
Citation: Bejenar, I.; Ferariu, L.;

Pascal C.; Caruntu, C.-F. Aggregation

Methods Based on Quality Model

Assessment for Federated Learning

Applications: Overview and

Comparative Analysis. Mathematics

2023, 11, 4610. https://doi.org/

10.3390/math11224610

Academic Editors: Shuo Yu

and Feng Xia

Received: 10 October 2023

Revised: 26 October 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Aggregation Methods Based on Quality Model Assessment
for Federated Learning Applications: Overview and
Comparative Analysis
Iuliana Bejenar, Lavinia Ferariu, Carlos Pascal and Constantin-Florin Caruntu *

Department of Automatic Control and Applied Informatics, “Gheorghe Asachi” Technical University of Iasi,
700050 Iasi, Romania; iuliana-alexandra.bejenar@academic.tuiasi.ro (I.B.);
lavinia-eugenia.ferariu@academic.tuiasi.ro (L.F.); carlos-mihai.pascal@academic.tuiasi.ro (C.P.)
* Correspondence: caruntuc@ac.tuiasi.ro

Abstract: Federated learning (FL) offers the possibility of collaboration between multiple devices
while maintaining data confidentiality, as required by the General Data Protection Regulation
(GDPR). Though FL can keep local data private, it may encounter problems when dealing with
non-independent and identically distributed data (non-IID), insufficient local training samples or
cyber-attacks. This paper introduces algorithms that can provide a reliable aggregation of the global
model by investigating the accuracy of models received from clients. This allows reducing the
influence of less confident nodes, who were potentially attacked or unable to perform successful
training. The analysis includes the proposed FedAcc and FedAccSize algorithms, together with their
new extension based on the Lasso regression, FedLasso. FedAcc and FedAccSize set the confidence
in each client based only on local models’ accuracy, while FedLasso exploits additional details related
to predictions, like predicted class probabilities, to support a refined aggregation. The ability of
the proposed algorithms to protect against intruders or underperforming clients is demonstrated
experimentally using testing scenarios involving independent and identically distributed (IID) data
as well as non-IID data. The comparison with the established FedAvg and FedAvgM algorithms
shows that exploiting the quality of the client models is essential for reliable aggregation, which
enables rapid and robust improvement in the global model.

Keywords: federated learning; collaboration; aggregation; non-IID data

MSC: 68T07; 68W15

1. Introduction

Federated learning (FL) [1–3] is a widely used and appealing research approach that
generates a global model by handling private data sets that are spread out among different
clients. The design method is built using the principle of privacy-preserving data to respect
the General Data Protection Regulation (GDPR). Each client possesses a unique training
data set kept locally. Accordingly, each client calculates an update based on the current
global model maintained by the server and only transmits this update. This technique holds
great promise for several machine learning applications which use sensitive user informa-
tion to train their local models—hospital data [4,5], web social platforms’ data [6], drivers’
data [7], etc.—because they allow the organizations to collaborate without explicitly sharing
user data with a central location. As the training effort is distributed to multiple clients,
FL becomes suitable for complex learning tasks involving big geographically dispersed
training data sets, which could be acquired by autonomous sensing or data collection tech-
niques in local protected data sets. For example, the authors of [8] presented an application
for predicting or maintaining a radio environment map where unlicensed users can locally
use some frequency bands based on the spectrum occupation in a given area. Another

Mathematics 2023, 11, 4610. https://doi.org/10.3390/math11224610 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11224610
https://doi.org/10.3390/math11224610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2685-0105
https://orcid.org/0000-0002-4026-2852
https://doi.org/10.3390/math11224610
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11224610?type=check_update&version=1


Mathematics 2023, 11, 4610 2 of 20

example detailed in [9] is related to object detection for a vehicular-to-everything (V2X)
network, in which the authors proposed a cooperative sensing methodology.

The authors of [10] introduced three categories for FL based on the types of data that
are kept private or shared by clients: horizontal federated learning (HFL) [11], vertical
federated learning (VFL) [12], and federated transfer learning (FTL). HFL is suitable for
cases in which clients share the same feature space, but their samples are private, while
VFL is used when clients need different feature spaces and share the same samples, with
the encryption and paring of samples being carried out by a third-party entity. Lastly, FTL
applies to data sets that have different features and instances [13]. For each category, a
different design should be considered [10]. However, for all architectures, FL maintains
data confidentiality and privacy specifically in the context of GDPR compliance because
the communication between the server and clients refers to the parameters of the model
and not to the raw training data stored by each client. The parameters of the model are
not targeted by the GDPR and can be shared between nodes without privacy constraints.
Any other additional information is communicated only with client agreement as in the
case of VFL, where the encryption and pairing of samples are performed by an authorized
third-party entity without allowing any client to access the raw data of any other client.

Depending on the communication allowed between nodes, FL methods can be grouped
into centralized and decentralized methods [14]. Centralized federated learning (CFL) is
a commonly used architecture that includes a server and allows client–server interac-
tions [1,15], while the decentralized federated learning (DFL) structure does not contain a
centralized node and allows the clients to communicate directly with each other [16]. In
this paper, the focus is on the HFL and CFL structure, which is also named sample-based
federated learning. HFL and CFL can be customized for each problem, but the root concept
is the same for all algorithms, as shown in Figure 1. The server is the primary actor in this
process; it sends an initial model to the clients and then, at every communication round,
receives the updated local models, aggregates these models into the global model, and
resends the resulting global model to the clients for further improvements.

Figure 1. A flow chart of the federated learning process.

HFL is confronted with several challenges in real-world applications because the
clients do not necessarily have the same number of training samples or the same distribution
of training data sets. If the distribution of the local training data set does not illustrate the
overall distribution of data across all nodes, then the local training is biased and likely
exposed to generate an underperforming model. Another crucial concern is posed by
clients with malicious intent who may attempt to manipulate the performance of the
server. Such clients should be regarded as intruders or attackers in the process [17]. Also,
problems may appear when the communication paths between the server and participating
clients are affected by various disturbances [18]. Based on this, FL is facing challenges that



Mathematics 2023, 11, 4610 3 of 20

researchers are currently analyzing, such as (1) heterogeneity of data and devices, where
connected clients may have different distributions of local training data and use different
types of devices, which can lead to a decrease in the overall performance of the central
model [19,20]; (2) vulnerability of the server, where there is a possibility that the global
model may be vulnerable to certain attacks or low-quality client data [21]; and (3) efficiency
of communication, where the FL approach involves the communication between a server
and connected clients, which can lead to a limited communication bandwidth to transfer
local updates [22,23]. In this context, the aggregation should limit the influence of poor
clients. This aspect is essential for effective FL because any damage to the global model is
propagated throughout the entire network in subsequent communication rounds when the
global model is sent to clients for additional training.

The flow of HFL assumes that local and global models have the same architecture.
Typically, the server performs a parameter-level weighted linear aggregation. This simpli-
fied approach is adopted even for nonlinear models, assuming that only minor updates are
handled at each communication round. The authors of [24] highlighted that the effects of
artificial noise disturbing the parameters of the local models also depends on the structure
of the model. This noise can be induced by the aggregation of intruded or underperforming
clients. In this regard, in [24], it was shown that the influence of intruded clients on the accu-
racy of the global model is much stronger in the case of convolutional neural networks than
in the case of multilayer perceptrons. The impact of each local model can be adjusted by the
weighting procedure, which may become key to processing non-IID data and protecting the
global model against less effective clients. To ensure an unbiased and effective aggregation
of local models, the weighting procedure should take into account that the quality of the
local models is influenced by many factors, from the distribution of local training data sets
to the local configuration of the training procedure or cyber-attacks. Browsing through
potential issues and evaluating their impact is a highly difficult task. However, as will
be discussed later, comprehensive fault diagnosis is not necessary, and aggregation can
directly exploit quality indicators (like accuracy) that highlight any important issue related
to the local models. It is important to note that it is more important for the aggregation
method to detect poor clients than to isolate the cause that generated this behavior.

