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Abstract: This paper is focused on energy decay rates for the viscoelastic wave equation that in-
cludes nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic boundary
conditions. We derive general decay rate results without requiring the condition a2 > 0 and without
imposing any restrictive growth assumption on the damping term f1, using the multiplier method
and some properties of the convex functions. Here we investigate the relaxation function ψ, namely
ψ′(t) ≤ −µ(t)G(ψ(t)), where G is a convex and increasing function near the origin, and µ is a
positive nonincreasing function. Moreover, the energy decay rates depend on the functions µ and G,
as well as the function F defined by f0, which characterizes the growth behavior of f1 at the origin.
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1. Introduction

In this paper, we study the energy decay rates for the viscoelastic wave equation
with nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic
boundary conditions

utt(x, t)− ∆u(x, t) +
∫ t

0
ψ(t− s)∆u(x, s)ds = 0, in Ω× (0, ∞), (1)

u(x, t) = 0, on Γ0 × (0, ∞), (2)
∂u
∂ν

(x, t)−
∫ t

0
ψ(t− s)

∂u
∂ν

(x, s)ds + a1 f1(ut(x, t)) + a2 f2(ut(x, t− $(t)))

= wt(x, t), on Γ1 × (0, ∞), (3)

ut(x, t) + h(x)wt(x, t) + m(x)w(x, t) = 0, on Γ1 × (0, ∞), (4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (5)

ut(x, t) = j0(x, t), in Γ1 × (−$(0), 0), (6)

where Ω is a bounded domain in Rn(n ≥ 1) with smooth boundary Γ of class C2;
Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed and disjoint; w(x, t) is the normal displacement into
the domain of a point x ∈ Γ1 at time t; and h, m : Γ1 → R are essential bounded functions
that represent resistivity and spring constant per unit area, respectively. f1, f2 : R → R
are given functions, and f1 represents the nonlinear frictional damping. a1, a2 are real
numbers with a1 > 0, a2 6= 0. The integral term is the memory responsible for the viscoelas-
tic damping. The functions ψ and $(t) represent the kernel of the memory term and the
time-varying delay, respectively. ν is the outward unit normal vector to Γ. The initial data
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(u0, u1, j0) belong to a suitable space. Boundary conditions (3) and (4) are called acoustic
boundary conditions.

In the past decades, the non-delayed wave equation with a viscoelastic term has
garnered significant attention in the field of partial differential equations. Research on
the energy decay rate of the solution to the viscoelastic wave equation is vital in various
fields, contributing to technological advancements, safety assurance, environmental pro-
tection, energy efficiency, and academic exploration. The stability of solutions for such
equations has recently been studied by many authors (see [1–3] and references therein).
When a1 = a2 = 0, models (1)–(5) are pertinent to noise control and suppression in
practical applications. The noise propagates through some acoustic medium, like air, in
a room that is defined by a bounded domain Ω and whose floor, walls, and ceiling are
determined by the boundary conditions [4,5]. Under the conditions that

∫ ∞
0 ψ(s)ds < 1

2 and
ψ′(t) ≤ −µ(t)ψ(t), for t ≥ 0, Park and Park [6] considered the general decay for
problems (1)–(5). Liu [7] improved the research of [6] by achieving arbitrary rates of
decay, which may not necessarily be an exponential or a polynomial one. Recently, Yoon
et al. [8] generalized the work of [6,7] without the assumption condition

∫ ∞
0 ψ(s)ds < 1

2 .
The assumption on relaxation function ψ has been weakened compared to the conditions
assumed in previous literature [6,7].

Numerous phenomena are influenced by both the current state and the previous
occurrences of the system. There has been a notable increase in the research on the equation
with delay effects, which frequently arise in various physical, biological, chemical, medical,
and economic problems [9–11]. However, the delay effects can generally be considered a
cause of instability. In order to stabilize a system containing delay terms, additional control
terms will be necessary. Kirane and Said-Houari [12] showed the global existence and
asymptotic stability for the following wave equation with memory and constant delay,

utt(x, t)− ∆u(x, t) +
∫ t

0
ψ(t− s)∆u(x, s)ds + a1ut(x, t) + a2ut(x, t− $) = 0,

where a1, a2, and $ are positive constants. They used the damping term a1ut(x, t) to control
the delay term in obtaining the decay estimate of the energy. They proved that its energy
was exponentially decaying when a2 ≤ a1. Dai and Yang [13] investigated the exponential
decay of an unsolved problem proposed by Kirane and Said-Houari [12], namely, the
problem with a1 = 0. In the case of constant weight and constant delay, the delay term
typically considers the past history of strain, only up to some finite time $(t) ≡ $. Nicaise
and Pignotti [14] investigated the following wave equation with internal time-varying
delay instead of constant delay,

utt(x, t)− ∆u(x, t) + a1ut(x, t) + a2ut(x, t− $(t)) = 0,

where $(t) > 0, a1, and a2 are real numbers with a1 > 0. They proved the exponential
stability result for the wave equation under the condition |a2| <

√
1− ζ0 a1, where the

constant ζ0 satisfies $′(t) ≤ ζ0 < 1, ∀t > 0. Liu [15] studied the following wave equation
involving memory and time-varying delay:

utt(x, t)− ∆u(x, t) + α(t)
∫ t

0
ψ(t− s)∆u(x, s)ds + a1ut(x, t) + a2ut(x, t− $(t)) = 0.

Systems with time-varying delays have been extensively considered by many authors
(see [16–22] and references therein). Recently, Zennir [23] considered the stability for
solutions of plate equations with a time-varying delay and weak viscoelasticity in Rn.
Moreover, Benaissa et al. [24] proved the global existence and stability for solutions of the
following wave equation with a time-varying delay in the weakly nonlinear feedback,

utt(x, t)− ∆u(x, t) + a1σ(t) f1(ut(x, t)) + a2σ(t) f2(ut(x, t− $(t))) = 0,
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where $(t) > 0, a1, and a2 are positive real numbers, and f1, f2 satisfy some conditions.
This result extended the previous work [10,14]. Park [25] investigated the decay result of
the energy for a von Karman equation with time-varying delay by dropping the restriction
a2 > 0 under the same conditions as $, f1, and f2 in [24]. For the viscoelastic problem
with time-varying delay in the nonlinear internal or boundary feedback, we also refer
to [26,27]. As far as we know, there are few results for the viscoelastic wave equation with a
nonlinear time-varying delay. Recently, Djeradi et al. [28] and Mukiawa et al. [29] showed
the stability of the thermoelastic laminated beam and thermoelastic Timoshenko beam with
nonlinear time-varying delay, respectively. The papers introduced so far have studied the
energy decay rate of the solution for the equation with nonlinear time-varying delay in the
Dirichlet boundary condition.

Motivated by these results, we study the general decay rates of the solution for
problems (1)–(6) with a nonlinear time-varying delay term, nonlinear damping at the
boundary, and acoustic boundary conditions. Research on the energy decay rate of solutions
for the viscoelastic wave equation with nonlinear time-delay terms plays a critical role in
various application areas, including stability assessment, understanding complex behaviors,
advancing neuroscience, disaster preparedness, and improving energy efficiency. We
consider the general assumption on the relaxation function ψ,

ψ′(t) ≤ −µ(t)G(ψ(t)), (7)

where µ : R+ → R+ is a positive nonincreasing function, and G is linear or is a strictly
increasing and strictly convex function. We derive the general decay rate results without
requiring the condition a2 > 0 and without imposing any restrictive growth assumption
on the damping term f1. The energy decay rates depend on the functions µ and G, as well
as the function F defined by f0, which represents the growth f1 at the origin. Our result
improves upon previous work [6–8].

