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Abstract: Relational triple extraction, a fundamental procedure in natural language processing
knowledge graph construction, assumes a crucial and irreplaceable role in the domain of academic
research related to information extraction. In this paper, we propose a Double-Headed Entities and
Relations Prediction (DERP) framework, which divides the entity recognition process into two stages:
head entity recognition and tail entity recognition, using the obtained head and tail entities as inputs.
By utilizing the corresponding relation and the corresponding entity, the DERP framework further
incorporates a triple prediction module to improve the accuracy and completeness of the joint relation
triple extraction. We conducted experiments on two English datasets, NYT and WebNLG, and two
Chinese datasets, DuIE2.0 and CMeIE-V2, and compared the English dataset experimental results
with those derived from ten baseline models. The experimental results demonstrate the effectiveness
of our proposed DERP framework for triple extraction.

Keywords: triple extraction; entity recognition; relation extraction; joint extraction

MSC: 68T50 Natural language processing

1. Introduction

With the development of natural language processing and knowledge graphs, data
storage and presentation methods for structured text have become more mature, but there
are still many unsolved problems in the processing of unstructured and semi-structured
text [1]. Extracting triple groups is crucial in natural language processing and knowledge
graph construction. In constructing knowledge graphs, unstructured texts usually extract
entities and form correspondences by forming a (head entity, relation, tail entity) triple.

Existing triple extraction methods mainly include two major kinds, pipeline extraction
methods and joint extraction methods. Traditional pipeline extraction methods divide
knowledge extraction into two subtasks [2]: named entity recognition and relation extrac-
tion. However, this approach ignores potential information interactions between entities
and relations, leading to incorrect relation extractions or failure to recognize entity relations.
Many previous experiments have demonstrated that a joint learning approach greatly
improves the effectiveness of entity and relation extraction due to the consideration of the
information interactions between the two subtasks, so most of the current research for the
task of entity and relation extraction adopts the joint learning approach.

In recent scholarship, there has been a notable surge in research attention directed
toward the intricacies of overlapping triples, as shown in Figure 1. This phenomenon is
exemplified in sentences wherein there is the potential presence of both entity pair overlap
(EPO) triples and single entity overlap (SEO) triples. This burgeoning area of inquiry
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underscores the escalating interest in dissecting and comprehending the complexities
inherent to overlapping triples in textual data.
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Figure 1. Normal, entity pair overlap (EPO) triple, and single entity overlap (SEO) triple cases. In
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Previous research has revealed several shortcomings in the extraction of multiple
relationships (overlapping triples) within the same entity. For example, the NovelTagging
method uses a joint decoding of sequence annotations to treat entity and relation extraction
as a sequence annotation problem [3]; however, this method only assigns a single label
to each token, rendering it incapable of handling overlapping triples in the data. In
contrast, the CasRel framework models relations as functions that map subject to object [4],
successfully overcoming the issue of poor handling of overlapping triples by previous
models. Nevertheless, the CasRel framework suffers from the disadvantage of incorrectly
identifying the head entity, leading to failure in identifying the relation and the tail entity.
An overview of the CasRel framework structure is shown in Figure 2.
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In this study, a head entity recognition module is used to predict the triple related to
the head entity and a tail entity recognition module is added to predict the triple related to
the tail entity. Combining the information from the two modules results in a triple of higher
accuracy. Experimental results show that the performance of the framework is improved
by combining the BERT encoder. This work contributes as follows:

1. A double-headed entities and relations prediction framework for joint triple extrac-
tion based on the BERT encoder is proposed. The named entity recognition task is
decomposed into head entity recognition and tail entity recognition.

2. To ensure recognition accuracy, a triple prediction module, which gives different
weights to the triple derived from the head entity recognition and the triple extracted
from the tail entity recognition, is set up to improve the accuracy of triple extraction.

3. To validate the method, experiments were conducted on two English public datasets,
NYT and WebNLG, and two Chinese datasets, DuIE2.0 and CMeIE-V2, and the
proposed framework was compared with ten baselines.

2. Related Work

In recent years, many methods have been proposed to accomplish knowledge extrac-
tion that can be categorized into pipeline extraction methods and joint learning methods
based on the learning process.

2.1. Pipeline Extraction Methods

Usually, pipeline extraction methods consist of the entity recognition stage and the
relation extraction stage, where the output of the previous stage becomes the input of the
next stage. This approach has the advantage that a specific model can handle a responding
task, but it may also lead to errors accumulating in each stage.

