3) have a umbilical point if the following
comes out

[
(

β1 f 2 − β2β3
)

f 2 f ′ϕ′′ + 3β1 f 3 ϕ′3 + β4β5 f 2 f ′ϕ′2

+
[(

β1 f 2 + β2β3
)

f ′′ −
(
3β1 f 2 + 4β2β3

)
f ′2
]

f ϕ′ +
(

β4β5 f 2 + β6
)

f ′3]4

−44β2
2 f 2W3[ξ2

2 f 5 f ′ϕ′3 ϕ′′ + β1β5 f 4 f ′2 ϕ′2 ϕ′′ + η1 f 3 f ′3 ϕ′ϕ′′ + η2 f 2 f ′4 ϕ′′

+β1β2 f 5 f ′′ϕ′4 − β1β5 f 4 f ′ f ′′ϕ′3 −
(
η1 f ′′ + β3β4 f ′2

)
f 2 f ′2 ϕ′2

+
(
−η2 f ′′ + β2β6 f ′2

)
f f ′3 ϕ′ − ξ7 f ′6] = 0.
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Proof. Twisted hypersurfaces x constructed by the x5-rotation axis cover the umbilical
point of E5, i.e., (K1)

4 = K4.

Problem 1. Find the ϕ solutions of Equation determined by Theorem 5.

Now, we serve the minimality acts determined by Definition 6 of the twisted hyper-
surfaces defined by Equation (3).

Corollary 4. The twisted hypersurfaces defined by Equation (3) have zero mean curvature, i.e.,
one-minimal if the following occurs:(

β1 f 2 − β2β3
)

f f ′ϕ′′ − 3β1 f 3 ϕ′3 + β4β5 f 2 f ′ϕ′2

+
[(

β1 f 2 + β2β3
)

f ′′ −
(
3β1 f 2 + 4β2β3

)
f ′2
]

f ϕ′

+
(

β4β5 f 2 + β6
)

f ′3 = 0.

Problem 2. Find the ϕ solutions of Equation given by Corollary 4.

Corollary 5. The twisted hypersurfaces determined by Equation (3) are two-minimal if the follow-
ing holds: (

3 f 2ξ1 + 2β3ξ2
)

f 2 f ′ϕ′ϕ′′ −
(

f 2β5ξ3 + β6ξ4
)

f f ′2 ϕ′′

+3ξ1 f 4 ϕ′4 − 2β5ξ3 f 3 f ′ϕ′3

+
[(

3 f 2ξ1 + ξ5
)

f ′2 −
(
3 f 2ξ1 + 2β3ξ2

)
f ′′
]

f 2 ϕ′2

−
[(

2 f 2β5ξ3 + 3β6ξ4
)

f ′2 −
(

f 2β5ξ3 + β6ξ4
)

f ′′
]

f f ′ϕ′

+
(
ξ6 f 2 + ξ7

)
f ′4 = 0.

Problem 3. Find the ϕ solutions of Equation given by Corollary 5.

Corollary 6. The twisted hypersurfaces decribed by Equation (3) are three-minimal if the following
Equation becomes

β2
2
(

β3 + 3β4 f 2) f 3 f ′ϕ′2 ϕ′′ − β2
(
2β4β5 f 2 + β6

)
f 2 f ′2 ϕ′ϕ′′

+
(
η6 f 2 + η7

)
f f ′3 ϕ′′ − β1β2 f 4 ϕ′5 − β1β5 f 3 f ′ϕ′4

−
[(

3ξ2
2 f 2 + β2

2β3
)

f f ′′ +
(
ξ2

2 f 2 + η10
)

f ′2
]

f 2 ϕ′3

+
[(

ρ1 f 2 + ρ2
)

f f ′ f ′′ +
(
ρ3 f 2 + ρ4

)
f ′3
]

f ϕ′2

+
[(

ρ7 f 2 + ρ8
)

f ′4 +
(
ρ5 f 2 + ρ6

)
f f ′2 f ′′

]
ϕ′ + ρ9 f f ′5 = 0.

Problem 4. Find the ϕ solutions of the Equation determined by Corollary 6.

Corollary 7. The twisted hypersurfaces defined by Equation (3) have a zero Gauss–Kronecker
curvature, i.e., four-minimal if the following Equation comes out:

ξ2
2 f 5 f ′ϕ′3 ϕ′′ + β1β5 f 4 f ′2 ϕ′2 ϕ′′ + η1 f 3 f ′3 ϕ′ϕ′′ + η2 f 2 f ′4 ϕ′′

+β1β2 f 5 f ′′ϕ′4 − β1β5 f 4 f ′ f ′′ϕ′3 −
(
η1 f ′′ + β3β4 f ′2

)
f 2 f ′2 ϕ′2

+
(
−η2 f ′′ + β2β6 f ′2

)
f f ′3 ϕ′ − ξ7 f ′6 = 0.