In this context, this paper introduces FL methods that evaluate the performance of the
local models to support a reliable aggregation. The proposed algorithms use the average
accuracy of local models as a threshold to avoid integrating data from untrustworthy or
underperforming clients. In addition, the influence of each client relies on the performance
of its local model. The weights used for the linear aggregation of the local models depend on
their accuracy or are obtained via Lasso regression using refined information, like predicted
class probabilities. The comparative analysis investigates some of the main challenges of
the FL approach. First, the work involves examining the effects of data heterogeneity on
the global model. This includes the unequal distribution of data among clients and the
usage of non-IID data. The testing scenarios also monitor the actions of negative clients
who may attempt to compromise the global model. This involves simulating the presence
of intruders during the learning process. The most important contributions of our work are
mentioned below:

1. A detailed discussion of the benefits and limitations resulting from using local models’
accuracy in the aggregation step with a focus on our methods: FedAcc and FedAccSize [25];

2. The design of a new aggregation method, FedLasso, which enhances the assessment
of local models’ quality by applying Lasso regression, where the resulting Lasso
coefficients are exploited for parameter-level aggregation;

3. An experimental analysis of the aforementioned methods in comparison with two
algorithms widely recommended in the literature (FedAvg [1] and FedAvgM [26]),
where the testing scenarios simulate intruded or underperforming clients for both IID
and non-IID data.

The rest of this paper is organized as follows. Section 2 offers an overview of related
works, where the focus is on aggregation techniques. Then, Section 3 presents two av-



Mathematics 2023, 11, 4610 4 of 20

eraging algorithms which are among the most popular in FL to set a reference for our
developments. The algorithms using the quality of local models for a refined aggregation
are introduced in Section 4, and the experimental scenario and results are detailed in
Section 5. At the end, some conclusions are provided.

2. Related Works

FL training methods have evolved from the original federated averaging (FedAvg)
algorithm [1]. FedAvg uses a weighted average of the local model updates to establish
the modifications of the global model at every communication round. Every client stores
a local data set that is not shared with the other clients or the server. The local models
are trained using the stochastic gradient descent (SGD) method. The relevance of clients
participating in aggregation relies only on the ratio of local training samples from the total
amount of data accessed by the active clients. The algorithm thus cannot consider clients
with different distributions of local data or with ineffective training. However, since it was
introduced, FedAvg has been preferred in many works due to its simplicity and is still a
standard approach for IID data.

An improved version of FedAvg, named federated averaging with server momentum
(FedAvgM), was introduced in [26]. FedAvgM implements a momentum technique at the
server level. More precisely, the variations in the global model are set while considering a
linear combination between the variation obtained in the previous communication round
and the variation resulting from current local model updates. This aggregation method
favors a stable and fast learning process, but its performance remains limited in the case
of non-IID data. Another interesting extension of FedAvg is the federated framework
for heterogeneous networks, called FedProx [15]. This algorithm uses a supplementary
proximal term in the local loss function. The extra term is equal to the norm of model
parameter variation, and hence the minimization of the loss function performed during
training implicitly promotes local updates close to zero, which are suitable for the aggre-
gation of nonlinear models. The clients provide γ-inexact local solutions to deal with
heterogeneous training efforts and non-IID data. However, the protection against attacks
and inconvenient local data sets remains limited. In [27], the authors proposed a method
for evaluating the trustworthiness of clients using the history of interactions with each user.
The main assumption is that the server can detect the anomalies of local models. Recent
and direct interactions have the biggest influence on the trustworthiness scores. However,
the procedure can exploit recommendations received from other servers and long-term
recordings as well. The most reliable and trustworthy clients are selected for aggregation
of the global model. The detection of anomalies implicitly includes an evaluation of the
local models and could be carried out using their accuracy, as proposed in our work. The
authors of [8] built an FL system with three clients, including a negative client working
with an incorrectly labeled data set and a client responsible for evaluating the local models.
Thus, the evaluator helps the server in the aggregation process to ignore models under a
defined threshold. The authors highlighted that some spectrum opportunities can be lost
under this approach when full protection is applied. An important benefit of the method
could be the ability to define a threshold based on the quality of the models, as suggested
in our paper.

A different communication flow between server and clients is suggested by CO-
OP [28]. Unlike FedAvg, CO-OP integrates a local model into the global one immediately
after it is received by the server without waiting for other responses from clients. The clients
receive the updated global model and can decide if the new parameters are imported or if
they continue the ongoing local training process. The algorithm uses protection against
outdated or overactive clients to avoid the integration of improper local models. However,
as the global model can be updated by a single client, its optimization can become unstable
and exposed to attacks and underperforming clients. InfeMo [29] combines CO-OP and
FedAvg. The server communicates with the clients in several rounds, but only clients with
an appropriate maturity are accepted for aggregation, and clients can refuse the importation



Mathematics 2023, 11, 4610 5 of 20

of the global model to continue their ongoing training. The difficulty remains in providing
a proper transfer of learning between clients, although they can decline the global model.

Regardless of the performance of the local learning process, the aggregation performed
at the parameter level cannot guarantee an improvement in the global model when this
model is nonlinear. In this context, federated matched averaging (FedMA) [30] assumes a
layer-based model structure, and at each step, it aggregates the updates corresponding to a
single layer of the model. The clients receive the modified parameters and apply the training
process for the next layer to accommodate previous modifications in the local nonlinear
model. This approach looks for similarities between the subsets of the local parameters
and extends the global model to integrate local components corresponding to unmatched
subsets. However, the aggregation is vulnerable to intruders and worse-performing clients,
which can trigger undesired expansion of the global model. The similarity of clients is also
investigated with the similarity-guided model-based aggregation method FedSim [31]. To
enhance the performance of the global model, this method clusters the clients with respect
to the resulting gradients and then performs an intra-cluster aggregation followed by a
global aggregation across all clusters.

Helpful ideas for reducing the influence of less-adapted models can be obtained
from the methods proposed in real-time systems to solve Byzantine attacks [32]. This
includes ignoring outlier updates before weighted averaging or using the median instead
of the weighted average. In addition, the clients could be protected against improper
modifications received from the server. For example, if the global model is much worse
than the available local one, then its parameters are not imported by the client to limit the
propagation of attacks or underperforming aggregation. Unfortunately, without having
information about the distribution of data from the other nodes, these protection techniques
can also limit the transfer of knowledge between clients, thus impeding the model from
accommodating other data and improving its generalization capability.

