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Abstract: In this paper, we consider a multi-server queue with a finite buffer. Request arrivals are
defined by the Markov arrival process. Service is provided to groups of requests. The minimal
and maximal group sizes are fixed. The service time of a group has a phase-type distribution with
an irreducible representation depending on the size of the group. The requests are impatient. The
patience time for an arbitrary request has an exponential distribution. After this time expires, the
request is lost if all servers are busy or, if some server is idle, with a certain probability, all requests
staying in the buffer start their service even if their number is below the required minimum. The
behavior of the system is described by a multi-dimensional continuous-time Markov chain that
does not belong to the class of level-independent quasi-birth-and-death processes. The algorithm
for the computation of the stationary distribution of this chain is presented, and expressions for
the computation of the queuing system’s performance characteristics are derived. The description
of a delivery system operation in terms of the analyzed queuing model is given, and the problem
of the optimization of its operation is numerically solved. Multi-server queues with a phase-type
distribution for the group service time that are dependent on the size of the group, the account of
request impatience, and the correlated arrival process have not previously been analyzed in the
existing literature. However, they represent a precise model of many real-world objects, including
delivery systems.

Keywords: group service; multi-server queue; MAP; phase-type distribution; delivery system

MSC: 60K25; 60K30; 68M20; 90B22

1. Introduction

The problem of the optimal management of various goods and grocery delivery has
become especially important due to the quick development of ordering via the Internet
over the last few years. In particular, COVID-19 caused this development due to the better
isolation of members of society achieved via online shopping. The business model of
delivery systems suggests, as a rule, the collection of customer orders via the Internet
and then the delivery of the ordered items to the customers via some transport vehicles.
Typically, the size and weight of orders may not be very large, and a vehicle can deliver
several orders simultaneously. Therefore, because the orders are generated at random
moments, the number of orders uploaded into a vehicle is random, and the delivery times
are random, adequate mathematical modeling of a delivery system can be done within the
borders of the theory of queues with group service.

In this paper, we build and analyze a queuing model for a delivery system. Generally
speaking, the process of providing a service to a customer in a delivery system consists of
two phases. The first phase corresponds to registering the orders obtained via the Internet
or phone and packing them into some containers designed for item delivery. The second
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phase corresponds to the delivery of these containers (throughout the paper, we call them
requests) to the customers by the vehicles. A corresponding two-phase (tandem) queuing
model was recently analyzed in [1]. The essential restriction of the model considered in [1]
is the assumption that a single vehicle performs a delivery. This suggestion does not hold
in many large real-world delivery systems. In this paper, we consider only the second
phase of the delivery process, with the assumption that the fleet of available vehicles can
have many items.

1.1. Short Literature Review

Queuing models with a group service have been a focus of research for about seventy
years (see, e.g., the papers [2,3]). As early works, we can also mention [4–8]. Some surveys
of relevant research can be found, e.g., in [9–17]. The overwhelming majority of papers
devoted to queues with a group service assume that the stationary Poisson process is an
arrival flow. But, this process poorly describes flows in many real-world systems. Essential
restrictions of the stationary Poisson process are assumptions of a constant arrival rate
that does not fluctuate during the system’s operation and has values of 1 and 0 for the
coefficients of variation and correlation of the inter-arrival times, respectively. Models with
an arbitrary distribution of inter-arrival times have been analyzed, e.g., in [18–20].

Another possibility for modeling in a more general way than the stationary Poisson
arrival process is the model of the Markov arrival process (MAP) mentioned above, which
has been known since the early 1990s. Queuing systems with the MAP and group service
have been considered, e.g., in papers [1,11,15–17,21–32].

The majority of these papers consider single-server queues. To the best of our knowl-
edge, multi-server queues with a group service and the MAP flow (or generalization of
the MAP to the case of batch arrivals, that is, the batch Markov arrival process) were
considered only in Refs. [33,34], where systems with an infinite and a finite buffer were
dealt with, respectively; Ref. [35], where the number of servers in a system from [34] can
vary; Ref. [36], where a two-server queue was under study; and [12], where the retrial
queuing model BMAP/M/c with a constant retrial rate was considered.

1.2. Disadvantages of Previous Research

The models of multi-server queues with the MAP (or BMAP) and group service con-
sidered in the papers [12,33–36] have some disadvantages in terms of the following aspects:

• The service time distribution is assumed to be exponential, while a more general PH
distribution should be considered. This would allow significantly better fitting of the
actual distributions of service time in real-world systems;

• The possible impatience of requests, which is an inherent feature of many real-world
systems, see, e.g., [37], is not taken into account;

• Service can only be provided to groups with fixed minimum and maximum sizes
in [12,33–36]. In some real-world systems, the service of groups of sizes that are less
than the fixed minimum is allowed if a request loss due to impatience can occur;

• Definitely, the service time of a group may depend on the size of the group. Such a de-
pendence is assumed in this paper. Among the papers [12,33–36], such a dependence
was considered only for a two-server queue in [36].

Due to the possible applicability of the considered queuing model to a variety of real-
world systems, it is important to analyze models that are free from these disadvantages.