This paper is composed of the following. In Section 2, we prepare some notations and
materials needed for our work. In Section 3, we introduce some technical lemmas to prove
our stability result. In Section 4, we state and prove the general energy decay.

2. Preliminaries

In this section, we present some materials required for our results. Throughout this
paper, we use the notation

V = {u ∈ H1(Ω) : u = 0 on Γ0}.

For simplicity, we denote ‖ · ‖L2(Ω) and ‖ · ‖L2(Γ1)
by ‖ · ‖ and ‖ · ‖Γ1 , respectively.

The Poincaré inequality holds in V; that is, there exist the positive constants λ0 and λ1
such that

‖u‖2 ≤ λ0‖∇u‖2 and ‖u‖2
Γ1
≤ λ1‖∇u‖2 for all u ∈ V. (8)

As in [1,3,8,26,30], we consider the following assumptions for ψ, f1, f2, $, h, and m.
(H1) ψ : [0, ∞)→ R+ is a differentiable function satisfying

1−
∫ ∞

0
ψ(s)ds = l > 0, (9)

and there exists a C1 function G : R+ → R+ that is linear or is a strictly convex and strictly
increasing C2 function on (0, r0], r0 ≤ ψ(0) such that

ψ′(t) ≤ −µ(t)G(ψ(t)), ∀t ≥ 0, (10)

where G(0) = G′(0) = 0, and µ is a positive nonincreasing differentiable function. The
function G was first introduced in [31]. These are weaker conditions on G than those
introduced in [31].
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(H2) f1 : R→ R is a nondecreasing C0 function such that there exists a strictly increasing
function f0 ∈ C1(R+), with f0(0) = 0, and positive constants c0, c1, and ε such that

f0(|s|) ≤ | f1(s)| ≤ f−1
0 (|s|) for all |s| ≤ ε, (11)

c0|s| ≤ | f1(s)| ≤ c1|s| for all |s| ≥ ε. (12)

Moreover, we assume that the function F, defined by F(s) =
√

s f0(
√

s), is a strictly
convex C2 function on (0, r1], for some r1 > 0, when f0 is nonlinear.
(H3) f2 : R→ R is an odd nondecreasing C1 function such that there exist positive constants
c2, c3, and c4 that satisfy

| f ′2(s)| ≤ c2, c3s f2(s) ≤ F2(s) ≤ c4s f1(s), for s ∈ R, (13)

where F2(s) =
∫ s

0 f2(t)dt.
(H4) $ ∈W2,∞([0, T]) is a function such that

0 < $1 ≤ $(t) ≤ $2 and $′(t) ≤ $3 < 1 for all t > 0, (14)

where T, $1, and $2 are positive constants. Moreover, the weight of dissipation and the
delay satisfy

0 < |a2| <
c3(1− $3)

c4(1− c3$3)
a1. (15)

(H5) We assume that h, m ∈ C(Γ1), h(x) > 0, and m(x) > 0 for all x ∈ Γ1. Then, there exist
positive constants hi and mi(i = 1, 2) such that

h1 ≤ h(x) ≤ h2, m1 ≤ m(x) ≤ m2 for all x ∈ Γ1. (16)

Remark 1. 1. The assumption (H2) implies that s f1(s) > 0, for all s 6= 0.
2. The assumption (11) of function f1 has been weakened compared to the condition assumed
in [24,25].
3. Since f2 is an odd nondecreasing function, F2 is an even and convex function. Furthermore, it is
satisfied that F2(s) =

∫ s
0 f2(t)dt ≤ s f2(s). From (13), we find that c3 ≤ 1.

Remark 2 ([3]). 1. By (H1), we obtain lim
t→+∞

ψ(t) = 0. Then, there exists t0 ≥ 0 large enough that

ψ(t0) = r0 ⇒ ψ(t) ≤ r0, ∀t ≥ t0. (17)

Given ψ and µ are positive nonincreasing continuous functions, G is a positive continuous
function, and for (10), we have, for some positive constant c5,

ψ′(t) ≤ −µ(t)G(ψ(t)) ≤ −c5ψ(t), ∀t ∈ [0, t0]. (18)

2. If G is a strictly convex and strictly increasing C2 function on (0, r0], with G(0) = G′(0) = 0,
then it has an extension G, which is a strictly convex and strictly increasing C2 function on (0, ∞).
The same remark can be established for F.

We recall the well-known Jensen inequality, which plays a pivotal role in proving our
main result. If φ is a convex function on [a, b], p : Ω → [a, b] and k represents integrable
functions on Ω such that k(x) ≥ 0 and

∫
Ω k(x)dx = k0 > 0, then Jensen’s inequality holds:

φ

[
1
k0

∫
Ω

p(x)k(x)dx
]
≤ 1

k0

∫
Ω

φ[p(x)]k(x)dx. (19)
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Let H∗ be the conjugate of the convex function H defined by H∗(s) = sup
r≥0

(sr− H(r)),

then
sr ≤ H∗(s) + H(r), ∀s, r ≥ 0. (20)

Moreover, due to the argument provided in [32], it holds that

H∗(s) = s(H′)−1(s)− H
(
(H′)−1(s)

)
, ∀s ≥ 0. (21)

As in [10,14], we introduce the following new function:

v(x, κ, t) = ut(x, t− κ$(t)), for (x, κ, t) ∈ Γ1 × (0, 1)× (0, ∞).

Then, problems (1)–(6) can be expressed as follows:

utt(x, t)− ∆u(x, t) +
∫ t

0
ψ(t− s)∆u(x, s)ds = 0, in Ω× (0, ∞), (22)

$(t)vt(x, κ, t) + (1− κ$′(t))vκ(x, κ, t) = 0, in Γ1 × (0, 1)× (0, ∞), (23)

u(x, t) = 0, in Γ0 × (0, ∞), (24)
∂u
∂ν

(x, t)−
∫ t

0
ψ(t− s)

∂u
∂ν

(x, s)ds + a1 f1(ut(x, t)) + a2 f2(v(x, 1, t)) = wt(x, t), on Γ1 × (0, ∞), (25)

ut(x, t) + h(x)wt(x, t) + m(x)w(x, t) = 0, on Γ1 × (0, ∞), (26)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (27)

v(x, κ, 0) = j0(x,−κ$(0)), in Γ1 × (0, 1). (28)

We state the global existence result that can be established by the arguments of [24,33].

Theorem 1. Let initial data (u0, u1) ∈ (V ∩ H2(Ω))×V and j0 ∈ L2(Γ1 × (0, 1)). Suppose
that (H1)–(H5) hold. Then, for any T > 0, there exists a unique pair of functions (u, w, v)
that are the solution to problems (22)–(28) in the class

u ∈ L∞(0, T; V ∩ H2(Ω)), ut ∈ L∞(0, T; V), utt ∈ L∞(0, T; L2(Ω)),

v ∈ L∞(0, T; L2(Γ1 × (0, 1))), w, wt ∈ L2(0, ∞; L2(Γ1)).