The primary objective of named entity recognition (NER) is to identify and classify
named entities within textual content, such as people, places, time, purpose, etc., with
specific meanings. It is mainly responsible for automatically extracting the basic element
entities in the knowledge graph from the unstructured and semi-structured. In order to
uphold the quality of the knowledge graph, it is imperative to ascertain the precision and
comprehensiveness of the entities extracted therein. Li et al. proposed a meta-learning
method, integrating distributed systems with a meta-learning approach to extract relations
among Chinese entities [5]. Through the utilization of machine learning and neural network
methodologies, particularly leveraging the attention mechanism within the domain of
natural language processing, Li et al. proposed a combination of conditional random
fields (CRF) and bidirectional long short-term memory (BILSTM) for extracting information
in a mathematical language [6]. Luo et al. introduced a neural network model, known
as the attention-based bidirectional long short-term memory with a conditional random
field layer (Att-BiLSTM-CRF), for document-level chemical entity recognition [7]. Li et al.
advocated the utilization of distinct layers, specifically long short-term memory (LSTM) for
text feature extraction and conditional random field (CRF) for label prediction decoding [8].
Ren proposed a method to enhance entity recognition by transforming text into a vector
representation combining contextual and global features through a pretrained model and a
graph neural network GCN [9].

Relation extraction refers to extracting relations between connecting basic element
entities from the unstructured and semi-structured. The mesh structure of the knowledge
graph is similar to the structure of the brain for storing knowledge. Neurons represent
entities and record basic information, and the process of extracting relations activates some
of the neurons (entities) and adds them to the brain structure (knowledge graph), using
relations to connect the entities to the whole knowledge graph. Zeng et al. conducted
an analysis of the pivotal role played by the order of relation extraction and employed
reinforcement learning techniques to ameliorate the efficiency of relation extraction [10].
Han et al. proposed a one pass model based on BERT, capable of predicting entity relations
by processing the text in a single pass [11]. Chen et al. utilized a neutralized feature engi-
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neering approach for entity relation extraction, namely, enhancing neural networks with
manually designed features [12]. Yuan et al. proposed a relation-aware attention network to
construct relation-specific sentence representations [13]. Wan et al. proposed a span-based
multi-modal attention network (SMAN) for joint entity and relation extraction [14].

2.2. Joint Learning Methods

In pipeline learning methods of relation extraction, the intrinsic connection between
entities and relations is often overlooked, and the federated model is an excellent solution
to this problem. Huang et al. suggested using soft label embedding as an effective means
to facilitate information exchange between entity recognition and relation extraction [15].
Wei et al. proposed a novel cascade binary tagging framework (CASREL), which models
relations as functions that map subjects to objects [4]. Liu et al. introduced an attention-
driven integrated model, primarily comprising an entity extraction module and a relation
detection module, as a means to effectively confront the prevailing challenges [16]. Yu
et al. decomposed the comprehensive extraction task into two mutually interconnected
subtasks: one subtask handles the head entities, and the other subtask deals with the
tail entities related to the head entities and their respective relations [17]. Guo et al.
introduced an integrated model for the extraction of entities and relations pertaining to
concepts within the realm of cybersecurity (CyberRel) [18], and they adopted a perspective
wherein the triple is conceived as a sequence of entity relations. Subsequently, Lv et al.
constructed the joint extraction of entity mentions and relations model, which was based
on the bidirectional long short-term memory and maximum entropy Markov model (Bi-
MEMM) [19]. Zheng et al. introduced an integrated framework for extracting relational
triples, underpinned by the principles of potential relation and global correspondence
(PRGC) [20]. Li et al. proposed a relation-aware embedding mechanism (RA) for relation
extraction, with attention mechanisms being used to merge relational tags into sentence
embeddings, which are used to distinguish the importance of relational tags for each
word [21]. Huang et al. proposed a novel translation-based unified framework, which
is used to solve redundant predictions, overlapping triples, and relation connections
problems [22]. Liu et al. presented a model referred to as the bidirectional encoder
representation from transformers–multiple convolutional neural network (BERT–MCNN),
which has demonstrated a high level of accuracy and stability [23].

3. CasRel Framework

The goal of triple extraction is to identify all possible triples (head entity, relation,
tail entity) in a sentence, which may contain some overlapping and shared entities. The
structure of the CasRel framework is shown in Figure 2. The CasRel framework presents
a fresh perspective on the task of triple extraction. It introduces a novel cascade binary
tagging framework, known as CasRel, that effectively addresses the complex challenge of
managing overlapping relations by systematically establishing subject–object mappings
within sentences [4]. This framework consists of a set of functions that identify entities and
their related relations in an entity tagger and relation-specific object taggers. By employing
the CasRel framework, the issue of sharing the same entity in multiple triples is addressed
effectively, providing multiple related relations and corresponding entities for each entity.
However, in the CasRel framework, if the subject tagger does not recognize an entity, the
associated triad will be missed.