1.3. Aim of the Study

Taking into account the listed disadvantages, the aim of this paper is formulated as
follows. We intend to analytically and numerically build and investigate a queuing model
of a delivery system that satisfies the following requirements:

• A finite number of vehicles provide delivery, and this number can be greater than
one. The minimal and maximal values of the sizes of groups to which a service can be
provided are fixed;
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• The process of request arrival has to take into account the typical features of real flows
of orders. Namely, inter-arrival times can have a wide range of initial moments (mean
value, variance, the third, fourth, etc.) and a wide range of values for the coefficient
of correlation of successive inter-arrival times. The instantaneous arrival rate may
essentially fluctuate during the system’s operation. This account will be done via the
assumption that the requests arrive in the MAP. For more information about such a
process, see, e.g., [38–43];

• The possible impatience (perishability, obsolescence, etc.) of requests has to be taken
into account. To satisfy this requirement, we assume that after a random time interval
(with an exponential distribution), the waiting request is canceled (lost) if all vehicles
are busy. If at least one vehicle is idle, the system makes a randomized choice among
the options to lose a request or to start the delivery process, even if the number of
requests in the buffer is below the preassigned minimum;

• The delivery time of a group of requests has to depend on the number of requests in the
group. Typically, the delivery of a group of requests from a warehouse to customers
residing in some area consists of a permanent part, which is the transportation time
between the warehouse and this area, a time for each container to upload into the
vehicle, and an individual delivery time inside the area. To satisfy this requirement,
we assume that the delivery (service) time has a phase-type (PH) distribution with an
irreducible representation depending on the size of the group. For more information
about the PH distribution and its usefulness in stochastic modeling, see, e.g., [44];

• Algorithms for the computation of the stationary distribution of the system’s states and
its main performance characteristics should provide a high computation speed for a
not very large number of vehicles and buffer size. The number of vehicles (servers) and
the capacity of the buffer for waiting requests should not be very small and should
match the corresponding parameters of real-world systems. This requirement is
explained by the necessity of using algorithms to solve various optimization problems,
which require the computation of the performance measures of the system for different
values of its parameters, including the capacity of the buffer and the number of servers.

1.4. Contributions of the Paper

The formulated aims are achieved, and the main contributions of the paper are as follows:

• We consider a multi-server queue with a group service of the MAP/PH/N type,
which allows us to model the typical bursty character of traffic in real-world systems
and a wide range of service time distributions. Previously, queues with a group
service, MAP, and PH distribution of service times were analyzed only in single-
server settings;

• We account for the possible impatience of the requests waiting in the queue and apply
more flexible control for the service initiation. The most common strategy of control
allows the service to begin only when the number of requests in the queue is not
less than a preassigned threshold. We considered the strategy that allows us to start
servicing in situations where the number of requests is below this threshold, but some
requests decide to leave the system without service due to impatience;

• We assume that the service time of a group depends on its size, while the majority of
the papers consider a more simple case of service time that is independent of this size;

• The elaborated algorithms and software allow for the computation of the main per-
formance measures and the solving of optimization problems for realistic system
parameter values. Numerical results are presented for a system with 50 servers and a
capacity of 300 for the input buffer.

1.5. Brief Outline of the Content of the Paper

Section 2 contains a mathematical description of the constructed queuing model and
the necessary denotations. A multi-dimensional continuous-time Markov chain that is suit-
able for the description of the constructed model is defined in Section 3. The infinitesimal
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generator of this chain is obtained. An algorithm for the computation of its steady-state
distribution is presented here. Formulas for the computation of the key performance char-
acteristics of the system are presented in Section 4. Some numerical results that provide
insight into the system’s behavior and an example of a solution to the optimization problem
are given in Section 5. Section 6 concludes the paper.

2. Mathematical Model

We consider a queuing system with a finite buffer of size R with N independent
identical servers. The structure of the system is shown in Figure 1.

Figure 1. Structure of the system.

Requests enter the system in the MAP arrival flow. This flow is given by a Markov
chain with continuous time (CTMC) νt, t ≥ 0, having a state space {1, 2, ..., W} and matrices
D0 and D1 of size W. Here, W is a certain finite integer, and the matrix D1 consists of the
transition intensities of the chain νt, accompanied by the arrival of a request. The non-
diagonal elements of the matrix D0 determine the rate of the corresponding transition of
the chain νt without the arrival of a request. The modules of the negative diagonal elements
determine the intensity of the exit of the process νt from the corresponding state. The
matrix D(1) = D0 + D1 is the generator of the CTMC νt. This generator is assumed to
be irreducible.

The average request arrival rate λ is determined by the formula λ = θD1e, where θ is
a row vector of stationary probabilities of the CTMC νt. This vector is the only solution to
the system θD(1) = 0, θe = 1. Here and below, 0 is a row vector of an appropriate size
consisting of zeros, and e is a column vector of an appropriate size consisting of ones.

The requests can be served in groups of varying sizes. All requests from the group
accepted for service go to one server and complete their services simultaneously. We assume
that if, at the service completion epoch, there are less than i1 requests in the buffer, then a
new service does not start. Otherwise, the server starts its service for all available requests if
their number does not exceed the parameter i2, such that max{1, i1 − 1} < i2 ≤ R. In other
words, if there are more than i2 requests in the buffer at the service completion epoch, then
the first i2 requests go for servicing, and the rest remain in the buffer. Thus, the parameters
i1 and i2, 1 ≤ i1 < i2 ≤ R, determine the minimum and maximum sizes of the groups that
can be taken for service.

If, at the arrival moment, the number of requests in the buffer is less than or equal
to i1 − 2, then the incoming request becomes buffered and awaits service. If the number
of requests in the buffer is i1 − 1 and there is a free server, then the entire group of size i1
starts its service. If all servers are busy, the request becomes buffered to wait. If the buffer
is full, the request permanently leaves the system and is lost.

It is also assumed that requests in the buffer can become impatient and try to leave the
system without service at random time intervals, the lengths of which are exponentially
distributed with the intensity of γ. In this case, if there is a free server with the probability
qi, where i is the number of requests in the buffer, all available requests go to the server
and begin servicing, even though their number is less than the parameter i1, and with a
complimentary probability, the request leaves the system forever. If all servers are busy, the
impatient request is lost.
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We assume that the service time of a group has a phase-type distribution (PH-service).
The CTMC mt, t ≥ 0, with transient states {1, 2, . . . , M} and a unique absorbing state
M + 1 specify this distribution. The irreducible representation of the CTMC mt, t ≥ 0, is
given as (βi, S), i = 1, i2, where i is the number of requests taken for service. Note that
βi is a stochastic row vector of dimension M, and the square matrix S of dimension M is
a sub-generator.