As in [6,25], we introduce the energy for problems (22)–(28),

E(t) =
1
2
‖ut(t)‖2 +

1
2

(
1−

∫ t

0
ψ(s)ds

)
‖∇u(t)‖2 +

1
2
(ψ ◦ ∇u)(t)

+
1
2

∫
Γ1

m(x)w2(t)dΓ +
ζ$(t)

2

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ, (29)

where

(ψ ◦ ∇u)(t) =
∫ t

0
ψ(t− s)‖∇u(t)−∇u(s)‖2ds

and

2|a2|(1− c3)

c3(1− $3)
< ζ <

2(a1 − |a2|c4)

c4
. (30)

Thanks to (15), this makes sense.
To show the main results of this paper, we need the following lemma.
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Lemma 1. Assume that (H3)–(H5) hold. Then, there exist positive constants γ0 and γ1 satisfying

E′(t) ≤ 1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 − h1||wt(t)||2Γ1

−γ0

∫
Γ1

f1(ut(t))ut(t)dΓ− γ1

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ. (31)

Proof. Multiplying by ut(t) in (22), using Green’s formula, (25), and (26), we have

1
2

d
dt

[
‖ut(t)‖2 +

(
1−

∫ t

0
ψ(s)ds

)
‖∇u(t)‖2 + (ψ ◦ ∇u)(t) +

∫
Γ1

m(x)w2(t)dΓ
]

=
1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−a1

∫
Γ1

f1(ut(t))ut(t)dΓ− a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ, (32)

where we used the relation

−
∫

Ω
∇ut(t)

∫ t

0
ψ(t− s)∇u(s)dsdx

=
d
dt

[
1
2
(ψ ◦ ∇u)(t)− 1

2

∫ t

0
ψ(s)ds‖∇u(t)‖2

]
− 1

2
(ψ′ ◦ ∇u)(t) +

1
2

ψ(t)‖∇u(t)‖2.

From (29) and (32), we have

E′(t) =
1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−a1

∫
Γ1

f1(ut(t))ut(t)dΓ− a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ

+
ζ$′(t)

2

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ +

ζ$(t)
2

∫
Γ1

∫ 1

0
f2(v(x, κ, t))vt(x, κ, t)dκdΓ, (33)

where F2(t) =
∫ t

0 f2(s)ds. In (23), we multiply by f2(v(x, κ, t)) and integrate over Γ1× (0, 1)
to obtain

ζ$(t)
2

∫
Γ1

∫ 1

0
f2(v(x, κ, t))vt(x, κ, t)dκdΓ

= − ζ

2

∫
Γ1

[
(1− $′(t))F2(v(x, 1, t))− F2(v(x, 0, t)) +

∫ 1

0
$′(t)F2(v(x, κ, t))dκ

]
dΓ.

Applying this to (33) and noting that v(x, 0, t) = ut(x, t), it follows that

E′(t) =
1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ− a1

∫
Γ1

f1(ut(t))ut(t)dΓ

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ− ζ

2

∫
Γ1

[
(1− $′(t))F2(v(x, 1, t))− F2(ut(x, t))

]
dΓ. (34)

From (13) and (14), we obtain

− ζ

2

∫
Γ1

[
(1− $′(t))F2(v(x, 1, t))− F2(ut(x, t))

]
dΓ

≤ − ζc3

2
(1− $3)

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ +
ζc4

2

∫
Γ1

f1(ut(t))ut(t)dΓ. (35)
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Substituting (35) into (34), we obtain

E′(t) ≤ 1
2
(ψ′ ◦ ∇u)(t)− 1

2
ψ(t)‖∇u(t)‖2 −

∫
Γ1

h(x)w2
t (t)dΓ

−
(

a1 −
ζc4

2

) ∫
Γ1

f1(ut(t))ut(t)dΓ− ζc3

2
(1− $3)

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ. (36)

Now, we estimate the last term in the right-hand side of (36). The definition of F2 and
(21) give

F∗2 (s) = s f−1
2 (s)− F2( f−1

2 (s)), for s ≥ 0. (37)

When f2(v(x, 1, t)) < 0 and ut(t) ≥ 0, using (20) and (37) with s = − f2(v(x, 1, t)) and
r = ut(t), we obtain (see details in [25])

a2

∫
Γ1

(− f2(v(x, 1, t)))ut(t)dΓ

≤ |a2|
∫

Γ1

(
− f2(v(x, 1, t))(−v(x, 1, t))− F2(−v(x, 1, t)) + F2(ut(t))

)
dΓ

= |a2|
∫

Γ1

(
f2(v(x, 1, t))v(x, 1, t)− F2(v(x, 1, t)) + F2(ut(t))

)
dΓ, (38)

where we used the fact that f2 is odd and F2 is even. When f2(v(x, 1, t)) ≥ 0 and ut(t) < 0,
with s = f2(v(x, 1, t)) and r = −ut(t), we obtain

a2

∫
Γ1

f2(v(x, 1, t))(−ut(t))dΓ

≤ |a2|
∫

Γ1

(
f2(v(x, 1, t))(v(x, 1, t))− F2(v(x, 1, t)) + F2(−ut(t))

)
dΓ

= |a2|
∫

Γ1

(
f2(v(x, 1, t))v(x, 1, t)− F2(v(x, 1, t)) + F2(ut(t))

)
dΓ. (39)

From (38) and (39), for the case f2(v(x, 1, t))ut(t) ≤ 0, we have

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ ≤ |a2|
∫

Γ1

(
f2(v(x, 1, t))v(x, 1, t)− F2(v(x, 1, t)) + F2(ut(t))

)
dΓ. (40)

Similarly, (40) holds when f2(v(x, 1, t))ut(t) ≥ 0. Hence, using (13) and (40), we
see that

−a2

∫
Γ1

f2(v(x, 1, t))ut(t)dΓ

≤ |a2|
(
(1− c3)

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ + c4

∫
Γ1

f1(ut(t))ut(t)dΓ
)

. (41)

By using (16), (36), and (41), and by selecting ζ satisfying (30), we obtain the desired
inequality (31) where γ0 = a1− ζc4

2 − |a2|c4 > 0 and γ1 = ζc3
2 (1− $3)− |a2|(1− c3) > 0.

3. Technical Lemmas

In this section, we prove the following lemmas to obtain the general decay rates of the
solution to problems (22)–(28).