The authors of [32] argued that the detection of intruders in FL approaches can be
guaranteed only if a relaxation of data privacy constraints is accepted. In line with this idea,
the authors of [33] used a central validation set to filter out adversarial and poor clients.
The differences between the best and the rest of the models, computed in terms of accuracy,
are exploited to prevent corruption of the global model by intruded clients. Another
interesting approach based on generative adversarial networks (GANs) was suggested
in [21]. From random noise input, the GAN creates fake samples with the same distribution
as the real data, which are used to simulate backdoor attacks. The analysis shows that
no guarantee can be given to prevent attacks without assessing the quality of the local
models. In extension, our work includes aggregation techniques that refine the contribution
of clients to the global model based on the quality of the local models. As detailed in the
next sections, this mitigates the risk of using the local models sent by intruders or clients
with improper training performance.

Numerous aggregation approaches have also been proposed to combine models de-
signed for different modalities or data sets, such as Bayesian aggregation [34,35]. Unlike the
common configuration of HFL, most of these methods consider an output-level aggregation
and expand the structure of available basic component models to integrate them into the
global one. They also use regularization techniques to avoid numerical problems and over-
fitting caused by increased model complexity. The least absolute shrinkage and selection
operator (Lasso) is frequently used for regression models to improve accuracy and preserve
simple, easy-to-interpret architectures [36–38]. An interesting method based on Lasso
regression is presented in [39]. This aggregation strategy, called FedFit, updates the global
model using two main processes: (1) parameter compression at the client level, considering
the same base for all clients, and (2) parameter reconstruction on the server using Lasso
regression. As the parameters of the model are exchanged between the server and clients
only after compression, the communication load is substantially reduced. In our approach,
Lasso regression is considered for another purpose. The Lasso coefficients are used to



Mathematics 2023, 11, 4610 6 of 20

calculate the weights associated with clients for aggregation of the models at the parameter
level. The aggregation is discussed both for regression and classification problems.

3. Aggregation of Local Models in Federated Learning

To provide a background for the proposed methods, this section discusses two of the
most recommended algorithms in the literature, namely FedAvg [1] and FedAvgM [26].
They will also be used as a reference for the performed experimental analysis.

For simplicity, all notations are listed in Table 1. Being HFL methods, FedAvg and
FedAvgM have a central component, the server, and C clients who collaborate for training
the global model stored on the server. The parameters of the global model are obtained
as a result of communication between the server and clients, which exchange information
about the model parameters during some communication rounds. In each round of com-
munication, active clients are checked, and they are allowed to participate in the learning
process. As mentioned before, FedAvg and FedAvgM consider a linear aggregation of the
local models, where the weights associated with clients rely on the ratio of training samples
they use. As an extension to FedAvg, FedAvgM performs the aggregation with momentum
to ensure more stable learning for the global model.

Table 1. Parameters used in the description of the FL aggregation algorithms.

Parameter Description

| · | the size of a data set
R the number of communication rounds
C the total number of clients connected to the server
r index for iterating the communication rounds
j index for iterating the clients
Sr the subset of active clients during the rth communication round (Sr ⊂ {1, 2, . . . , C})
Dj the training data set used by the jth client
Nr the total number of samples used by all active clients for training during the rth communication round (Nr = ∑j∈Sr |D

j
r |)

Ej the total number of epochs used by the jth client
k index for iterating the training epochs
η j the learning rate used by the jth client
J the loss function adopted for training
φ0 the initial parameters of the global model
φr−1, φr the parameters of the global model at the beginning and end of the rth communication round, respectively
wj

r the weight assigned to the jth client during the rth communication round
β the momentum constant used by the server in the FedAvgM method
L0, L1, . . . , LM the coefficients used in Lasso regression
ψ

j
r the intermediary coefficient computed before wj

r for client j at the rth communication round
Accj

r the accuracy of the client j at the end of the rth communication round
Accr the average accuracy of active clients at the end of the rth communication round

Algorithm 1 depicts the detailed pseudo-code of FedAvg and FedAvgM. Every client
j who participates during the rth round of communication follows two main steps: ini-
tialization and training. Initialization means that the client j receives from the server the
parameters of the global model (φr−1) and copies these parameters into its local model.
Then, the client trains its local model for Ej epochs using the SGD method:

φj(k) = φj(k− 1)− η j ∂J
∂φj (φ

j(k− 1), Dj), (1)

where φj(0) = φr−1 and k ∈ {1, . . . , Ej}. The resulting parameters, φ
j
r = φj(Ej), or the re-

sulting updates, ∆φ
j
r = φj(Ej)− φr−1, are passed to the server for the next aggregation. The

server collects the updates obtained by all active clients, computes the weights associated
with them, and updates the global model:

φr = φr−1 + ∑
j∈Sr

wj
r · ∆φ

j
r = ∑

j∈Sr

wj
r · φ

j
r, (2)



Mathematics 2023, 11, 4610 7 of 20

where

wj
r =

|Dj|
∑p∈Sr |Dp| . (3)

As specified above, the weights rely on the size of the local training data sets. The
highest confidence is associated with the active client having the largest training data set.
According to Equation (3), the result is that ∑j∈Sr wj

r = 1 and wj
r ∈ [0, 1], ∀j ∈ Sr. Similar

weights are used by FedAvgM. This algorithm memorizes the previous update of the global
model to implement momentum-based learning. The previous variation is combined with
the current one to accelerate learning and diminish the risk of oscillations [26]:

φr = φr−1 + ∆φr, (4)

where
∆φr = β ∗ ∆φr−1 + ∑

j∈Sr

wj
r · ∆φ

j
r, with β ∈ (0, 1). (5)

Algorithm 1 Aggregation methods: FedAvg and FedAvgM

1: Server steps:
2: global model initialization—with parameters φ0
3: for r ← 1 to R do:
4: send the current global model (φr−1) to all clients
5: for each active client j ∈ Sr do:
6: receive updates from this client: ∆φ

j
r ← ClientUpdate(j, φr−1, Dj, η j, Ej)

7: compute wj
r according to Equation (3)

8: for each active client j ∈ Sr do:
9: aggregate the updates from this client into the global model:

10: for FedAvg—using (2); for FedAvgM—using Equations (4) and (5)
11:
12: procedure CLIENTUPDATE (j, φr−1, Dj, η j, Ej)
13: local model initialization—with parameters φr−1
14: for k← 1 to Ej do:
15: compute φj(k) using (1)
16: compute model update, ∆φ

j
r = φj(Ej)− φr−1

17: return model update, ∆φ
j
r

4. Aggregation Based on Local Models’ Quality Assessment

As previously mentioned, refined protection against intruders and underperforming
clients can be obtained only if the server gathers information about the quality of incoming
models. The detection of improper clients is important as they degrade the federated
learning process. However, the analysis should consider that the clients might need
different training efforts, depending on the distribution and size of their local training data
sets. Clients who use diverse and large data sets could provide improper intermediary
results, as they are involved in complex learning tasks. However, for the overall purpose,
these clients are crucial for accommodating the global model to diverse data and providing
improved generalization capabilities.

In this section, we propose aggregation methods that exploit the accuracy of the
local models or refined information related to model predictions. This implicitly reveals
potential problems related to data distribution, improper training, or intruders in support of
a reliable aggregation. We first examine the two proposed methods, FedAcc and FedAccSize
from [25], and then introduce a new method, FedLasso. All these algorithms eliminate poor
clients and combine the remaining local models using weights which rely on their quality to
ensure a reliable aggregation. As detailed in the next section, the main differences between



Mathematics 2023, 11, 4610 8 of 20

these aggregation algorithms are related to the computation of the weights associated with
the accepted clients.