The average service time for a group of requests of size i is defined as b(i)1 = βi(−S)−1e.
Note that, assuming that the initial probability vector of the service time depends on the
size of the group, we take into account the dependence of the service process on the size of
the group.

To apply the formulated queuing model for the description and optimization of some
real-world delivery system, it is necessary to determine the matrices D0 and D1 that define
the MAP of the requests and representations (βi, S), i = 1, i2, to define the service of groups
of requests.

The problem of building the matrices D0 and D1 based on observations of the traces
of the actual arrival process (or time stamps giving the arrival epochs) is well addressed in
the existing literature. For references, see, e.g., the book [45] and papers [45–54].

The problem of choosing representations (βi, S), i = 1, i2, to fit the known average
service times of groups of different sizes can be solved, e.g., as follows:

Let the average service time of a group consisting of i requests be estimated based on
the available samples as wi, i = 1, i2. It is natural to assume that the values wi, i = 1, i2, are
such that w1 ≤ w2 ≤ · · · ≤ wi2 (a larger group does not imply a shorter average service
time) and w1 6= wi2 (dependence of the service time on the group size exists).

The number M of transient states of the CTMC mt, t ≥ 0, has a significant impact
on the feasibility of the analysis of the CTMC, as shown in the next section. Thus, one
should construct the irreducible representations (βi, S), i = 1, i2, of the minimal possible
size, namely, M = 2.

It is possible to fix the sub-generator S as a diagonal matrix of size two with the
diagonal entries −w−1

1 and −w−1
i2

. It is easy to check that the desired values wi, i = 1, i2,
can be achieved via the following choice of vectors βi of size 2,

βi = (ϕi, 1− ϕi)

where
ϕi =

wi2 − wi

wi2 − w1
, i = 1, i2.

Let us analyze the constructed queuing system under the assumption that the inter-
arrival, service, and patience times are mutually independent.

3. The Process of System States and Its Stationary Distribution

Let it, it = 0, R, be the number of requests in the buffer; nt, nt = 0, N, be the number
of busy servers; νt, νt = 1, W, be the state of the underlying process; and MAP, m(l)

t be

the number of servers on the l-th service phase. m(l)
t = 0, nt, l = 1, M,

M
∑

l=1
m(l)

t = nt, at an

arbitrary moment t, t ≥ 0.
The behavior of the system under study is described by a regular irreducible CTMC

with continuous time

ξt = {it, nt, νt, m(1)
t , . . . , m(M)

t }, t ≥ 0.

Let us renumber the states of the CTMC ξt in reverse order for the components
m(1)

t , . . . , m(M)
t and in direct order for the components nt and νt and denote the set of states

of the chain with the value i of the first component of the CTMC as level i, i ≥ 0.
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Theorem 1. The generator Q of the CTMC ξt, t ≥ 0, has the following lower-Hessenberg block
structure:

Q =



Q0,0 Q0,1 O O . . . O O
Q1,0 Q1,1 Q1,2 O . . . O O
Q2,0 Q2,1 Q2,2 Q2,3 . . . O O

...
...

...
. . . . . .

...
...

QR−1,0 QR−1,1 QR−1,2 QR−1,3 . . . QR−1,R−1 QR−1,R
QR,0 QR,1 QR,2 QR,3 . . . QR,R−1 QR,R


where the non-zero blocks Qi,j, j ≤ i + 1, containing the intensities of transitions from level i to
level j are defined as follows:

Qi,i = diag{D0, D0 ⊕ (An + ∆n), n = 1, N}+

+diag−{IW ⊗ Ln, n = 1, N} − iγI
W

N
∑

n=0
Tn

+

+δi1,1diag+{D1 ⊗ Pn(β1), n = 0, N − 1}, i = 0, i1 − 1,

Qi,i = D0 ⊕ (AN + ∆N)− iγIWTN , i = i1, R− 1,

QR,R = D(1)⊕ (AN + ∆N)− RγIWTN ,

Qi,i+1 = diag{D1 ⊗ ITn , n = 0, N}, i = 0, i1 − 2,

Qi1−1,i1 =

 O
W

N−1
∑

n=0
Tn×WTN

D1 ⊗ ITN

,

Qi,i+1 = D1 ⊗ ITN , i = i1, R− 1,

Q1,0 =

(
O

WTN×W
N−1
∑

n=0
Tn

γIWTN + IW ⊗ LN PN−1(β1)
)

, if i1 = 1,

Q1,0 = γdiag{{(1− q1)IWTn , n = 0, N − 1}, IWTN}+

+diag+{D1 ⊗ Pn(β2), n = 0, N − 1}+

+γq1diag+{IW ⊗ Pn(β1), n = 0, N − 1}, if i1 = 2,

Q1,0 = γdiag{{(1− q1)IWTn , n = 0, N − 1}, IWTN}+

+γq1diag+{IW ⊗ Pn(β1), n = 0, N − 1}, if i1 > 2,

Qi,i−1 = iγdiag{{(1− qi)IWTn , n = 0, N − 1}, IWTN}, i = 2, i1 − 1,

Qi1,i1−1 = i1γ

(
O

WTN×W
N−1
∑

n=0
Tn

IWTN

)
, i1 6= 1,

Qi,i−1 = iγIWTN , i = i1 + 1, R,

Qi,0 = iγqidiag+{IW ⊗ Pn(βi), n = 0, N − 1}, i = 2, i1 − 2,

Qi1−1,0 = diag+{D1 ⊗ Pn(βi1), n = 0, N − 1}+

+(i1 − 1)γqi1−1diag+{IW ⊗ Pn(βi1−1), n = 0, N − 1}, i1 6= 1,

Qi,0 =

(
O

WTN×W
N−1
∑

n=0
Tn

IW ⊗ LN PN−1(βi)
)

, i = i1, i2, if i1 6= 1,

and i = i1 + 1, i2, if i1 = 1,
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Qi,i−i2 =

(
O

WTN×W
N−1
∑

n=0
Tn

IW ⊗ LN PN−1(βi2)
)

, if i− i2 < i1,

Qi,i−i2 = IW ⊗ LN PN−1(βi2), if i− i2 ≥ i1, i = i2 + 1, R.