Lemma 2. Under the assumption (H1), the functional Φ1 defined by

Φ1(t) =
∫

Ω
u(t)ut(t)dx +

∫
Γ1

u(t)w(t)dΓ +
1
2

∫
Γ1

h(x)w2(t)dΓ
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satisfies

Φ′1(t) ≤ ‖ut(t)‖2 − l
2
‖∇u(t)‖2 +

2C(ξ)
l

(i ◦ ∇u)(t) +
8λ1

l
‖wt(t)‖2

Γ1

+
a1a3

l

∫
Γ1

f 2
1 (ut(t))dΓ +

|a2|a3

l

∫
Γ1

f 2
2 (v(x, 1, t))dΓ−

∫
Γ1

m(x)w2(t)dΓ, (42)

for any 0 < ξ < 1, where

i(t) = ξψ(t)− ψ′(t) and C(ξ) =
∫ ∞

0

ψ2(s)
i(s)

ds. (43)

Proof. Using Equations (22) and (24)–(26), and utilizing (9) and Young’s inequality,
we obtain

Φ′1(t) = ‖ut(t)‖2 −
(

1−
∫ t

0
ψ(s)ds

)
‖∇u(t)‖2 +

∫ t

0
ψ(t− s)(∇u(s)−∇u(t),∇u(t))ds

−a1

∫
Γ1

f1(ut(t))u(t)dΓ− a2

∫
Γ1

f2(v(x, 1, t))u(t)dΓ + 2
∫

Γ1

u(t)wt(t)dΓ−
∫

Γ1

m(x)w2(t)dΓ

≤ ‖ut(t)‖2 − 7l
8
‖∇u(t)‖2 +

2
l

∫
Ω

( ∫ t

0
ψ(t− s)|∇u(s)−∇u(t)|ds

)2

dx

−a1

∫
Γ1

f1(ut(t))u(t)dΓ− a2

∫
Γ1

f2(v(x, 1, t))u(t)dΓ + 2
∫

Γ1

u(t)wt(t)dΓ−
∫

Γ1

m(x)w2(t)dΓ.

Using the Cauchy–Schwarz inequality and (43), we have (see [3,34])

∫
Ω

( ∫ t

0
ψ(t− s)|∇u(s)−∇u(t)|ds

)2

dx ≤
( ∫ t

0

ψ2(s)
i(s)

ds
)
(i ◦ ∇u)(t) ≤ C(ξ)(i ◦ ∇u)(t). (44)

Applying Young’s inequality and (8), we obtain, for η > 0,∣∣∣∣− a1

∫
Γ1

f1(ut(t))u(t)dΓ
∣∣∣∣ ≤ ηa1λ1‖∇u(t)‖2 +

a1

4η

∫
Γ1

f 2
1 (ut(t))dΓ, (45)∣∣∣∣− a2

∫
Γ1

f2(v(x, 1, t))u(t)dΓ
∣∣∣∣ ≤ η|a2|λ1‖∇u(t)‖2 +

|a2|
4η

∫
Γ1

f 2
2 (v(x, 1, t))dΓ, (46)

and
2
∫

Γ1

u(t)wt(t)dΓ ≤ l
8
‖∇u(t)‖2 +

8λ1

l
‖wt(t)‖2

Γ1
. (47)

Combining estimates (44)–(47), we see that

Φ′1(t) ≤ ‖ut(t)‖2 − (
3l
4
− ηa1λ1 − η|a2|λ1)‖∇u(t)‖2 +

2C(ξ)
l

(i ◦ ∇u)(t) +
8λ1

l
‖wt(t)‖2

Γ1

+
a1

4η

∫
Γ1

f 2
1 (ut(t))dΓ +

|a2|
4η

∫
Γ1

f 2
2 (v(x, 1, t))dΓ−

∫
Γ1

m(x)w2(t)dΓ.

Setting a3 = (a1 + |a2|)λ1 and choosing η = l
4a3

leads to (42).

Lemma 3. Under the assumption (H1), the functional Φ2 defined by

Φ2(t) = −
∫

Ω
ut(t)

∫ t

0
ψ(t− s)(u(t)− u(s))dsdx

satisfies
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Φ′2(t) ≤ −
( ∫ t

0
ψ(s)ds− δ

)
‖ut(t)‖2 + δ‖∇u(t)‖2 +

C1(1 + C(ξ))
δ

(i ◦ ∇u)(t)

+δλ1‖wt(t)‖2
Γ1
+ δa1λ1

∫
Γ1

f 2
1 (ut(t))dΓ + δ|a2|λ1

∫
Γ1

f 2
2 (v(x, 1, t))dΓ, (48)

for any 0 < δ < 1.

Proof. Using Equations (22), (24), and (25), we obtain

Φ′2(t) =
(

1−
∫ t

0
ψ(s)ds

) ∫
Ω
∇u ·

∫ t

0
ψ(t− s)(∇u(t)−∇u(s))dsdx

+
∫

Ω

( ∫ t

0
ψ(t− s)(∇u(t)−∇u(s))ds

)2

dx−
∫

Γ1

wt(t)
∫ t

0
ψ(t− s)(u(t)− u(s))dsdΓ

+a1

∫
Γ1

f1(ut(t))
∫ t

0
ψ(t− s)(u(t)− u(s))dsdΓ + a2

∫
Γ1

f2(v(x, 1, t))
∫ t

0
ψ(t− s)(u(t)− u(s))dsdΓ

−
∫

Ω
ut(t)

∫ t

0
ψ′(t− s)(u(t)− u(s))dsdx−

( ∫ t

0
ψ(s)ds

)
‖ut(t)‖2

= ϑ1 + ϑ2 + · · ·+ ϑ6 −
( ∫ t

0
ψ(s)ds

)
‖ut(t)‖2.

By Young’s inequality, (8), and (44), we obtain, for δ > 0,

ϑ1 ≤ δ‖∇u(t)‖2 +
C(ξ)

4δ
(i ◦ ∇u)(t),

ϑ2 ≤ C(ξ)(i ◦ ∇u)(t),

|ϑ3| ≤ δλ1‖wt(t)‖2
Γ1
+

C(ξ)
4δ

(i ◦ ∇u)(t),

|ϑ4| ≤ δa1λ1

∫
Γ1

f 2
1 (ut(t))dΓ +

a1C(ξ)
4δ

(i ◦ ∇u)(t),

|ϑ5| ≤ δ|a2|λ1

∫
Γ1

f 2
2 (v(x, 1, t))dΓ +

|a2|C(ξ)
4δ

(i ◦ ∇u)(t).

Using Young’s inequality, (8), (9), (43), and (44), we see that

ϑ6 =
∫

Ω
ut(t)

∫ t

0
i(t− s)(u(t)− u(s))dsdx− ξ

∫
Ω

ut(t)
∫ t

0
ψ(t− s)(u(t)− u(s))dsdx

≤ δ‖ut(t)‖2 +
1
2δ

∫
Ω

( ∫ t

0
i(t− s)|u(s)− u(t)|ds

)2
dx +

ξ2

2δ

∫
Ω

( ∫ t

0
ψ(t− s)|u(t)− u(s)|ds

)2

dx

≤ δ‖ut(t)‖2 +
λ0(ψ(0) + ξ)

2δ
(i ◦ ∇u)(t) +

λ0ξ2C(ξ)
2δ

(i ◦ ∇u)(t).

Combining all above estimates and taking C1 = max{ λ0(ψ(0)+ξ)
2 , δ+ 1+λ0ξ2

2 + a1+|a2|
4 },

the desired inequality (48) is established.