4.1. Examination of FedAcc and FedAccSize

FedAcc and FedAccSize [25] were proposed to detect ineffective clients who can
degrade the federated learning process in order to reduce their impact on the resulting
global model. To this end, the algorithms exploit the local model accuracy to select the
models accepted for the aggregation and to define the weights associated with accepted
clients. The threshold for acceptance is the average accuracy of the active clients Accr.

In the same way as FedAvg and FedAvgM, these two proposed methods use the
initialization and training steps. The differences result from the protection mechanism
implemented by the server against improper clients and how the weights are defined. For
any active client j, during the rth communication round, an intermediary coefficient ψ

j
r is

computed. For FedAcc, ψ
j
r relies on the local accuracy Accj

r to promote valuable models:

ψ
j
r =

{
eAccj

r , if Accj
r ≥ Accr

0, otherwise
(6)

For FedAccSize, ψ
j
r relies on the local accuracy Accj

r and the size of the local training
data set |Dj| to promote models with good performance that learn from vast training data
sets. These clients can gather valuable knowledge, but their training process might be long.
The supplementary term introduced in FedAccSize permits increasing the corresponding
weight from the early training stages:

ψ
j
r =

eAccj
r · |Dj |

∑p∈Sr |Dp | , if Accj
r ≥ Accr

0, otherwise
(7)

For both algorithms, the coefficient is strictly positive for clients with above-average
accuracy who are accepted later for aggregation. These coefficients are then normalized to
obtain the weights used for aggregation:

wj
r =

ψ
j
r

∑p∈Sr ψ
p
r

(8)

This ensures null weights for the clients who should be ignored during aggregation.
The resulting weights could be directly used in Equation (2) to produce the global model.
The flow is summarized in Algorithm 2.

To evaluate the quality of the local models, the server could store a validation data
set populated with samples received from clients for which a relaxation of data privacy
constraints is accepted. This version is possible in many real applications and permits
refined data distribution analysis. The validation data set could also be collected from
other sources or artificially generated. In this case, its distribution should be verified in
collaboration with clients. Another option consists of keeping local validation data and
passing the local models between nodes for cooperative quality assessment. In this case,
the FL system is fully aligned with the GDPR without additional agreements, but it should
support increased communication between clients and is vulnerable to fake accuracy values
sent by intruders.

The use of accuracy for refining the influence of clients on the global model is moti-
vated by several aspects: (1) if assessed on a proper validation data set, the accuracy can
set the reliance on clients and reveal local misconducted training, and (2) the accuracy can
easily be evaluated with reasonable computational resources. However, the accuracy can
hide several problems related to data set distribution, like the lack of balance between
classes. To this end, the next subsection presents an extension of these two algorithms,
which exploits refined information from the local models.



Mathematics 2023, 11, 4610 9 of 20

Algorithm 2 Aggregation methods: FedAcc and FedAccSize

1: Server steps:
2: initialize the global model—with parameters φ0
3: for r ← 1 to R do:
4: send the current global model, φr−1, to all clients
5: initialize the average accuracy: Accr ← 0
6: initialize the total number of training samples used in this round: Nr ← 0
7: for each active client j ∈ Sr do:
8: receive updates from this client: ∆φ

j
r ← ClientUpdate(j, φr−1, Dj, η j, Ej)

9: compute the accuracy of the local model, Accj
r

10: add client’s contribution to the average accuracy: Accr ← Accr +
Accj

r
|Sr |

11: add client’s contribution to the total number of training samples: Nr ← Nr + |Dj|
12: for each active client j ∈ Sr do:
13: compute ψ

j
r: for FedAcc—using Equation (6); for FedAccSize—using Equation (7)

14: for each active client j ∈ Sr do:
15: compute wj

r according to Equation (8)
16: aggregate the updates from this client into the global model using Equation (2)

4.2. Description of FedLasso

The newly proposed aggregation method, FedLasso, adopts the same special mecha-
nism to eliminate improper clients from aggregation. But, unlike the previously specified
algorithms, the weights are calculated using Lasso regularization.

Usually, Lasso regularization is applied in regression problems to improve the accuracy
and interpretability of the resulting global model. The aggregation is solved at the output
level by solving the following minimization problem

min
L0,L

[
1
N

N

∑
n=1

(yn − L0 − xT
n L)2 + α

M

∑
m=1
|Lm|

]
, (9)

to produce the aggregated model L0 + xTL. Here, (xn, yn), with n = 1, . . . , N, defines the
data set, where xn = [x1

n, . . . , xM
n ]T ∈ RM specifies the covariates, yn ∈ R specifies the

target values, T indicates the transpose operator, L0 is the constant term of the model,
L = [L1, . . . , LM]T gathers the Lasso coefficients, and α ∈ (0, 1).

Equation (9) could easily be extended to FL if aggregation at the output level is
accepted and the model is configured for regression. In this case, the covariates correspond
to the outputs of the local models evaluated on the validation data set for the active clients.
As we are interested in performing a parameter-level aggregation, FedLasso uses a null
intercept (L0 = 0) and defines the relevance of models based on the associated Lasso
coefficients. Exactly as in the case of FedAcc and FedAccSize, only valuable clients with
above-average accuracy are accepted for aggregation, which means that only these clients
are taken into account for the minimization problem:

min
L

 1
N

N

∑
n=1

(yn − xT
n L)2 + α ∑

m∈S̃r

|Lm|

, (10)

where S̃r = {j ∈ Sr|Accj
r ≥ Accr} specifies the active clients with above-average perfor-

mance. Here, |S̃r| = M ≤ C. As a result, the intermediary coefficients are

ψ
j
r =

{
|Lj|, if Accj

r ≥ Accr

0, otherwise
(11)

and the normalization indicated in Equation (8) is used to compute the weights.



Mathematics 2023, 11, 4610 10 of 20

The extension of FedLasso to classification problems is accomplished by using the
predicted class probabilities as covariates and the target value of one for each validation
sample. The model has Q outputs, with each one dedicated to a class as recommended for
the classification approach. The class probabilities can be provided by the softmax layer
included in the architecture of the model. If the model does not include a softmax layer,
then the class probabilities can be obtained using a softmax transformation of the raw float
outputs of the model according to the following equation:

(zj
n,i)
∗ =

ezj
n,i

∑Q
q=1 ezj

n,q
, (12)

where zj
n,i with i ∈ {1, . . . , Q}, n ∈ {1, . . . , N} indicates the ith raw output of the client

j computed for the nth validation sample, Q specifies the number of classes, and (zj
n,i)
∗

indicates the resulting output value. In Equation (12), the softmax function ensures that for
any local sample n, the outputs of the local model zj

n,i are mapped to positive values that

can be interpreted as probabilities (i.e., (zj
n,i)
∗ ∈ [0, 1], ∀i ∈ {1, . . . , Q} and ∑Q

i=1 (z
j
n,i)
∗ = 1).

Large, positive outputs correspond to large class probabilities. The larggest class probability
indicates the class associated with the sample. To avoid poor conditioning and improve
performance in the case of unbalanced data sets, the covariates can be designed as the mean
predicted probabilities assigned to each class:

xj
i =

1
|Ωi| ∑

n∈Ωi

(zj
n,i)
∗, (13)

where Ωi ⊂ {1, . . . , N} is the subset of samples belonging to class i. This also permits applying
Lasso regularization to covariates of a reduced dimension Q. The suggested computation
steps are summarized in Algorithm 3. FedLasso results from Algorithm 2 by using this new
procedure for the computation of intermediary coefficients instead of Equation (13). This
means that the intermediary coefficients are computed using Equations (10–13) instead of
Equation (6) or (7).