To solve the triple extraction omission that occurs in the CasRel framework, we
propose an improved DERP framework based on the CasRel framework. Which improves
the entity recognition accuracy by adding a tail entity recognition module in the entity
tagger, and adding a triple prediction module after relation-specific object taggers. This
framework will combine head entities, tail entities and relations to make predictions and
comes up with a more accurate triple.
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4. The DERP Framework

Entity recognition and relation extraction are the design priorities for triple extraction.
The primary objective of this DERP framework is to ascertain the complete set of potential
triples within a given sentence, acknowledging the potential existence of entities with
overlapping attributes in some instances.

The ultimate prediction of the (head entity, relation, tail entity) triple is achieved
through the recognition and forecasting of the acquired triples within the triple prediction
layer. The DERP framework is shown in Figure 3.
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group marked with the same color.

In the DERP framework, we model relations as functions that map topics to objects.
We optimize the previously commonly used learning relation classifiers f (E1, E2)→ R , to
learning relation-specific taggers fR(E1)→ E2 . Each tagger will identify entities that may
exist under a specific relationship, or entities that may not be returned. If the entity is not
returned, it indicates that there is no triple in the current entity and relation.

When dealing with overlapping triples, the DERP framework uses an entity tagger
for entity recognition and allows multiple relationship representations in relation-specific
entity taggers. Within relation-specific entity taggers, multiple relationships and their
corresponding entities can be obtained. By using the DERP framework, different types of
data structures, including EPO triples and SEO triples, can be effectively handled.
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We used an entity tagger to identify head entities at the very beginning of the research
on framework development and used the identified head entities to find related relations
and tail entities. During the experiments, it was found that if there is a head entity in
the entity tagger that is missing, this triple will be missed in the final triple prediction,
especially in the case of overlapping triples where a head entity corresponds to more than
one related tail entity. There are also cases where some of the tail entities related to this head
entity are missed when performing the triple extraction; in this case, we can better find
these missing tail entities by adding a tail entity recognition module to the entity tagger.
So, two matching entities and accurate relations between entities are achieved by adding a
tail entity recognition module to the entity tagger, and by looking up the corresponding
relation and another matching entity in the relation-specific entity taggers.

During the experiment, by learning and improving the previous model, we added
the tail entity recognition module. If the probability of recognizing the correct triple by
the head entity module only is P(Head) and the probability of recognizing the correct
triple by the tail entity module only is P(Tail), we will increase the probability of finally
recognizing the correct triple by combining the two entity modules with the following
probability equation:

P(Triple) = P(Head) ∪ P(Tail)
= P(Head) + P(Tail)− P(Head ∩ Tail)

(1)

where P(Triple) is the probability of obtaining the correct triple, P(Head) is the probability
of obtaining the correct triple by only using a single head entity recognition module, P(Tail)
is the probability of obtaining the correct triple by only using a single tail entity recognition
module, and P(Head ∩ Tail) is the probability of duplicate triples obtained by the head
entity recognition module and tail entity recognition module.

4.1. BERT Encoder

BERT mainly consists of N layers of transformer block. A BERT encoder extracts
sentence feature information from sentence S and inputs the feature information into the
entity tagger.

h0 = OhotWn + Wp (2)

Sri = BERT(ri) (3)

where Ohot is the one-hot vector matrix indexed in the input sentence, Wn is the word
embedding matrix, Wp is the positional embedding matrix, p in Wp denotes the positional
index in the input sequence, and Sri is the i-th relation type embedding.

4.2. Entity Tagger

Compared with the CasRel framework, the entity recognition is divided into head
entity recognition and tail entity recognition in the entity tagger, which reduces the situation
of missing triples due to the omission of the first stage of entity recognition, and also
improves the accuracy of the extraction of overlapping triples [24].

The BERT encoded sentence is entered in the entity tagger to extract head and tail
entities by the binary method.