Lemma 4. Under the assumptions (H3) and (H4), the functional Φ3 defined by

Φ3(t) = $(t)
∫

Γ1

∫ 1

0
e−κ$(t)F2(v(x, κ, t))dκdΓ

satisfies
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Φ′3(t) ≤ −e−$2 $(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ− c3(1− $3)e−$2

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

+c4

∫
Γ1

f1(ut(t))ut(t)dΓ. (49)

Proof. Using Equation (23), integration by parts, (13), and (14), we obtain (see [26])

Φ′3(t) = $′(t)
∫

Γ1

∫ 1

0
e−κ$(t)F2(v(x, κ, t))dκdΓ− $(t)

∫
Γ1

∫ 1

0
κ$′(t)e−κ$(t)F2(v(x, κ, t))dκdΓ

−
∫

Γ1

∫ 1

0
e−κ$(t)(1− κ$′(t))

d
dκ

F2(v(x, κ, t))dκdΓ

= −Φ3(t)− e−$(t)
∫

Γ1

(1− $′(t))F2(v(x, 1, t))dΓ +
∫

Γ1

F2(ut(x, t))dΓ

≤ −e−$2 $(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ− c3(1− $3)e−$2

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

+c4

∫
Γ1

f1(ut(t))ut(t)dΓ.

Lemma 5 ([3]). Under the assumption (H1), the functional Φ4 defined by

Φ4(t) =
∫

Ω

∫ t

0
G2(t− s)|∇u(s)|2dsdx

satisfies

Φ′4(t) ≤ 3(1− l)‖∇u(t)‖2 − 1
2
(ψ ◦ ∇u)(t), (50)

where G2(t) =
∫ ∞

t ψ(s)ds.

Next, let us define the perturbed modified energy by

L(t) = NE(t) + N1Φ1(t) + N2Φ2(t) + Φ3(t) + b1E(t), (51)

where N, N1, N2, and b1 are some positive constants.
As in [6,26], for a large enough N > 0, there exist positive constants β1 and β2 such

that

β1E(t) ≤ L(t) ≤ β2E(t).

Lemma 6. Assume that (H1) and (H3)–(H5) hold. Then, there exist positive constants β3, β4, and
β5 such that

L′(t) ≤ −β3E(t) + β4

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds + β5

∫
Γ1

f 2
1 (ut(t))dΓ, ∀t ≥ t0, (52)

where t0 was introduced in (17).

Proof. Let ψ0 =
∫ t0

0 ψ(s)ds. Using the fact that i(t) = ξψ(t)− ψ′(t) and combining (31),
(42), (48), (49), and (51), we obtain, for all t ≥ t0,
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L′(t) ≤ ξN
2

(ψ ◦ ∇u)(t)−
( lN1

2
− δN2

)
‖∇u(t)‖2 −

(
ψ0N2 − δN2 − N1

)
‖ut(t)‖2

−
(N

2
− 2C(ξ)N1

l
− C1(1 + C(ξ))N2

δ

)
(i ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ + b1E′(t)

−
(

h1N − 8λ1N1

l
− δλ1N2

)
‖wt(t)‖2

Γ1
− e−$2 $(t)

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ (53)

−
(
γ0N − c4

) ∫
Γ1

f1(ut(t))ut(t)dΓ−
(

γ1N + c3(1− $3)e−$2
) ∫

Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ

+
( a1a3N1

l
+ δa1λ1N2

) ∫
Γ1

f 2
1 (ut(t))dΓ +

( |a2|a3N1

l
+ δ|a2|λ1N2

) ∫
Γ1

f 2
2 (v(x, 1, t))dΓ.

From (13), we find that∫
Γ1

f 2
2 (v(x, 1, t))dΓ ≤ c2

∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ. (54)

Applying (54) to (53) and taking δ = l
4N2

, we obtain, for all t ≥ t0,

L′(t) ≤ ξN
2

(ψ ◦ ∇u)(t)−
( lN1

2
− l

4

)
‖∇u(t)‖2 −

(
ψ0N2 − N1 −

l
4

)
‖ut(t)‖2

−
(

N
2
−

4C1N2
2

l
− C(ξ)

[2N1

l
+

4C1N2
2

l
])

(i ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ

−
(

h1N − 8λ1N1

l
− lλ1

4

)
‖wt(t)‖2

Γ1
− e−$2 $(t)

∫
Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ

−
(
γ0N − c4

) ∫
Γ1

f1(ut(t))ut(t)dΓ +

(
a1a3N1

l
+

a1lλ1

4

) ∫
Γ1

f 2
1 (ut(t))dΓ + b1E′(t)

−
(

γ1N + c3(1− $3)e−$2 − |a2|a3c2N1

l
− |a2|c2lλ1

4

) ∫
Γ1

f2(v(x, 1, t))v(x, 1, t)dΓ.

We choose N1 large enough so that

lN1

2
− l

4
> 4(1− l),

then N2 large enough so that

ψ0N2 − N1 −
l
4
> 1.

Using the fact that ξψ2(s)
i(s) < ψ(s) and the Lebesgue dominated convergence theorem,

we deduce that

ξC(ξ) =
∫ ∞

0

ξψ2(s)
i(s)

ds→ 0 as ξ → 0.

Hence, there is 0 < ξ0 < 1 such that if ξ < ξ0, then

ξC(ξ)
[2N1

l
+

4C1N2
2

l
]
<

1
8

.

Finally, selecting ξ = 1
2N and choosing N large enough so that

N > max
{16C1N2

2
l

,
1
h1

(8λ1N1

l
+

lλ1

4

)
,

c4

γ0
,

1
γ1

( |a2|a3c2N1

l
+
|a2|c2lλ1

4
− c3(1− $3)e−$2

)}
,

we obtain
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L′(t) ≤ −‖ut(t)‖2 − 4(1− l)‖∇u(t)‖2 +
1
4
(ψ ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ

−e−$2 $(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ + β5

∫
Γ1

f 2
1 (ut(t))dΓ + b1E′(t), ∀t ≥ t0, (55)

where β5 = a1a3 N1
l + a1lλ1

4 . Using (18) and (31), we find that, for any t ≥ t0,∫ t0

0
ψ(s)

∫
Ω
|∇u(t)−∇u(t− s)|2dxds ≤ − 1

c5

∫ t0

0
ψ′(s)

∫
Ω
|∇u(t)−∇u(t− s)|2dxds ≤ − 2

c5
E′(t). (56)

Combining (29), (55), and (56) and making a suitable choice for b1, we obtain the
estimate (52).

To evaluate the two terms on the right side of (52), we establish the following lemmas.

Lemma 7 ([1]). Assume that (H2) holds and max{r1, f0(r1)} < ε, where ε was introduced in
(11). Then, there exist positive constants C2, C3, and C4 such that∫

Γ1

f 2
1 (ut(t))dΓ ≤ C2

∫
Γ1

f1(ut(t))ut(t)dΓ, if f0 is linear, (57)∫
Γ1

f 2
1 (ut(t))dΓ ≤ C3F−1(χ(t))− C3E′(t), if f0 is nonlinear, (58)

where
χ(t) =

1
|Γ11|

∫
Γ11

f1(ut(t))ut(t)dΓ ≤ −C4E′(t), (59)

Γ11 = {x ∈ Γ1 : |ut(t)| ≤ ε1} and 0 < ε1 = min{r1, f0(r1)}.

Lemma 8. Assume that (H1) and (H3)–(H5) hold and that f0 is linear. Then, the energy func-
tional satisfies ∫ ∞

0
E(s)ds < ∞. (60)

Proof. We introduce the functional

L(t) = L(t) + Φ4(t),

which is nonnegative. From (50) and (55), we see that, for all t ≥ t0,

L′(t) ≤ −‖ut(t)‖2 − (1− l)‖∇u(t)‖2 − 1
4
(ψ ◦ ∇u)(t)− N1

∫
Γ1

m(x)w2(t)dΓ

−e−$2 $(t)
∫

Γ1

∫ 1

0
F2(v(x, κ, t))dκdΓ + β5

∫
Γ1

f 2
1 (ut(t))dΓ + b1E′(t).