Problem 5. Find the ϕ solutions of Equation described by Corollary 7.

5. Twisted Hypersurfaces with the x5 Rotating Axis Supplying ∆x=Qx in E5

We determine that the Laplace–Beltrami operator depends on I of a smooth function
in E5, and we find the Laplace–Beltrami operator of the twisted hypersurfaces given by (3).



Mathematics 2023, 11, 4612 13 of 17

Definition 8. In E5, the Laplace–Beltrami operator of a smooth function φ = φ(x1, x2, x3, x4) |D
(domain D ⊂ R4) of class C4 is described by

∆φ =
1

g1/2

4

∑
i,j=1

∂

∂xi

(
g1/2gij ∂φ

∂xj

)
, (10)

where
(
gij) = (gkl)

−1 and g = det
(
gij
)
.

We regard the inverse matrix of I determined by (3). Hence, the coefficients of(
gij) = I−1 are denoted by

g11 =
(
−CJ2 − B2S− GQ2 + 2BJQ + CGS

)
/ det I,

g12 =
(

FQ2 + CJD− BQD + ABS− AJQ− CFS
)

/ det I = g21,

g13 =
(

AJ2 − BJD + GQD− AGS + BFS− FJQ
)

/ det I = g31,

g14 =
(

B2D− CGD− ABJ + CFJ + AGQ− BFQ
)

/ det I = g41,

g22 =
(
−A2S− CD2 −Q2E + 2AQD + CSE

)
/ det I,

g23 =
(

BD2 − AJD− BSE− FQD + JQE + AFS
)

/ det I = g32,

g24 =
(

A2 J − ABD + CFD− CJE + BQE− AFQ
)

/ det I = g42,

g33 =
(
−F2S− GD2 − J2E + 2FJD + GSE

)
/ det I,

g34 =
(

F2Q + AGD− BFD + BJE− GQE− AFJ
)

/ det I = g43,

g44 =
(
−A2G− CF2 − B2E + CGE + 2ABF

)
/ det I,

where

det I = (EG− F2)(CS−Q2) + (J2 − GS)A2 + (D2 − ES)B2 − (EJ2 + GD2)C

+2((CF− AB)DJ + (EB− FA)JQ + (GA− FB)DQ + FABS).

We compensate φ = φ(x1, x2, x3, x4) with x = x(r, θ1, θ2, θ3) and substitute it into (10).
Therefore, by using the inverse matrix of (5), we have the following:

g11 =
a2 +

(
b2 +

(
c2 + f 2)C2

3
)
C2

2
W

,

g12 = − aϕ′

W
= g21,

g13 = −
bC2

2 ϕ′

W
= g31,

g14 = −
cC2

2C2
3 ϕ′

W
= g41,

g22 =
C2

3 f 2 ϕ′2 +
(
b2 +

(
c2 + f 2)C2

3
)

f ′2

C2
3 f 2W

,
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g23 = − ab f ′2

C2
3 f 2W

= g32,

g24 = − ac f ′2

f 2W
= g42,

g33 =
C2

2C2
3 f 2 ϕ′2 +

(
a2 +

(
c2 + f 2)C2

2C2
3
)

f ′2

C2
3 f 2W

,

g34 = −
bcC2

2 f ′2

f 2W
= g43,

g44 =
C2

2C2
3 f 2 ϕ′2 +

(
a2 +

(
b2 + f 2C2

3
)
C2

2
)

f ′2

f 2W
.

We obtain the information below.

Theorem 6. The Laplace–Beltrami operator of the twisted hypersurfaces x determined by (3) has
∆x = 4K1G. Here, K1 denotes the mean curvature determined by Theorem 3, and G describes the
Gauss map determined by (7) of the family.

Proof. With straight calculations of (3) on (10), we have ∆x = 4K1G.

Next, we offer the following about ∆ and K1 = 0 of the family determined by (3).

Theorem 7. We let x : M4 ⊂ E4 −→ E5 be an immersion described by (3). ∆x = Qx, where
Q =

(
qij
)

is a square matrix of order five if K1 = 0, i.e., twisted hypersurfaces x are one-minimal.