Algorithm 3 Intermediary coefficients: FedLasso

1: for each active client j ∈ Sr do:
2: for i← 1 to N do:
3: compute the predicted class probabilities according to Equation (12)
4: compute the values corresponding to this client in Lasso regression using Equation (13)
5: apply Lasso regularization according to Equation (10), with clients sorted with respect

to accuracy
6: compute the intermediary coefficients ψ

j
r for all j ∈ Sr according to Equation (11)

5. Experimental Design and Illustrative Results

The experiments were designed to provide a comprehensive framework for the com-
parative analysis of the algorithms described above. As elaborated upon in the next
subsections, the testing scenarios were defined for classification problems and involved
both IID and non-IID data, as well as artificially generated intruders. The comparison was
performed between aggregation algorithms that investigate the quality of local models
(FedAcc, FedAccSize [25], and FedLasso) and standard algorithms that take into account
reduced information about the training environment (FedAvg [1] and FedAvgM [26]). In
all cases, the clients and the server used the same structure for the model (i.e., a multilayer
perception (MLP)), and aggregation was performed at the parameter level.



Mathematics 2023, 11, 4610 11 of 20

5.1. Data Sets Used for Experimental Investigations

Two standard data sets were used to support the experimental analysis for IID data,
denoted by D1 and D2. D1 is the Modified National Institute of Standards and Technology
(MNIST)) set, which was developed for handwriting digit recognition, and D2 is the Fashion
MNIST set, developed for clothes recognition. Both data sets contain 28 × 28 binary
images annotated for 10 different classes (Figure 2). For D2, the classes were defined
as follows: 0 = T-shirt or top, 1 = trousers, 2 = pullover, 3 = dress, 4 = coat, 5 = sandal,
6 = shirt, 7 = sneaker, 8 = bag, and 9 = ankle boot. The experiments were carried out with
42,000 samples from D1 and 70,000 samples from D2.

To configure non-IID data scenarios, another data set was used which also had
42,000 binary images of a size 28 × 28 like D1. D3 was generated from D1 by reduc-
ing the size of the digit in each sample. Therefore, the number of black pixels was larger for
the images from D3 than from D1, as indicated in Figure 3. The same aspect is illustrated by
the histogram of pixel intensities exemplified in Figure 4 for the samples belonging to class
8. With training samples from D1 ∪ D3, the clients could simply be exposed to non-IID
data, as exemplified in the next subsection.

In all scenarios, the inputs accepted by the classification models were the intensities
of the pixels without any other feature extraction step. The data sets were split into 90%
images for training and 10% for validation, while the training samples were distributed to
all active clients.

Figure 2. Examples of samples belonging to all 10 classes, with left pictures from D1 (MNIST) and
right pictures from D2 (Fashion MNIST).

Figure 3. Examples of samples used for the non-IID data scenario: (left) from D1 and (right) from D3.

Figure 4. The histogram of pixel intensities for the samples belonging to class 8 that were used
in the non-IID data scenarios, with white bars for D1 and gray bars for D3. The intensities 0 and
255 correspond to black and white pixels, respectively.



Mathematics 2023, 11, 4610 12 of 20

5.2. Federated Learning Settings and Experiment Design

The concept of federated learning requires distributing data among all active clients for
local training. As presented in Figure 5, this paper proposes using both IID data (scenarios
1 and 2 applied for D1 or D2) and non-IID data (scenario 3 applied for D1 ∪ D3). These
set-ups are close to real-life scenarios and permit an extensive analysis of FL approaches.

The number of clients always active was set at C = 10, and the analysis was carried
out for R = 10 communication rounds, which could illustrate the convergence of the FL
process. For several testing scenarios, some less effective clients were simulated to analyze
their impact on aggregation. These clients could correspond to intruders or nodes with
unsuccessful local training. They were configured only in the first round by disturbing
the initial parameters received from the server with additive Gaussian noise of a mean 0
and spread 0.5. During the remaining communication rounds, other disturbances were not
considered, as the goal was to analyze how fast the system could recover when dealing
with intruders or underperforming local models.

As mentioned before, the local and global models were MLPs. This type of nonlinear
model was configured with many neural parameters to offer relevant support for our analysis.
The nonlinear neural network thus included three layers with 100, 40, and 10 perceptrons.
The first two layers used the ReLU activation function, which facilitates proper learning by
reducing the risk of the gradient disappearing. The outputs of the last layer were processed by
the softmax function to compute the probabilities associated with all 10 classes. In the case of
FedLasso, the outputs of this layer correspond to the term (zj

n,i)
∗ from (12).

The local models were trained using the SGD method, which is widely recommended
for MLPs and was also adopted by FedAvg and FedAvgM. All active clients used the same
configuration of the training procedure (i.e., they worked with the learning rate η j = 0.01,
the same number of epochs Ej = 5 for each communication round, and a mini-batch of
32 samples, where j ∈ {1, . . . , 10}). To reduce the impact of the model update obtained
at r = 0 (which was likely affected by the negative clients), FedAvgM was configured for
β = 0.0001. Additional results will be provided in the ablation study. Accuracy was used
to evaluate the quality of the local models, and during all communication rounds, accuracy
was also used to monitor the global model performance. Due to the stochastic nature of
learning, each scenario was run 5 independent times, and the resulting mean values were
considered for the analysis. The experiments were performed on the proposed methods
using Jupyter Notebook, an interactive web-based computing environment, and the Google
TensorFlow framework for machine learning.

Figure 5. The distribution of local training data sets for the testing scenarios. The percentage of
samples used for each client is marked in regular black text for D1 or D2 and in italic red text for D3.
The intruders are highlighted in gray.



Mathematics 2023, 11, 4610 13 of 20

5.3. Results Analysis

The experimental results are presented in this section to compare our proposed meth-
ods (FedAcc, FedAccSize, and FedLasso) with established algorithms from the literature
(FedAvg and FedAvgM). As previously mentioned, all aggregation methods were exam-
ined using the same environment settings for each considered test scenario (the same
distribution of data to clients, the same model architecture, etc.).

The results obtained for scenario 1 are illustrated in Figure 6 for the D1 data set and in
Figure 7 for the D2 data set. In addition, details from the first two communication rounds
are provided in Figure 8. This scenario distributed the same amount of training data to
the clients, which means that there was no difference between FedAcc and FedAccSize.
Some clients were disturbed at the beginning of the first round of communication. They
were considered negative because they could deteriorate the performance of FL. The goal
of this scenario was to illustrate the influence of the negative clients on the aggregation step
(Figures 6b and 7b, scenario 1.2:2 negative clients; Figures 6c and 7c, scenario 1.3:4 negative
clients; Figures 6d and 7d, scenario 1.4:8 negative clients). When no negative clients were
simulated, the differences between these methods were marginal, as can be observed in
Figures 6a and 7a, scenario 1.1 (0 negative clients). As expected, the advantages of FedAcc
and FedLasso became visible when some negative clients were simulated. FedAvg and
FedAvgM assigned the same weights to all the clients irrespective of their quality, as all the
local training data sets had the same sizes. Having no mechanism to detect the negative
clients, these algorithms produced a worse global model in the first communication round,
and the damage was propagated to all clients in the subsequent rounds, thus making the
recovery process longer, as shown in Figures 6 and 7. The experimental results also showed
small variations between the performances of FedAvg and FedAvgM. The differences were
larger when numerous negative clients were simulated because the momentum technique
of FedAvgM propagated the disturbed global model update from the first communication
round through the whole learning process.