Applying (29), (31), and (57), we have

L′(t) ≤ −d1E(t) +
(
b1 −

β5C2

γ0

)
E′(t),

where d1 is some positive constant. Selecting a suitable choice for b1, we obtain

L′(t) ≤ −d1E(t).
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This implies that

d1

∫ t

t0

E(s)ds ≤ L(t0)−L(t) ≤ L(t0) < ∞.

Next, we define Υ(t) by

Υ(t) := −
∫ t

t0

ψ′(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds ≤ −2E′(t). (61)

Lemma 9. Assume that (H1) and (H2) hold and that G is nonlinear. Then, the solution to (22)–(28)
satisfies the estimates∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds ≤ 1

θ
G−1

(
θΥ(t)
µ(t)

)
, ∀t ≥ t0, if f0 is linear, (62)∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds ≤ t− t0

θ
G−1

(
θΥ(t)

(t− t0)µ(t)

)
, ∀t > t0, if f0 is nonlinear, (63)

where θ ∈ (0, 1), and G is an extension of G such that G is a strictly convex and strictly increasing
C2 function on (0, ∞).

Proof. First, we prove the estimate (62) when f0 is linear. For 0 < θ < 1, we define I(t) by

I(t) := θ
∫ t

t0

∫
Ω
|∇u(t)−∇u(t− s)|2dxds.

By (60), θ is taken so small that, for all t ≥ t0,

I(t) < 1. (64)

Since G is strictly convex on (0, r0], then

G(qζ) ≤ qG(ζ), (65)

where 0 ≤ q ≤ 1 and ζ ∈ (0, r0]. Using the fact that µ is a positive nonincreasing function
and applying (10), (64), (65), and Jensen’s inequality (19), we find that (see details in [1,3])

Υ(t) ≥ µ(t)
θ I(t)

∫ t

t0

I(t)G(ψ(s))
∫

Ω
θ|∇u(t)−∇u(t− s)|2dxds

≥ µ(t)
θ I(t)

∫ t

t0

G(I(t)ψ(s))
∫

Ω
θ|∇u(t)−∇u(t− s)|2dxds (66)

≥ µ(t)
θ

G
(

θ
∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds

)
.

Since G is strictly increasing, we obtain

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds ≤ 1

θ
G−1

(
θΥ(t)
µ(t)

)
.

Now, we show the estimate (63) when f0 is nonlinear. Since we cannot guarantee (60),
we define the following function:

I1(t) :=
θ

t− t0

∫ t

t0

∫
Ω
|∇u(t)−∇u(t− s)|2dxds, ∀t > t0.
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Using the fact that E′(t) ≤ 0 and (29), we have

I1(t) ≤
2θ

t− t0

∫ t

t0

(||∇u(t)||2 + ||∇u(t− s)||2)ds ≤ 8θE(0)
l

.

Choose θ small enough so that, for all t > t0,

I1(t) < 1. (67)

Similar to (67), using (10), (65), (67), and Jensen’s inequality (19), we obtain

Υ(t) =
t− t0

θ I1(t)

∫ t

t0

I1(t)(−ψ′(s))
∫

Ω

θ

t− t0
|∇u(t)−∇u(t− s)|2dxds

≥ (t− t0)µ(t)
θ I1(t)

∫ t

t0

G(I1(t)ψ(s))
∫

Ω

θ

t− t0
|∇u(t)−∇u(t− s)|2dxds

≥ (t− t0)µ(t)
θ

G
(

θ

t− t0

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds

)
.

This implies that

∫ t

t0

ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds ≤ t− t0

θ
G−1

(
θΥ(t)

(t− t0)µ(t)

)
.

4. General Decay of the Energy

In this section, we state and prove the main result of our work.

Theorem 2. Assume that (H1)–(H5) hold and that f0 is linear. Then, there exist positive constants
k1, k2, k3, and k4 such that the energy functional satisfies, for all t ≥ t0,

E(t) ≤ k2e−k1
∫ t

t0
µ(s)ds, if G is linear, (68)

E(t) ≤ k4G−1
1

(
k3

∫ t

t0

µ(s)ds
)

, if G is nonlinear, (69)

where G1(t) =
∫ r0

t
1

sG′(s)ds is strictly decreasing and convex on (0, r0].

Proof. Now, we consider the following two cases.
Case 1: G(t) is linear. Multiplying (52) by the positive nonincreasing function µ(t) and
using (10), (31), and (57), we obtain

µ(t)L′(t) ≤ −β3µ(t)E(t) + β4

∫ t

t0

µ(s)ψ(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds + β5µ(t)

∫
Γ1

f 2
1 (ut(t))dΓ

≤ −β3µ(t)E(t)− β4

∫ t

t0

ψ′(s)
∫

Ω
|∇u(t)−∇u(t− s)|2dxds + β5C2µ(0)

∫
Γ1

f1(ut(t))ut(t)dΓ

≤ −β3µ(t)E(t)− C5E′(t),

where C5 = 2β4 +
β5C2µ(0)

γ0
is a positive constant. Since µ(t) is nonincreasing, we have

(µL + C5E)′(t) ≤ −β3µ(t)E(t), ∀t ≥ t0.

Since µ(t)L(t) + C5E(t) ∼ E(t), for some positive constants k1 and k2, we obtain

E(t) ≤ k2e−k1
∫ t

t0
µ(s)ds.
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Case 2: G(t) is nonlinear. This case is obtained through the ideas presented in [3] as follows.
Using (31), (52), (57), and (62), we obtain

L′(t) ≤ −β3E(t) +
β4

θ
G−1

(
θΥ(t)
µ(t)

)
− β5C2

γ0
E′(t), ∀t ≥ t0. (70)

Let L1(t) = L(t) + β5C2
γ0

E(t) ∼ E(t), and then (70) becomes

L′1(t) ≤ −β3E(t) +
β4

θ
G−1

(
θΥ(t)
µ(t)

)
, ∀t ≥ t0. (71)

For 0 < ε0 < r0, using (71) and the fact that E′ ≤ 0, G′ > 0 and G′′ > 0, we find that
the functional L2, defined by

L2(t) := G′
(

ε0
E(t)
E(0)

)
L1(t) ∼ E(t),

satisfies

L′2(t) ≤ −β3E(t)G′
(

ε0
E(t)
E(0)

)
+

β4

θ
G′
(

ε0
E(t)
E(0)

)
G−1

(
θΥ(t)
µ(t)

)
, ∀t ≥ t0. (72)

With s = G′
(
ε0

E(t)
E(0)

)
and r = G−1( θΥ(t)

µ(t)

)
, using (20), (21), and (72), we obtain

L′2(t) ≤ −β3E(t)G′
(

ε0
E(t)
E(0)

)
+

ε0β4

θ

E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
+

β4Υ(t)
µ(t)

,

where we have used that ε0
E(t)
E(0) < r0 and G′ = G′ on (0, r0]. Multiplying this by µ(t) and

using (61), we obtain

µ(t)L′2(t) ≤ −
(

β3E(0)− ε0β4

θ

)µ(t)E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
− 2β4E′(t).