Here,
⊗ and ⊕ are the symbols of the Kronecker product and the sum of matrices (see, for example, [55]);
I is the identity matrix; O is the zero matrix, the dimension of which is indicated by a subscript

if necessary;

δi,j is the Kronecker symbol, that is, δi,j =

{
1, i = j;
0, i 6= j;

diag{d1, d2, . . . , dn} is the diagonal matrix with the diagonal elements d1, d2, . . . , dn;
diag+{d1, d2, . . . , dn} is the square matrix with the non-zero overdiagonal elements

d1, d2, . . . , dn;
diag−{d1, d2, . . . , dn} is the square matrix with the non-zero subdiagonal elements

d1, d2, . . . , dn; and
the number Tn is equal to the cardinality of the state space of the process {m(1)

t , . . . , m(M)
t }

when a service is simultaneously provided to n groups of requests. It is calculated as

Tn =
(n + M− 1)!
n!(M− 1)!

, n = 1, N.

For convenience, we put T0 = 1.
The matrix Ln defines the transition intensities of the process {m(1)

t , . . . , m(M)
t } at the moment

when service in one of n busy servers is completed, n = 1, N. The matrix An contains the transition
intensities of the process {m(1)

t , . . . , m(M)
t } at the moment of the change in the phase of service in

one of n busy servers, n = 1, N. The matrix Pn(βi) defines the transition probabilities of the process
{m(1)

t , . . . , m(M)
t } at the moment when the group of i requests begins service in the presence of n

busy servers, n = 0, N − 1. The diagonal elements of the diagonal matrix ∆n determine the rates of
the exit of the process {m(1)

t , . . . , m(M)
t } from the corresponding states. When the matrices Ln and

An are computed, the matrices ∆n are computed by the formula

∆n = −diag{Ane + Lne}.

Detailed descriptions of the matrices Pn(βi) n = 0, N − 1, i = 1, i2, Ln, An, ∆n, n = 1, N,
and algorithms for their calculation are presented in [56].

Proof. The proof of the theorem was carried out by analyzing the intensities of all possible
transitions of the CTMC ξt over a time interval of infinitesimal length.

The generator has a block lower Hessenberg structure, since requests can enter the
buffer strictly one at a time and leave it in groups, the size of which is up to i2.

Let us explain the form of the diagonal blocks Qi,i, i = 0, R. All diagonal elements
of the block Qi,i are negative, and the absolute values of these elements determine the
intensities of the CTMC ξt exiting the corresponding states. The CTMC ξt can exit the
current state in the following cases:

a. The underlying process νt of the request arrivals leaves its current state. The
corresponding transition intensities are determined up to their signs by the diagonal
elements of the matrix D0 ⊗ I N

∑
n=0

Tn

, if i = 0, i1 − 1, D0 ⊗ ITN if i = i1, R− 1, and (D0 +

D1)⊗ ITN if i = R.
b. The service process on one of the busy servers changes its state. In this case, the tran-

sition intensities are determined by the diagonal elements of the matrices diag{OW×W , IW ⊗
∆n, n = 1, N} for i = 0, i1 − 1 and IW ⊗ ∆N for i = i1, R.
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c. A request from the buffer tries to leave the system due to impatience; the corre-
sponding intensities are specified by the matrices iγI

W
N
∑

n=0
Tn

if i = 0, i1 − 1 and iγIWTN ,

if i = i1, R.
The non-diagonal elements of the matrix Qi,i determine the transition intensities of the

CTMC ξt without changing the value i of the first component. The following statements
specify these transitions:

(a) For non-diagonal elements of matrices D0 ⊗ I N
∑

n=0
Tn

if i = 0, i1 − 1and D0 ⊗ ITN if

i = i1, R when the underlying process νt makes a transition without generating a request.
(b) For non-diagonal elements of the matrix D1 ⊗ ITN , when the underlying process νt

makes a transition, a generated request is lost due to the buffer being full (case i = R).
(c) For elements of the matrix diag−{IW ⊗ Ln, n = 1, N}, when the process

{m(1)
t , . . . , m(M)

t }makes a transition leading to the end of the service but a new service does
not start because there are fewer than i1 requests in the buffer;

(d) For elements of the matrices IW ⊗ An, i = 0, i1 − 1, and IW ⊗ AN , i = i1, R, when
the process {m(1)

t , . . . , m(M)
t } makes a transition that does not lead to the end of the service.

(e) In the case of i1 = 1, for the elements of the matrix diag+{D1 ⊗ Pn(β1), n =
0, N − 1}, when a new request arrives and the buffer is empty. In this case, the arriving
request is immediately processed for service.

As a result, we obtain blocks Qi,i, i = 0, R, presented above.
The form of the blocks Qi,i+1, i = 0, R is explained as follows. These blocks contain

the transition rates of the CTMC ξt as the number of requests in the buffer increases by one.
This can only happen when a new request arrives in the system. The transition intensities
of the process νt at the moment of the request arrival are determined by the elements of the
matrix D1; therefore, the blocks Qi,i+1 are specified by the matrix diag{D1 ⊗ ITn , n = 0, N}

if i < i1 − 1, the matrix

 O
W

N−1
∑

n=0
Tn×WTN

D1 ⊗ ITN

 if there are i1 − 1 requests in the buffer, and

by the matrix D1 ⊗ ITN in all other cases.
Next, consider the blocks Qi,j, j < i, i = 1, R. First, let us explain the case where i = 1.