On the contrary, FedAcc and FedLasso assigned different degrees of confidence to the
clients and had the ability to ignore the deteriorated models, as shown in Figure 8. This
translated into a more reliable aggregation. As a result, when the negative clients were not
majoritarian, FedAcc and FedLasso offered proper protection and did not disturb the global
model produced in the first round. In all cases, they recovered much faster than FedAvg
and FedAvgM. The differences between FedAcc and FedLasso became visible for D1 when
eight negative clients were simulated (Figure 6d). In this case, the regularization techniques
integrated into FedLasso ensured a more effective aggregation. However, both algorithms
showed an improved ability to deal with negative clients, even when these clients were in
the majority. Stronger protection could be obtained by increasing the threshold indicated
for the intermediary coefficients in Equations (6), (7) and (11), but imposing too strict of
restrictions for the models accepted for aggregation was not beneficial for the transfer
of knowledge requested in FL. For all the other configurations, the differences between
FedAcc and FedLasso were minor (e.g., Figure 7d). Some details about the results obtained
in the first two rounds are presented in Figure 8. They show the ability of FedAcc and
FedLasso to avoid the use of less effective local models and assign larger weights to the
most accurate local models. However, due to model nonlinearity, all algorithms had the
risk of producing a global model much worse than the local ones. The effect was more
visible in the first round when large local updates were obtained.

Scenario 2 shows the case where the IID data were unequally distributed to clients,
and half of the clients were negative (Figure 9). This scenario can illustrate the difference
between FedAcc and FedAccSize, which in this case computed distinct weights (Figure 10).
Unlike FedAcc, FedAccSize also takes into account the size of the local training data set
to favor the clients engaged in a difficult but useful learning task. However, Figure 9
shows that there were no significant differences between FedAcc and FedAccSize. This
result indicates that accuracy is the most influential factor for FedAccSize and suggests
that proper exploitation of model quality could be the key to reliable aggregation. As in



Mathematics 2023, 11, 4610 14 of 20

the previous scenario, FedAvg and FedAvgM were vulnerable to negative clients, which
translated into an important degradation of the global model in the first communication
round. As a consequence, the recovery process was much slower for these two methods.
This aspect is also exemplified in Figure 10, which shows that in the first communication
round, FedAcc, FedAccSize, and FedLasso assigned null weights to all negative clients, thus
making it possible to perform the aggregation without being affected by these disturbances.
This exemplification also shows that FedAcc, FedAccSize, and FedLasso were able to assign
large weights to performing clients, which helped aggregate an accurate global model.
Compared to FedAcc, FedAccSize offers larger weights for the clients working with larger
training data sets (j = 6 and j = 7). For FedLasso, the relevance of the clients results from
the Lasso regression, and this implicitly involves decreasing the weights of some clients
detected as redundant (e.g., for r = 0, clients j = 9 vs. j = 7, or for r = 1, clients j = 6 vs.
j = 7).

Figure 6. Experimental results for scenario 1 using the D1 data set: (a) scenario 1.1, 0 negative
clients; (b) scenario 1.2, 2 negative clients; (c) scenario 1.3, 4 negative clients; and (d) scenario 1.4,
8 negative clients.

Figure 7. Experimental results: scenario 1 using the D2 data set: (a) scenario 1.1, 0 negative
clients; (b) scenario 1.2, 2 negative clients; (c) scenario 1.3, 4 negative clients; and (d) scenario
1.4, 8 negative clients.



Mathematics 2023, 11, 4610 15 of 20

Figure 8. Details about the first two communication rounds for testing scenario 1.4. For each client,
the training samples were from D1. The negative clients have been highlighted in gray.

Figure 9. Experimental results for scenario 2 using 5 negative clients and samples from the (a) D1

data set and (b) D2 data set.

Figure 10. Details about the first two communication rounds for testing scenario 2. For each client,
the training data were from D1. The negative clients are highlighted in gray.

The last testing scenario (scenario 3) included non-IID data. To ensure that the clients
were exposed to different distributions of data, some clients worked only with samples from
D1, some clients used only samples from D3, and the rest had samples from D1 ∪ D3. Half
of the clients were simulated as negative. All the local training data sets had the same size
to highlight the influence of data distribution on the federated learning process. According
to this setting, FedAcc and FedAccSize are similar. The experiments show that D1 was
easier to learn, and models devoted only to this data set achieved better performance from
early communication rounds. The explanation is related to the increased redundancy of
features related to D3, caused by the fact that the samples included many irrelevant black
pixels (Figure 4). As a consequence, for FedAcc and FedLasso, there was the risk of treating
the models configured with respect to D3 or D1 ∪ D3 as less adapted. If the influence of



Mathematics 2023, 11, 4610 16 of 20

these models was decreased during the aggregation stage, then the global model could not
integrate enough data, and its generalization capacity was affected. To highlight this aspect,
the validation data set was formed with samples from D1 (Figure 11a) or with samples from
D1 ∪ D3 (Figure 11b). The first case hid the above-mentioned problem because the local
models were not verified for any sample from D3. The clients using training samples from
D3 or D1∪D3 provided less accurate models in the first communication rounds, but without
having any indication of their enhanced generalization capability, these models were just
processed as performing worse. On the other hand, a validation data set from D1 ∪ D3
could illustrate that the clients working with samples from a single data set (D1 or D3)
offered worse results for the validation samples from the other data set. The difficulties
in learning D3 affected the accuracy of the global model in the first few rounds, as shown
in Figure 11a versus Figure 11b. According to Figure 11, FedLasso is less vulnerable to
these issues than FedAcc. It seems that the redundancy analysis implicitly performed by
FedLasso increased the impact of appropriate local models (Figure 12), which improved
the global performance. As in previous scenarios, aggregation methods based on accuracy
ensured faster and more reliable training than FedAvg or FedAvgM.

Figure 11. Experimental results for scenario 3 using 5 negative clients and training samples from D1

or D3: (a) accuracy computed using only validation samples from D1 and (b) accuracy computed
using validation samples from D1 ∪ D3 data.

Figure 12. Details about the first two communication rounds for testing scenario 3. For each client,
the training samples were from D1 or D3. The accuracy was computed for samples collected from
D1 ∪ D3. The negative clients are highlighted in gray.

As shown in Figures 6, 7 and 9 (scenarios with IID data), and Figure 11 (scenarios
with non-IID data), the aggregation based on accuracy (FedAccc and FedAccSize) and
aggregation based on Lasso regularization (FedLasso) increased the efficiency of training.
Compared with FedAvg and FedAvgM, more accurate models were obtained after a smaller
number of communication rounds. This effect was more visible when some negative clients
were simulated. The explanation stays in the fact that the methods proposed in this paper
use a mechanism to detect negative clients and exclude these clients from aggregation,
which reduces the additional effort needed for model training, contrary to FedAvg and



Mathematics 2023, 11, 4610 17 of 20

FedAvgM. In addition, accepted client models are weighted based on their performance,
and the differences between FedAccc, FedAccSize, and FedLasso result from how these
weights are computed.