By defining L3(t) = µ(t)L2(t) + 2β4E(t), we see that, for some positive constants γ2
and γ3,

γ2L3(t) ≤ E(t) ≤ γ3L3(t). (73)

With a suitable choice of ε0, we obtain, for some positive constant d2,

L′3(t) ≤ −d2µ(t)
E(t)
E(0)

G′
(

ε0
E(t)
E(0)

)
= −d2µ(t)G2

(
E(t)
E(0)

)
, ∀t ≥ t0, (74)

where G2(t) = tG′(ε0t). Applying the strict convexity of G on (0, r0] and G′2(t) = G′(ε0t) +
ε0tG′′(ε0t), we see that G2(t), G′2(t) > 0 on (0, 1]. Finally, defining

Q(t) =
γ2L3(t)

E(0)

and using (73), we have

Q(t) ≤ E(t)
E(0)

≤ 1 and Q(t) ∼ E(t). (75)

From (74), (75), and the fact that G′2(t) > 0 on (0, 1], we arrive at

Q′(t) ≤ −k3µ(t)G2(Q(t)), ∀t ≥ t0,
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where k3 = d2γ2
E(0) is a positive constant. Integrating this over (t0, t) and using variable

transformation, we find that (see details in [3])∫ t0

t

ε0Q′(s)
ε0Q(s)G′(ε0Q(s))

ds ≥ k3

∫ t

t0

µ(s)ds =⇒
∫ ε0Q(t0)

ε0Q(t)

1
sG′(s)

ds ≥ k3

∫ t

t0

µ(s)ds.

Since ε0 < r0 and Q(t) ≤ 1, for all t ≥ t0, we have

G1(ε0Q(t)) =
∫ r0

ε0Q(t)

1
sG′(s)

ds ≥ k3

∫ t

t0

µ(s)ds =⇒ Q(t) ≤ 1
ε0

G−1
1

(
k3

∫ t

t0

µ(s)ds
)

, (76)

where G1(t) =
∫ r0

t
1

sG′(s)ds. Here, we have used the fact that G1 is a strictly decreasing
function on (0, r0]. Therefore, using (75) and (76), the estimate (69) is established.

Theorem 3. Assume that (H1)–(H5) hold and that f0 is nonlinear. Then, there exist positive
constants α1, α2, α3, and α4 such that the energy functional satisfies

E(t) ≤ α2F−1
1

(
α1

∫ t

t0

µ(s)ds
)

, ∀t ≥ t0, if G is linear, (77)

where F1(t) =
∫ r1

t
1

sF′(s)ds and

E(t) ≤ α4(t− t0)K−1
1

(
α3

(t− t0)
∫ t

t1
µ(s)ds

)
, ∀t ≥ t1, if G is nonlinear, (78)

where K1(t) = tK′(ε2t), 0 < ε2 < r2 = min{r0, r1} and K =
(
G−1

+ F−1)−1.

Proof. Case 1: G(t) is linear. Multiplying (52) by the positive nonincreasing function µ(t)
and using (10), (31), and (58), we obtain

µ(t)L′(t) ≤ −β3µ(t)E(t) + β5C3µ(t)F−1(χ(t))− C6E′(t), (79)

where C6 = 2β4 + β5C3µ(0) is a positive constant. Since µ(t) is nonincreasing, (79) becomes

F′3(t) ≤ −β3µ(t)E(t) + β5C3µ(t)F−1(χ(t)), ∀t ≥ t0, (80)

where F3(t) = µ(t)L(t) + C6E(t) ∼ E(t). For 0 < ε1 < r1, using (80) and the fact that
E′ ≤ 0, F′ > 0 and F′′ > 0 on (0, r1], the functional F4, defined by

F4(t) := F′
(

ε1
E(t)
E(0)

)
F3(t) ∼ E(t),

satisfies

F′4(t) ≤ −β3µ(t)E(t)F′
(

ε1
E(t)
E(0)

)
+ β5C3µ(t)F′

(
ε1

E(t)
E(0)

)
F−1(χ(t)).

Given (20) and (21) with s = F′
(
ε1

E(t)
E(0)

)
and r = F−1(χ(t)), using (59), we obtain that

F′4(t) ≤ −β3µ(t)E(t)F′
(

ε1
E(t)
E(0)

)
+ ε1β5C3

µ(t)E(t)
E(0)

F′
(

ε1
E(t)
E(0)

)
+ β5C3µ(0)χ(t)

≤ −
(

β3E(0)− ε1β5C3
)µ(t)E(t)

E(0)
F′
(

ε1
E(t)
E(0)

)
− β5C3C4µ(0)E′(t), ∀t ≥ t0.
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Let F5(t) = F4(t) + β5C3C4µ(0)E(t); then it satisfies, for positive constants γ4 and γ5,

γ4F5(t) ≤ E(t) ≤ γ5F5(t). (81)

Consequently, with a suitable choice of ε1, we have, for some positive constant d3,

F′5(t) ≤ −d3µ(t)
E(t)
E(0)

F′
(

ε1
E(t)
E(0)

)
= −d3µ(t)F0

(
E(t)
E(0)

)
, ∀t ≥ t0, (82)

where F0(t) = tF′(ε1t). From the strict convexity of F on (0, r1], we obtain F0(t), F′0(t) > 0
on (0, 1]. Let

J(t) =
γ4F5(t)

E(0)
,

and from (81) and (82), we obtain

J(t) ≤ E(t)
E(0)

≤ 1 and J′(t) ≤ −α1µ(t)F0(J(t)), ∀t ≥ t0,

where α1 = d3γ4
E(0) is a positive constant. Then, similar to (76), the integration over (t0, t) and

variable transformation yield

J(t) ≤ 1
ε1

F−1
1

(
α1

∫ t

t0

µ(s)ds
)

, (83)

where F1(t) =
∫ r1

t
1

sF′(s)ds, which is a strictly decreasing function on (0, r1]. Combining (81)
and (83), the estimate (77) is proved.
Case 2: G(t) is nonlinear. This case is obtained by the arguments presented in [1] as follows.
Using (52), (58), and (63), we obtain

L′(t) ≤ −β3E(t) +
β4(t− t0)

θ
G−1

(
θΥ(t)

(t− t0)µ(t)

)
+ β5C3F−1(χ(t))− β5C3E′(t), ∀t > t0.