Proof. We use 4K1G = Qx, then obtain the following Equations:

fC1C2C3q11 + fS1C2C3q12 + fS2C3q13 + fS3q14 + (ϕ + aθ1 + bθ2 + cθ3)q15

= Ω
(
−C1C2

2C2
3 f ϕ′ +

(
aS1 + C1

(
bS2C2 + cC2

2S3C3

))
f ′
)

,

fC1C2C3q21 + fS1C2C3q22 + fS2C3q23 + fS3q24 + (ϕ + aθ1 + bθ2 + cθ3)q25

= Ω
(
−S1C2

2C2
3 f ϕ′ +

(
aC1 + S1

(
bS2C2 + cC2

2S3C3

))
f ′
)

,

fC1C2C3q31 + fS1C2C3q32 + fS2C3q33 + fS3a34 + (ϕ + aθ1 + bθ2 + cθ3)q35

= ΩC2

(
−S2C2

3 f ϕ′ − (bC2 − cS2S3C3) f ′
)

,

fC1C2C3q41 + fS1C2C3q42 + fS2C3q43 + fS3q44 + (ϕ + aθ1 + bθ2 + cθ3)q45

= −ΩC2C3
(
S3 f ϕ′ + cC3 f ′

)
,

fC1C2C3q51 + fS1C2C3q52 + fS2C3q53 + fS3q54 + (ϕ + aθ1 + bθ2 + cθ3)q55

= ΩC2C3 f f ′,

where Q denotes a 5× 5 matrix, Ω = 4K1W−1/2. Derivativing the above ODEs twice w.r.t.
θ1, we obtain

q15 = q25 = q35 = q45 = q55 = 0, Ω = 0.

Therefore, the following relations occur:

C2C3(C1qi1 + S1qi2) f = 0,

where f 6= 0, i = 1, . . . , 5. Regarding the fact that sin and cos are linear independent on θ1,
each of the coefficients of matrix Q are 0. Ω = 4K1W−1/2, then K1 = 0. This means, from
Definition 6, that hypersurface x determined by (3) is a one-minimal twisted hypersurface
with a x5 rotating axis.

Hence, we offer the following examples.



Mathematics 2023, 11, 4612 15 of 17

Example 1. In E5, by using f (r) = cos r = Cr, ϕ(r) = sin r = Sr to γ determined by (2), we
construct the rotational hypersurface

x = (CrC1C2C3, CrS1C2C3, CrS2C3, CrS3,Sr),

where a = b = c = 0. Then, we have

G = −x,
I = diag

(
1, C2

r C2
2C2

3 , C2
r C2

3 , C2
r

)
= II = III = IV = V,

S = I4,

Kj = 1,

∆x = −4x.

Here, I4 describes the identity matrix, diag describes the diagonal side of the matrix, j =
0, 1, . . . , 4.

We also apply the rational rotational hypersurface with the x5 rotating axis to the
following.

Example 2. We substitute rational functions f (r) = r2−1
r2+1 = Cr, ϕ(r) = 2r

r2+1 = Sr, r 6= ±i,
into γ described by (2). We obtain the following rational rotational hypersurface:

x = (CrC1C2C3, CrS1C2C3, CrS2C3, CrS3,Sr),

where a = b = c = 0 in E5. Then, we obtain

G = x,

I = diag

(
4

(r2 + 1)2 ,S2
r C2

2C2
3 ,S2

r C2
3 ,S2

r

)
= −II = III = −IV = V,

S = −I4,

Kj = (−1)j,

∆x = 4x.

Here, I4 denotes the identity matrix, diag denotes the diagonal side of the matrix, j =
0, 1, . . . , 4. The rational hypersphere with the x5 rotating axis holds Equation determined by (9).

6. Conclusions

This research introduced twisted hypersurfaces x in a five-dimensional Euclidean
space E5 with a rotating axis along x5. The fundamental forms, the Gauss map, and
the shape operator of x were computed, providing a comprehensive understanding of
its geometric properties. By employing the Cayley–Hamilton theorem, the curvatures of
x were determined, highlighting their relationship with the curvatures of hypersurfaces
in E5.

However, the solutions to the differential equations governing the curvatures of these
hypersurfaces remain open problems, offering avenues for future research. The study also
presented the umbilicality and minimality conditions for the curvatures of x, contributing
to the characterization of their geometric behavior. Furthermore, a significant result was
obtained, establishing the Laplace–Beltrami operator relation ∆x = Qx, whereQ is a square
matrix of order five, further deepening the understanding of the geometric properties of x.

Overall, these findings shed light on the intricate nature of twisted hypersurfaces in a
five-dimensional space and provided a foundation for further investigations in this field.
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