5.4. Ablation Study

The ablation study highlights some important aspects related to the design of FedLasso.
The experiments were designed to outline the role of the main steps of the algorithm and
possible issues that may arise during FedLasso development. To illustrate the role of the
accuracy-based protection mechanism, FedLasso-1 was configured without protection by
using all active clients in Equation (10) irrespective of their accuracy (i.e., S̃r = Sr). Figure 13
shows that the protection mechanism had an important impact on FedLasso (FedLasso
vs. FedLasso-1). All algorithms with accuracy-based protection ensured a faster recovery
than algorithms that accepted all local models with non-null weights. This protection
becomes quite important for FedLasso because less-adapted models can be detected as
being different from the others and associated with high absolute value Lasso coefficients.

In addition, FedLasso-2 was configured with protection but for other covariates than
those in the case of FedLasso. For FedLasso-2, the optimization problem in Equation (10)
was defined using the probabilities predicted by each client for the target class:

xj
n = (zj

n,q)
∗, (14)

where q ∈ {1, . . . , Q} specifies the target class of the nth sample and (zj
n,q)
∗ is the output

provided by the softmax layer of the client j for the target class q, considering the nth
sample. This configuration allows exploiting detailed information from each client, but as
mentioned before, it can generate numerical problems for large or imbalanced data sets. As
indicated in Figure 13, the differences between FedLasso and FedLasso-2 were minor. This
shows that the covariates proposed in Equation (13) are relevant, even though they have a
much smaller size than the covariates in Equation (14). Hence, Lasso regression could be
used with the proposed dimensionality reduction.

Figure 13. Experimental results for scenario 3 using different configurations of FedLasso. The table
contains the average accuracy obtained by 5 independent trials at each communication round using
validation samples from D1 ∪ D3.

The last part of the ablation study illustrates the performances of FedLasso working
with different values of α using scenario 1.4, which involved majoritarian intruded clients
in the first communication round. The values of α were kept small to reduce the influence of
the first global model update to the subsequent communication rounds. This configuration
was taken into account because this first update was likely to be affected by negative clients
who were in the majority. In this context, the variation in α had a reduced impact, as shown
in Figure 14. The configuration highlighted in bold, which offered the best results, was
adopted for all the other previously presented tests.



Mathematics 2023, 11, 4610 18 of 20

Figure 14. Experimental results for FedLasso obtained with different values for α using sce-
nario 1.4. The table contains the average accuracy at each communication round, resulting in
5 independent trials.

6. Conclusions

This paper discusses FL methods that can offer reliable aggregation based on evalu-
ation of the quality of local models. Aggregation was performed at the parameter level
without modifying the structure of the resulting global model. Our comparative analysis
included two algorithms—FedAcc and FedAccSize—that use the accuracy of the local
models to exclude the worse-performing clients from the aggregation and establish weights
for the accepted ones. As an extension, FedLasso considers Lasso regression with respect
to the outputs of the local models to compute refined weights. In the case of classification
problems, Lasso regression is proposed for covariates of a reduced dimension to avoid the
numerical problems that can arise for imbalanced and large data sets.

The experimental investigations performed with IID and non-IID data validated
that the proposed aggregation techniques were able to provide a more robust and faster
improvement of the global model in comparison with two well-known algorithms, FedAvg
and FedAvgM. The results highlight the importance of assessing the quality of local models.
A key component is the protection mechanism, which permits rejecting potential intruders
and worse-performing clients. The comparison between FedAcc and FedAccSize showed
that the promotion of clients working with larger data sets is advisable, but the mechanisms
exploiting the quality of the models could be more influential. FedLasso integrates an
implicit refined analysis of data redundancy, but this can also favor the aggregation of
dissimilar less-adapted local models. In this context, the protection mechanism becomes
essential for excluding unnecessary models.

The experiments validate that the proposed algorithms (FedAcc, FedAccSize, and
FedLasso) are suitable for any practical applications that use sensitive user information to
provide safer model fusion and faster training. This analysis highlights the importance
of local model performance evaluation for the diagnosis of potential issues related to
local designs or cyber-attacks and shows that aggregation can be appropriately performed
without isolating the anomalies. Future work will extend the analysis to other testing
scenarios and will investigate new aggregation mechanisms that exploit the quality of
local models.

Author Contributions: Conceptualization, I.B., L.F. and C.P.; methodology, I.B., L.F. and C.P.; soft-
ware, I.B. and L.F.; validation, I.B., L.F., C.P. and C.-F.C.; formal analysis, I.B., L.F. and C.P.; inves-
tigation, I.B. and L.F.; resources, I.B. and L.F.; data curation, I.B. and L.F.; writing—original draft
preparation, I.B.; writing—review and editing, I.B., L.F., C.P. and C.-F.C.; visualization, I.B., L.F. and
C.P.; supervision, L.F., C.P. and C.-F.C.; project administration, C.-F.C.; funding acquisition, C.-F.C.
All authors have read and agreed to the published version of the manuscript.

Funding: Part of this research was supported by the project “Collaborative environment for develop-
ing OpenStack-based cloud architectures with applications in RTI” SMIS 124998 from The European
Regional Development Fund through the Competitiveness Operational Program 2014–2020, priority
axis 1: Research, technological development and innovation (RTI)—the POC/398/1/1 program.



Mathematics 2023, 11, 4610 19 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

2. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtarik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving
Communication Efficiency. In Proceedings of the NIPS Workshop on Private Multi-Party Machine Learning, Barcelona, Spain,
9 December 2016.

3. Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on federated learning: Challenges and applications. Int. J. Mach.
Learn. Cybern. 2023, 14, 513–535. [PubMed]

4. Chen, Y.; Qin, X.; Wang, J.; Yu, C.; Gao, W. Fedhealth: A federated transfer learning framework for wearable healthcare. IEEE
Intell. Syst. 2020, 35, 83–93. [CrossRef]

5. Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [PubMed]

6. Yang, T.; Andrew, G.; Eichner, H.; Sun, H.; Li, W.; Kong, N.; Ramage, D.; Beaufays, F. Applied federated learning: Improving
google keyboard query suggestions. arXiv 2018, arXiv:1812.02903.

7. Li, Y.; Tao, X.; Zhang, X.; Liu, J.; Xu, J. Privacy-preserved federated learning for autonomous driving. IEEE Trans. Intell. Transp.
Syst. 2021, 23, 8423–8434. [CrossRef]

8. Wasilewska, M.; Bogucka, H.; Poor, H.V. Secure Federated Learning for Cognitive Radio Sensing. IEEE Commun. Mag. 2023,
61, 68–73.

9. Barbieri, L.; Savazzi, S.; Brambilla, M.; Nicoli, M. Decentralized federated learning for extended sensing in 6G connected vehicles.
Veh. Commun. 2022, 33, 100396. [CrossRef]

10. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol.
(TIST) 2019, 10, 1–19.

11. Feng, C.; Liu, B.; Yu, K.; Goudos, S.K.; Wan, S. Blockchain-empowered decentralized horizontal federated learning for 5G-enabled
UAVs. IEEE Trans. Ind. Inform. 2021, 18, 3582–3592. [CrossRef]

12. Wei, K.; Li, J.; Ma, C.; Ding, M.; Wei, S.; Wu, F.; Chen, G.; Ranbaduge, T. Vertical Federated Learning: Challenges, Methodologies
and Experiments. arXiv 2022, arXiv:2202.04309.

13. Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [CrossRef]
14. Yuan, L.; Sun, L.; Yu, P.S.; Wang, Z. Decentralized Federated Learning: A Survey and Perspective. arXiv 2023, arXiv:2306.01603.
15. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc.