(84)

Since lim
t→∞

1
t− t0

= 0, there exists t1 > t0 such that

1
t− t0

< 1, ∀t ≥ t1. (85)

Using the strictly convex and strictly increasing function of F and (65) with q = 1
t−t0

,
we see that

F−1
(χ(t)) ≤ (t− t0)F−1

(
χ(t)

t− t0

)
, ∀t ≥ t1. (86)

Combining (84) and (86), we arrive at

R′1(t) ≤ −β3E(t) +
β4(t− t0)

θ
G−1

(
θΥ(t)

(t− t0)µ(t)

)
+ β5C3(t− t0)F−1

(
χ(t)

t− t0

)
, ∀t ≥ t1, (87)

where R1(t) = L(t) + β5C3E(t) ∼ E(t). Let

r2 = min{r0, r1}, ϕ(t) = max
{

θΥ(t)
(t− t0)µ(t)

,
χ(t)

t− t0

}
and K =

(
G−1

+ F−1)−1, ∀t ≥ t1. (88)

Therefore, (87) reduces to

R′1(t) ≤ −β3E(t) + C7(t− t0)K−1(ϕ(t)), ∀t ≥ t1, (89)
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where C7 = max{ β4
θ , β5C3}. The strictly increasing and strictly convex properties of G and

F imply that

K′ =
G′F′

G′ + F′
> 0 and K′′ =

G′′(F′)2 + (G′)2F′′

(G′ + F′)2
> 0, (90)

on (0, r2].
Now, for 0 < ε2 < r2, using (85), we see that ε2

t−t0

E(t)
E(0) < r2. Defining

R2(t) = K′
(

ε2

t− t0

E(t)
E(0)

)
R1(t), ∀t ≥ t1,

and using (89) and (90), we find that

R′2(t) =
(
− ε2

(t− t0)2
E(t)
E(0)

+
ε2

t− t0

E′(t)
E(0)

)
K′′
(

ε2

t− t0

E(t)
E(0)

)
R1(t) + K′

(
ε2

t− t0

E(t)
E(0)

)
R′1(t)

≤ −β3E(t)K′
(

ε2

t− t0

E(t)
E(0)

)
+ C7(t− t0)K′

(
ε2

t− t0

E(t)
E(0)

)
K−1(ϕ(t)), ∀t ≥ t1. (91)

Using (20) and (21) with s = K′
( ε2

t−t0

E(t)
E(0)

)
and r = K−1(ϕ(t)) and applying (91), we

obtain

R′2(t) ≤ −β3E(t)K′
(

ε2

t− t0

E(t)
E(0)

)
+ ε2C7

E(t)
E(0)

K′
(

ε2

t− t0

E(t)
E(0)

)
+ C7(t− t0)ϕ(t). (92)

From (59), (61), and (88), we obtain

(t− t0)µ(t)ϕ(t) ≤ −C8E′(t), (93)

where C8 = min{2θ, C4µ(0)}. Multiplying (92) by the positive nonincreasing function µ(t)
and using (93), we have

R′3(t) ≤ −
(

β3E(0)− ε2C7

)µ(t)E(t)
E(0)

K′
(

ε2

t− t0

E(t)
E(0)

)
, ∀t ≥ t1,

where R3(t) = µ(t)R2(t) + C7C8E(t) ∼ E(t). For a suitable choice of ε2, we find that

R′3(t) ≤ −d4
µ(t)E(t)

E(0)
K′
(

ε2

t− t0

E(t)
E(0)

)
, ∀t ≥ t1, (94)

where d4 is a positive constant. An integration of (94) yields

d4

E(0)

∫ t

t1

E(s)K′
(

ε2

s− t0

E(s)
E(0)

)
µ(s)ds ≤

∫ t1

t
R′3(s)ds ≤ R3(t1).

Using (90) and the non-increasing property of E, we see that the map t→ E(t)K′
( ε2

t−t0

E(t)
E(0)

)
is non-increasing and, consequently, we obtain

d4
E(t)
E(0)

K′
(

ε2

t− t0

E(t)
E(0)

) ∫ t

t1

µ(s)ds ≤ R3(t1), ∀t ≥ t1. (95)

Multiplying (95) by 1
t−t0

, we obtain

d4K1

(
1

t− t0

E(t)
E(0)

) ∫ t

t1

µ(s)ds ≤ R3(t1)

t− t0
, ∀t ≥ t1,
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where K1(s) = sK′(ε2s), which is strictly increasing. Therefore, we deduce that

E(t) ≤ α4(t− t0)K−1
1

(
α3

(t− t0)
∫ t

t1
µ(s)ds

)
, ∀t ≥ t1,

where α3 and α4 are positive constants. This completes the proof.

Examples. We provide examples to explain the decay of energy (see [1]).
1. Case: f0 and G are linear.

Let ψ(t) = ae−b(1+t), µ(t) = b, and G(t) = t, where b > 0, and a > 0 is small enough.
Assume that f0(t) = ct and F(t) =

√
t f0(
√

t) = ct. Then, we can obtain

E(t) ≤ k2e−k1t, for all t ≥ t0.

2. Case: f0 is linear and G is nonlinear.

Let ψ(t) = ae−tp
, µ(t) = 1, and G(t) = pt

(ln( a
t ))

1
p−1

, where 0 < p < 1, and a > 0 is small

enough. Assume that f0(t) = ct and F(t) =
√

t f0(
√

t) = ct. Then, G satisfies the condition
(H1) on (0, r0] for any 0 < r0 < a.

G1(t) =
∫ r0

t

1
sG′(s)

ds =
∫ r0

t

[ln a
s ]

1
p

s[1− p + p ln a
s ]

ds =
∫ ln a

t

ln a
r0

u
1
p

1− p + pu
du ≤

(
ln

a
t
) 1

p .

Then, we can have
E(t) ≤ k4e−k3tp

, for all t ≥ t0.

3. Case: f0 is nonlinear and G is linear.
Let ψ(t) = ae−b(1+t), µ(t) = b, and G(t) = t, where b > 0, and a > 0 is small enough.

Assume that f0(t) = ctp, where p > 1 and F(t) =
√

t f0(
√

t) = ct
p+1

2 . Then,

F1(t) =
∫ r1

t

1
sF′(s)

ds =
∫ r1

t

2
c(p + 1)

s−
p+1

2 ds = −α0
(
r−

p−1
2

1 − t−
p−1

2
)

and

F−1
1 (t) = (r−

p−1
2

1 +
1
α0

t)−
2

p−1 ,

where α0 = 4
c(p+1)(p−1) . Therefore, we find that

E(t) ≤ (α1t + α2)
− 2

p−1 , for all t ≥ t0.

4. Case: f0 is nonlinear and G is nonlinear.
Let ψ(t) = a

(1+t)2 , µ(t) = b, and G(t) = t
3
2 , where b > 0, and a > 0 is taken so that (9)

remains valid. Assume that f0(t) = t5 and F(t) = t3. Then,

K(s) = (G−1 + F−1)−1(s) =
(−1 +

√
1 + 4s

2

)3
.

Therefore, we see that

E(t) ≤ α3

(t− t0)
1
3

, for all t ≥ t1,

where t1 > t0.
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5. Conclusions

Numerous phenomena are influenced by both the current state and the previous
occurrences of the system. There has been a notable increase in the research on the equa-
tion with delay effects, which frequently arise in various physical, biological, chemical,
medical, and economic problems. In this paper, we study the energy decay rates for the
viscoelastic wave equation with nonlinear time-varying delay, nonlinear damping at the
boundary, and acoustic boundary conditions. We consider the relaxation function ψ, namely
ψ′(t) ≤ −µ(t)G(ψ(t)), where G is an increasing and convex function near the origin, and
µ is a positive nonincreasing function. We establish general decay rate results without
the need for the condition a2 > 0 and without imposing any limiting growth assumption
on the damping term f1, using the multiplier method and some properties of the convex
functions. Moreover, the energy decay rates depend on the functions µ and G, as well as
the function F defined by f0, which characterizes the growth behavior of f1 at the origin.
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