The form of the block Q1,0 significantly depends on the value of the parameter i1. Let us
consider the following three cases:

(1) If i1 = 1 (the server starts servicing, even if there is only one request in the buffer),
then reducing the number of requests in the buffer is possible only if the service is completed

(the matrix
(

O
WTN×W

N−1
∑

n=0
Tn

IW ⊗ LN PN−1(β1)
)

specifies the intensity of this event)

or the request is loss due to impatience (the matrix
(

O
WTN×W

N−1
∑

n=0
Tn

γIWTN

)
gives the

corresponding intensities).
(2) If i1 = 2, then a decrease in the number of requests in the buffer results in (a) the

loss of a request due to impatience. The intensities of this event are given by the matrix
γdiag{{(1− q1)IWTn , n = 0, N − 1}, IWTN} . Event (b) is also possible when there is a
free server and a single request in the buffer. This request wants to leave the system due
to impatience, but the system decides to service this single request. The corresponding
intensities are given by the matrix γq1diag+{IW ⊗ Pn(β1), n = 0, N − 1}. In addition, case
(c) is added. When there is a free server and a single request in the buffer, a new request
arrives, and a group of two requests begins service diag+{D1 ⊗ Pn(β2), n = 0, N − 1}.

(3) If i1 > 2, then, as in the previous case, a decrease in the number of requests in the
buffer is caused by events (a), (b), and (c), which is impossible. The corresponding intensity
matrices are determined in a similar way.

Then, consider the blocks Qi,i−1, i = 2, R. The transition of CTMC ξt from the state
with the value i for the first component in the state with a value i− 1 for this component
is possible only if the request is lost due to impatience. The corresponding intensities are
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given by the matrix iγdiag{{(1− qi)IWTn , n = 0, N − 1}, IWTN} for i < i1, by the matrix

i1γ

(
O

WTN×W
N−1
∑

n=0
Tn

IWTN

)
when there are i1, i1 6= 1, requests in the buffer, and by the

matrix iγIWTN when there are more than i1 requests in the buffer.
Let us explain the form of the blocks Qi,0, i = 2, i2. The transition of the CTMC ξt from

the state with a value i for the first component of the chain to the state where a value of
zero occurs when a group of size i is taken over for service. The following statements give
the corresponding intensities:

a. For the matrix iγqidiag+{IW ⊗ Pn(βi), n = 0, N − 1}, when there is a free server
and i, i = 2, i1 − 1 requests in the buffer, one of the requests wants to leave the buffer due
to impatience, but the system decides to take all requests from the buffer for servicing,
although their number is less than the minimum number allowable;

b. For the matrix diag+{D1 ⊗ Pn(βi1), n = 0, N − 1}, when, at the moment of the
arrival of a new request, a free server is available and i1 − 1, i1 6= 1, requests are already in
the buffer, and a group of i1 requests is taken for servicing;

c. For the matrix
(

O
WTN×W

N−1
∑

n=0
Tn

IW ⊗ LN PN−1(βi)
)

, when, at the moment when

one of the busy servers is released, a group of i requests waiting for service in the buffer is
taken over for service, i = i1, i2 if i1 6= 1 and i = i1 + 1, i2 if i1 = 1.

The blocks Qi,i−i2 , i = i2 + 1, R, contain the transition intensities of the CTMC ξt from
the state with the value i for the first component of the chain to a state with the value i− i2
for this component in the case when a group of requests of size i2 is taken for service at the
moment of service completion on one of the busy servers. These intensities are determined

by the matrix
(

O
WTN×W

N−1
∑

n=0
Tn

IW ⊗ LN PN−1(βi2)
)

if the size of the group of requests

remaining in the buffer does not exceed the parameter i1 or the matrix IW ⊗ LN PN−1(βi2)
otherwise.

Theorem 1 is proven.

Because the CTMC ξt is regular and irreducible and its state space is finite, the
following invariant probabilities of the states of the chain exist:

π(i, n, ν, m(1), . . . , m(M)) = lim
t→∞

P{it = i, nt = n, νt = ν, m(1)
t = m(1), . . . , m(M)

t = m(M)},

i = 0, R, n = 0, N, ν = 1, W, m(l) = 0, n, l = 1, M,
M

∑
l=1

m(l) = n.

Then, let us form the vectors πi, i = 0, R of these probabilities enumerated in the
reverse order of the components m(1), . . . , m(M) and in the direct order of the components
n and ν.

It is well known that the probability vectors πi, i = 0, R satisfy the following system
of linear algebraic equations:

(π0, π1, . . . , πR)Q = 0, (π0, π1, . . . , πR)e = 1,

which are called an equilibrium or Chapman–Kolmogorov equations.
To solve this system, we developed the algorithm presented below Algorithm 1.

Remark 1. Because the generator Q does not have a three-block diagonal form, the presented
algorithm is not trivial. It effectively exploits the block structure of the generator. All matrices, the
inversions of which are used in this algorithm, are non-singular due to O. Tausski theorem (see,
e.g., [42,57]), because they are irreducible sub-generators and the diagonal entry strictly dominates
in at least one row. If the matrix, say A, is the irreducible sub-generator with the mentioned
dominance, then (i) the matrix A−1 exists and (ii) the matrix (−A)−1 is non-negative. Thus, the
presented algorithm works with only non-negative matrices and does not use a subtraction operation.
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Hence, it is numerically stable. Therefore, it may be successfully exploited for the computation of the
stationary distribution of the states of a variety of queuing systems with group service of requests.