Mach. Learn. Syst. 2020, 2, 429–450.
16. Zhou, Z.; Sun, F.; Chen, X.; Zhang, D.; Han, T.; Lan, P. A Decentralized Federated Learning Based on Node Selection and

Knowledge Distillation. Mathematics 2023, 11, 3162. [CrossRef]
17. Rodríguez-Barroso, N.; Jiménez-López, D.; Luzón, M.V.; Herrera, F.; Martínez-Cámara, E. Survey on federated learning threats:

Concepts, taxonomy on attacks and defences, experimental study and challenges. Inf. Fusion 2023, 90, 148–173. [CrossRef]
18. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl.-Based Syst. 2021, 216, 106775. [CrossRef]
19. Mu, X.; Shen, Y.; Cheng, K.; Geng, X.; Fu, J.; Zhang, T.; Zhang, Z. Fedproc: Prototypical contrastive federated learning on non-iid

data. Future Gener. Comput. Syst. 2023, 143, 93–104. [CrossRef]
20. Park, J.; Yoon, D.; Yeo, S.; Oh, S. AMBLE: Adjusting mini-batch and local epoch for federated learning with heterogeneous

devices. J. Parallel Distrib. Comput. 2022, 170, 13–23. [CrossRef]
21. Zhu, C.; Zhang, J.; Sun, X.; Chen, B.; Meng, W. ADFL: Defending Backdoor Attacks in Federated Learning via Adversarial

Distillation. Comput. Secur. 2023, 132, 103366. [CrossRef]
22. Li, A.; Sun, J.; Zeng, X.; Zhang, M.; Li, H.; Chen, Y. Fedmask: Joint computation and communication-efficient personalized

federated learning via heterogeneous masking. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor
Systems, Coimbra, Portugal, 15–17 November 2021; pp. 42–55.

23. Wu, J.; Wang, Y.; Shen, Z.; Liu, L. Adaptive client and communication optimizations in Federated Learning. Inf. Syst. 2023,
116, 102226. [CrossRef]

24. Ma, C.; Li, J.; Ding, M.; Yang, H.H.; Shu, F.; Quek, T.Q.; Poor, H.V. On safeguarding privacy and security in the framework of
federated learning. IEEE Netw. 2020, 34, 242–248. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/36407495
http://doi.org/10.1109/MIS.2020.2988604
http://www.ncbi.nlm.nih.gov/pubmed/33015372
http://dx.doi.org/10.1109/TITS.2021.3081560
http://dx.doi.org/10.1016/j.vehcom.2021.100396
http://dx.doi.org/10.1109/TII.2021.3116132
http://dx.doi.org/10.1016/j.cie.2020.106854
http://dx.doi.org/10.3390/math11143162
http://dx.doi.org/10.1016/j.inffus.2022.09.011
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1016/j.future.2023.01.019
http://dx.doi.org/10.1016/j.jpdc.2022.07.009
http://dx.doi.org/10.1016/j.cose.2023.103366
http://dx.doi.org/10.1016/j.is.2023.102226
http://dx.doi.org/10.1109/MNET.001.1900506


Mathematics 2023, 11, 4610 20 of 20

25. Bejenar, I.; Ferariu, L.; Pascal, C.; Caruntu, C.F. FedAcc and FedAccSize: Aggregation Methods for Federated Learning
Applications. In Proceedings of the 2023 31st Mediterranean Conference on Control and Automation (MED), IEEE, Limassol,
Cyprus, 26–29 June 2023; pp. 593–598.

26. Hsu, H.; Qi, H.; Brown, M. Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification. arXiv
2019, arXiv:1909.06335.

27. Guo, J.; Liu, Z.; Tian, S.; Huang, F.; Jiaxing Li, X.L.; Igorevich, K.K.; Ma, J. TFL-DT: A Trust Evaluation Scheme for Federated
Learning in Digital Twin for Mobile Networks. IEEE J. Sel. Areas Commun. 2023, 41, 3548–3560. . [CrossRef]

28. Pasquier, T.F.J.M.; Singh, D.E.J.; Bacon, J. CamFlow: Managed Data-sharing for Cloud Services. IEEE Trans. Cloud Comput. 2023,
5, 472–484. [CrossRef]

29. Stergiou, C.L.; Psannis, K.E.; Gupta, B.B. InFeMo: Flexible Big Data management through a federated Cloud system. ACM Trans.
Internet Technol. 2021, 22, 1–22. [CrossRef]

30. Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; Khazaeni, Y. Federated learning with matched averaging. arXiv 2020,
arXiv:2002.06440.

31. Palihawadana, C.; Wiratunga, N.; Wijekoon, A.; Kalutarage, H. FedSim: Similarity guided model aggregation for Federated
Learning. Neurocomputing 2022, 483, 432–445. [CrossRef]

32. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, PMLR, Online, 26–28 August 2020; pp. 2938–2948.

33. Rodríguez-Barroso, N.; Martínez-Cámara, E.; Luzón, M.V.; Herrera, F. Dynamic defense against byzantine poisoning attacks in
federated learning. Future Gener. Comput. Syst. 2022, 133, 1–9. [CrossRef]

34. Yurochkin, M.; Agarwal, M.; Ghosh, S.; Greenewald, K.; Hoang, N.; Khazaeni, Y. Bayesian nonparametric federated learning
of neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA,
9–15 June 2019; pp. 7252–7261.

35. Chen, H.Y.; Chao, W.L. Fedbe: Making bayesian model ensemble applicable to federated learning. arXiv 2020, arXiv:2009.01974.
36. Czajkowski, M.; Jurczuk, K.; Kretowski, M. Steering the interpretability of decision trees using lasso regression-an evolutionary

perspective. Inf. Sci. 2023, 638, 118944. [CrossRef]
37. Fan, Y.; Tao, B.; Zheng, Y.; Jang, S.S. A data-driven soft sensor based on multilayer perceptron neural network with a double

LASSO approach. IEEE Trans. Instrum. Meas. 2019, 69, 3972–3979. [CrossRef]
38. Coelho, F.; Costa, M.; Verleysen, M.; Braga, A.P. LASSO multi-objective learning algorithm for feature selection. Soft Comput.

2020, 24, 13209–13217. [CrossRef]
39. Kashima, T.; Kishida, I.; Amma, A.; Nakayama, H. Server Aggregation as Linear Regression: Reformulation for Federated

Learning. 2022. Available online: https://openreview.net/pdf?id=kV0cA81Vau (accessed on 30 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

.
http://dx.doi.org/10.1109/JSAC.2023.3310094
http://dx.doi.org/10.1109/TCC.2015.2489211
http://dx.doi.org/10.1145/3426972
http://dx.doi.org/10.1016/j.neucom.2021.08.141
http://dx.doi.org/10.1016/j.future.2022.03.003
http://dx.doi.org/10.1016/j.ins.2023.118944
http://dx.doi.org/10.1109/TIM.2019.2947126
http://dx.doi.org/10.1007/s00500-020-04734-w
https://openreview.net/pdf?id=kV0cA81Vau

	Introduction
	Related Works
	Aggregation of Local Models in Federated Learning
	Aggregation Based on Local Models' Quality Assessment
	Examination of FedAcc and FedAccSize
	Description of FedLasso

	Experimental Design and Illustrative Results
	Data Sets Used for Experimental Investigations
	Federated Learning Settings and Experiment Design
	Results Analysis
	Ablation Study

	Conclusions
	References