Algorithm 1: Computation of the stationary probabilities

1. Calculate the matrices X (i)
k by using the following formulas:

X (0)
k =


−Qk,0Q−1

0,0 , k = 1, i2;
O

WTN×W
N−1
∑

n=0
Tn

, k = i2 + 1, R,

X (i)
k =



−(X (i−1)
i+1 Qi−1,i + Qi+1,i)(Qi,i +X

(i−1)
i Qi−1,i)

−1, k = i + 1;

−X (i−1)
k Qi−1,i(Qi,i +X

(i−1)
i Qi−1,i)

−1, k = i + 2, i2 + i− 1;
−Qi2+i,i(Qi,i +X

(i−1)
i Qi−1,i)

−1, k = i2 + i;
O

WTN×W
N−1
∑

n=0
Tn

, i < i1;

OWTN×WTN , i ≥ i1;
k = i2 + i + 1, R;

,

i = 1, R− i2,

X (i)
k =

{
−(X (i−1)

i+1 Qi−1,i + Qi+1,i)(Qi,i +X
(i−1)
i Qi−1,i)

−1, k = i + 1;

−X (i−1)
k Qi−1,i(Qi,i +X

(i−1)
i Qi−1,i)

−1, k = i + 2, R;
,

i = R− i2 + 1, R− 2,

X (R−1)
R = −(X (R−2)

R QR−2,R−1 + QR,R−1)(QR−1,R−1 +X
(R−2)
R−1 QR−2,R−1)

−1.

2. Calculate the matrices Yi as follows:

YR = I, Yi =
R

∑
k=i+1

YkX
(i)
k , i = R− 1, R− 2, . . . , 0.

3. Find the vector πR as the only solution to the system

πR(X
(R−1)
R + QR,R) = 0,

πR

R

∑
k=0

Yke = 1.

4. Calculate the vectors πi as πi = πRYi, i = 0, R− 1.

4. Performance Characteristics

Having calculated the probability vectors πi, i = 0, R, it is possible to present
the formulas for the computation of the main characteristics of the performance of the
considered system.

The average number of requests in the buffer is

Lbu f f er =
R

∑
i=1

iπie.

The average number of busy servers is

Nserv =
i1−1

∑
i=0

N

∑
n=1

nπ(i, n)e +
R

∑
i=i1

Nπie.

The average intensity of the server releases is
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µrelease =
i1−1

∑
i=0

N

∑
n=1

π(i, n)(IW ⊗ Ln)e +
R

∑
i=i1

πi(IW ⊗ LN)e.

The probability that an incoming request will find the buffer full and leave the system is

Pent−loss =
1
λ

πR(D1 ⊗ ITN )e.

The probability that a request will start its service immediately upon entering the
system is

Pto−serv =
1
λ

N−1

∑
n=0

π(i1 − 1, n)(D1 ⊗ ITn)e.

The rate of requests entered for service is

µto−serv = i1
N−1

∑
n=0

π(i1 − 1, n)(D1 ⊗ ITn)e+

+
R

∑
i=i1

min{i, i2}πi(IW ⊗ LN)e +
i1−1

∑
i=1

i2qiγ
N−1

∑
n=0

π(i, n)e.

The probability of losing a request from the buffer due to impatience is

Pimp−loss =
1
λ
(

i1−1

∑
i=1

i(1− qi)γ
N−1

∑
n=0

π(i, n)e +
i1−1

∑
i=1

iγπ(i, N)e +
R

∑
i=i1

iγπie).

The average size of a group of requests taken for servicing is

Nbatch =
µto−serv

µrelease
.

The probability of losing a request from the buffer due to impatience while there is a
free server is

Pimp−loss
idle−server =

1
λ

i1−1

∑
i=1

iγ(1− qi)
N−1

∑
n=0

π(i, n)e.

The probability of losing a request from the buffer due to impatience at a time when
all servers are busy is

Pimp−loss
all−busy−servers =

1
λ
[
i1−1

∑
i=1

iγπ(i, N)e +
R

∑
i=i1

iγπie].

The probability that, at an arbitrary moment, there is at least one free server in the
system is

Pidle−server =
i1−1

∑
i=0

N−1

∑
n=0

π(i, n)e.

The probability that at an arbitrary moment there are requests in the buffer while there
is at least one free server is

Prequests
idle−server =

i1−1

∑
i=1

N−1

∑
n=0

π(i, n)e.

The probability of losing an arbitrary request is

Ploss = 1− µto−serv

λ
= Pimp−loss + Pent−loss.
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The probability that a group with a size of less than i1 undergoes servicing is

Pbatch<i1 =
1

µrelease

i1−1

∑
i=1

iqiγ
N−1

∑
n=0

π(i, n)e.

The probability that a group of the maximum size i2 undergoes servicing is

Pbatch=i2 =
1

µrelease
(

R

∑
i=i2

πi(IW ⊗ LN)e + δi1−i2,0

N−1

∑
n=0

π(i1 − 1, n)(D1 ⊗ ITn)e).

The probability that a group of the maximum size from the interval [i1, i2) undergoes
servicing is

Pi1≤batch<i2 =
(1− δi1−i2,0)

µrelease
(

N−1

∑
n=0

π(i1 − 1, n)(D1 ⊗ ITn)e +
i2−1

∑
i=i1

πi(IW ⊗ LN)e).

5. Numerical Examples

In this section, we consider the problem of the optimal choice of the number of required
vehicles N and the value of the parameter i1 that defines the minimal desirable group size
for service in a delivery system.

To this end, let us consider a storehouse that can place up to R = 300 orders for
delivery. We believe that one vehicle can accommodate up to i2 = 20 orders. Orders are
received at the storehouse in accordance with the MAP that is specified by the matrices

D0 =

(
−10.1599 0.32778
0.32778 −2.76287

)
, D1 =

(
9.44979 0.382355

0.0491604 2.38593

)
,

and has an average intensity of λ = 5 orders per minute as well as the coefficient of
variation cvar = 1.8333 and the correlation coefficient ccor = 0.183092.

The delivery time of a group consisting of i orders by one vehicle has a phase-type
distribution with the parameters (βi, S), where the matrix S has the form

S =

(
−0.01 0

0 −0.05

)
,

and the vector βi is given as

βi = (i/i2, 1− i/i2), i = 1, i2.

Thus, we assume that the average delivery time for one order is b(1)1 = 24 min, and

the average delivery time for i2 = 20 orders is b(i2)1 = 100 min.
We assume that the intensity of impatience of orders from the buffer is determined by

the parameter γ = 0.01. Thus, the average time that an arbitrary request can wait in the
buffer is 100 min.

As noted earlier, the purpose of this experiment is to determine the optimal values
for the parameters of the number of vehicles N and the threshold i1, which defines the
minimal desirable size for the group taken for service.

Let us vary the parameter N from 1 to 50 with a step of 1 and the parameter i1 from 1
to i2 = 20, also with a step of 1. We assume that the probabilities defining the tolerance to
servicing a group smaller in size than the parameter i1 in the case of the end of the patience
time of one of the requests in the buffer are given as

qi = i/i1, i = 1, i1 − 1.
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First, let us analyze the dependence of the main characteristics of the system’s perfor-
mance on the parameters N and i1. Figures 2 and 3 illustrate the dependence of the average
number Lbu f f er of requests in the buffer and the average number Nserv of busy servers on
the parameters N and i1.

Figures 4 and 5 illustrate the dependence of the probabilities Pidle−server and Prequests
idle−server

on the parameters N and i1.
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Figure 2. Dependence of the average number Lbu f f er of requests in the buffer on the parameters N
and i1.
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Figure 3. Dependence of the average number Nserv of busy servers on the parameters N and i1.

As can be seen from Figure 2, the average number Lbu f f er of requests in the buffer
decreases as the number of available servers increases. For small values of N, the val-
ues of Lbu f f er practically do not depend on the parameter i1. For example, for N = 5,
Lbu f f er = 285.16345 for i1 = 1 and for i1 = 20. This is explained by the fact that, for the
given system parameters, for small values of N, the probability that there will be fewer
than i2 requests in the buffer is negligibly small, and the servers do not stand idle but begin
servicing, as follows on from Figures 4 and 5, immediately after being released. For the
same reason, other performance characteristics in the case under consideration also do
not depend on i1 for small values of N. For bigger values of N, in the considered case, the
average number Lbu f f er of requests in the buffer increases with an increase in the parameter
i1. For example, for N = 50, Lbu f f er = 3.05371 for i1 = 1 and Lbu f f er = 8.95773 for i1 = 20.
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Figure 4. Dependence of the probability Pidle−server that, at an arbitrary moment, there is at least one
free server on the parameters N and i1.
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Figure 5. Dependence of the probability Prequests
idle−server that, at an arbitrary moment, there are requests in

the buffer, while there is at least one free server on the parameters N and i1.

As shown in Figure 3, the average number of busy servers increases when the parame-
ter N increases. For small values of N, the growth is linear; that is, an increase in N by one
leads to an increase in Nserv by the same unit. With a further increase in N, the dependence
on N weakens, while for larger values of i1, this dependence weakens earlier. As N grows,
Nserv depends on i1. An increase in i1 leads to a decrease in Nserv, since an increase in i1
leads to an increase in the probability Pidle−server that, at an arbitrary moment, there is at
least one free server and the probability Prequests

idle−server that there is at least one free server while
there are requests in the buffer, which are presented in Figures 4 and 5. Thus, servers are
idle more often, which leads to a decrease in the average number of occupied servers.

Figures 6 and 7 show the dependence of the average size Nbatch of a group of requests
taken for servicing and the probability Pbatch<i1 that a group with a size of less than i1
undergoes servicing on the parameters N and i1.

As one can see from Figure 6, for small N values, the service is provided only for
groups of requests with a maximal size of i2 = 20. As N increases, the values of Nbatch
decrease, and the rate of decrease significantly depends on the value of the parameter i1: the
higher i1, the lower the rate of decrease of Nbatch. For example, for N = 50, Nbatch = 3.33746
for i1 = 1, and Nbatch = 18.78027 for i1 = 20. Under the fixed value of N, the average size
Nbatch of a group taken for servicing increases with an increase in i1. This is because, with
an increase in i1, the system tries to avoid serving small groups of requests.
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Figure 6. Dependence of the average size Nbatch of a group of requests taken for servicing on the
parameters N and i1.
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Figure 7. Dependence of the probability Pbatch<i1
that a group with a size of less than i1 undergoes

servicing on the parameters N and i1.

The probability Pbatch<i1 that a group with a size of less than i1 undergoes servicing,
the shape of which is depicted in Figure 7, grows with increases in N and i1. The growth of
N is explained by the fact that, with an increase in N, the probability Prequests

idle−server also grows
(see Figure 5). Thus, when a request tries to leave the system due to impatience, a free
server is more likely to be available, and the system has the possibility of providing service
to a smaller group. The growth by i1 can be explained by the same reasons and also by
the fact that with an increase in i1, the number of requests in the buffer increases, so more
requests try to leave the system due to impatience.

Figures 8–10 show the dependence of the probability Pent−loss that an arriving request
will find the buffer full and leave the system, the probability Pimp−loss of losing a request
from the buffer due to impatience, and the probability Ploss of losing an arbitrary request
on the parameters N and i1.

One can see from these figures that the loss probabilities essentially depend on the
number of servers N. With an increase in N, all loss probabilities decrease. The impact of
the parameter i1 on the loss probabilities in the considered example is not so essential. This
is mainly caused by the high capacity of the buffer R = 300. For example, to lose a request
upon arrival, it is necessary to have a full buffer, and when the buffer is almost full, the
service is provided to groups of the maximum possible size. Thus, we can mention that the
probability Pent−loss increases slightly with an increase in the parameter i1, since the average
number of requests in the buffer grows. The dependence of the probability Pimp−loss on i1
under some fixed N can be non-monotonic. For example, for N = 50, Pimp−loss = 0.0061
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for i1 = 1, Pimp−loss = 0.00195 for i1 = 5, and Pimp−loss = 0.00667 for i1 = 20. This can
be explained by the following reasoning. For small i1, the servers are more frequently
utilized, and when a request shows impatience, it is possible to have no idle service at this
moment, and the request will leave the system with a probability of 1. Thus, the probability
Pimp−loss should decrease with an increase in i1. However, on the other hand, an increase in
i1 leads to an increase in the number of requests in the buffer; thus, more requests show
their impatience and leave the system. So, the probability Pimp−loss should increase with
an increase in i1. All of these reasons explain the non-monotonic shape of the dependence
of Pimp−loss on i1. The loss probability Ploss is the sum of the probabilities Pimp−loss and
Pent−loss; thus, this probability can also behave non-monotonically with an increase in i1.
By the way, the minimal value of the loss probability is also equal to 0.00195, and this is
reached for N = 50 and i1 = 5. This proves the necessity of finding the optimal values of i1
to improve the system’s performance.
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Figure 8. Dependence of the probability Pent−loss that an incoming request will find the buffer full
and leave the system on the parameters N and i1.
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Figure 9. Dependence of the probability Pimp−loss of losing a request from the buffer due to impatience
on the parameters N and i1.

Looking at Figure 10, we can conclude that, for large values of N, the loss probability
Ploss becomes rather small. It is evident that the use of a server that corresponds to a
vehicle in a real system costs money. It is necessary to buy vehicles, pay the costs of repairs,
maintenance, and fuel, pay salaries to forwarders, etc., so it makes no sense to maintain
an excessive number of vehicles. To this end, it is necessary to find the optimal number of
vehicles N.
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Figure 10. Dependence of the probability Ploss of losing an arbitrary request on the parameters N
and i1.

Let us assume that the quality of the system’s operation can be determined in terms of
the following cost criteria:

E = E(N, i1) = aµto−serv − c1λPent−loss − c2λPimp−loss − dN.

Here, a is a profit for the service of one request, c1 and c2 are the charges for the loss
of a request at the entrance to the system and due to impatience, respectively, and d is the
cost for maintaining one server per unit of time. Therefore, the criterion E determines the
average system’s profit per unit of time, and our managerial goal is to obtain parameters
such as N and i1 under which the system’s profit is maximal.

In this numerical example, let us fix the following cost coefficients:

a = 1, c1 = 1, c2 = 5, d = 0.02.

Figure 11 shows the dependence of the cost criterion E on the parameters N and i1.
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Figure 11. Dependence of the cost criterion E on the parameters N and i1.

As we can observe from Figure 11, the system has essential losses if the number of
servers N is small. With an increase in N, firstly, the system’s profit grows sharply and then
starts to decrease slightly. This decrease is not essential due to the fact that we chose the
small cost coefficient d = 0.02 and the servers are cheap in the considered case. Otherwise,
the decrease has to be more essential. In the considered example, the optimal value for the
cost criterion is E∗(N∗, i∗1) = 4.1125 and it is reached for N∗ = 36 and i∗1 = 12. This means
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that it is necessary to have 36 vehicles and not start a new service after the service has been
completed on some server if the number of requests in the buffer is less than 12.

If we fix N = 50 and choose the parameter i1, then the optimal value of the cost
criterion is E∗(50, i∗1) = 3.94139 and it is reached for i∗1 = 5. Thus, for different values of N,
the optimal value of i1 can differ. Our results can help to determine the optimal values for
the control parameters.

6. Conclusions

The mathematical model of a delivery system that acts as a multi-server queuing
system with group service of requests is built. The model suggests a reasonably general
MAP flow for the requests and a phase-type distribution of the service time that depends
on the size of the group. The possible impatience of waiting requests is taken into account.
In contrast to the usual rule shown in the literature that the size of the serviced group must
have values between certain fixed minimum and maximum values, it is suggested that
groups of smaller size can be processed to reduce the probability of a request loss due
to impatience.

The multi-dimensional CTMC with a generator with the block lower Hessenberg
structure describes the dynamics of the system. An effective algorithm for computing
the steady-state distribution of this CTMC is presented. This algorithm can be applied
to the analysis of a variety of queueing models with group service of requests. Formulas
for the computation of the key performance characteristics of the system were derived.
The dependence of the basic performance characteristics on the number of servers and
the minimum size of the group was numerically illustrated. The problems of the optimal
values of the number of servers and the minimum size of the group were formulated and
numerically solved.

The results can be extended in several directions, e.g., to account for the possibility
of the batch arrival of the requests, the fluctuation of the number of available servers, the
parameters of the service time distribution, etc. Another criterion related to the quality of
the system’s operation can be considered, taking into account restrictions on the values
of some characteristics of the system. The maximum size of the group can also be used
as a parameter with an impact on the value of the cost criterion, and the problem of its
optimization can be numerically solved.

The analyzed model has essentially wider applications than the delivery systems.
Possible applications in various manufacturing systems (see, e.g., [18]) and transportation
networks (see, e.g., [58]), in particular, car/ride-share systems (see, e.g., [59]) look promising.
The results can be used for the optimal choice of the number of servers to provide the
required quality for the requested service, the maximum capacity of the servers and their
delivery speed and cost, and the economically reasonable minimum size of a group.
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