Within the entity tagger, the identification of entity positions within sentences encoded
by the BERT encoder is achieved. In this module, two binary classifiers are designed
to check for the start and end positions of entity words. By setting specific thresholds,
if the probability surpasses the designated threshold, the token is marked as 1; other-
wise, it is marked as 0. The following is specific to the head entity recognizer and tail
entity recognizer:

pHE_start
i = sigmoid

(
WHE

startx
HE
i + bHE

start

)
(4)
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pHE_end
i = sigmoid

(
WHE

end xHE
i + bHE

end

)
(5)

pTE_start
i = sigmoid

(
WTE

startx
TE
i + bTE

start

)
(6)

pTE_end
i = sigmoid

(
WTE

endxTE
i + bTE

end

)
(7)

where pHE_start
i , pHE_end

i , pTE_start
i , and pTE_end

i are the probability of the marker position
being predicted to be the start and end positions of the head entity and the tail entity, xi
denotes the i-th marker in sentence S, WHE

start, WHE
end , WTE

start, and WTE
end denote the training

weights of the head entities and tail entities, and bHE
start, bHE

end , bTE
start, and bTE

end denote the bias of
the head entities and tail entities. In the use of the model, we need to keep the dimensions
of the start binary classifier and the end binary classifier the same.

The entity recognition module uses the following likelihood function to recognize the
range of sentences that have been encoded by the encoder:

pθ(EHead | XHE) = ∏t∈{HE_start,HE_end}∏
L
i=1

(
pt

i
)I{yt

i=1}(1− pt
i
)I{yt

i=0} (8)

pθ(ETail | XTE) = ∏t∈{TE_start,TE_end}∏
L
i=1

(
pt

i
)I{yt

i=1}(1− pt
i
)I{yt

i=0} (9)

where L is the length of the sentence, I{z} = 1 if z is true and 0 otherwise, yHE_start
i , yHE_end

i ,
yTE_start

i , and yTE_end
i are the i-th tag in the sequence that marks the start position and the

end position.

4.3. Relation-Specific Entity Taggers

In the relation-specific entity taggers, an entity tagger is assigned to each relation
word. The relation terms are used to correspond to the head entity or tail entity extracted
in the previous layer to extract the entity in satisfying the relations. The calculations are
shown below:

pHR_start
i = sigmoid

(
WHR

start

(
xHE

i + vk
E

)
+ bHR

start

)
(10)

pHR_end
i = sigmoid

(
WHR

end

(
xHE

i + vk
E

)
+ bHR

end

)
(11)

pTR_start
i = sigmoid

(
WTR

start

(
xTE

i + vk
E

)
+ bTR

start

)
(12)

pTR_end
i = sigmoid

(
WTR

end

(
xTE

i + vk
E

)
+ bTR

end

)
(13)

where pHR_start
i , pHR_end

i , pTR_start
i , and pTR_end

i are the probabilities that the head entity and
the tail entity at the labeled position are predicted to be the entity start position and end
position, vk

E is the relation-specific entity tagger’s vector of coded representations of the kth
subject detected in the module, WHE

start, WHE
end , WTE

start, and WTE
end denote the training weights

of the head entities and tail entities, and bHE
start, bHE

end, bTE
start, and bTE

end indicate deviations of
head entities and tail entities.

Relation-specific entity taggers use the following likelihood function to identify the
range of sentences that the encoder has encoded:

pθ(ETail | EHead, XHE) = ∏t∈{HE_start,HE_end}∏
L
i=1

(
pt

i
)I{yt

i=1}(1− pt
i
)I{yt

i=0} (14)

pθ(EHead | ETail , XTE) = ∏t∈{TE_start,TE_end}∏
L
i=1

(
pt

i
)I{yt

i=1}(1− pt
i
)I{yt

i=0} (15)
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where L is the length of the sentence, I{z} = 1 if z is true and 0 otherwise, and yHE_start
i ,

yHE_end
i , yTE_start

i , and yTE_end
i are the i-th tags in the sequence that marks the start position

and the end position.

4.4. Triple Prediction

The relation-specific entity taggers identify the head entity, tail entity, and the cor-
responding relations and use the method of entity relation prediction to match the head
entities and tail entities identified in the entity tagger using the following method:

fHE_start =

{
1, pHR_start

i ≥ λ1
0, pHR_start

i < λ1
(16)

fHE_end =

{
1, pHR_end

i ≥ λ2

0, pHR_end
i < λ2

(17)

fTE_start =

{
1, pTR_start

i ≥ λ3

0, pTR_start
i < λ3

(18)

fTE_end =

{
1, pTR_end

i ≥ λ4

0, pTR_end
i < λ4

(19)

When fHE_start, fHE_end, fTE_start, and fTE_end equal to 1, the head entity or tail entity
corresponding to the entity extracted in entity tagger and the corresponding relation is
obtained, and if the value is equal to 0, the triple is excluded. λ1, λ2, λ3, and λ4 are the
set thresholds.

gHE_TE = {HeadEntity, Relation, TailEntity} (20)

gTE_HE = {HeadEntity, Relation, TailEntity} (21)

g = gHE_TE ∪ gTE_HE (22)

where gHE_TE represents the triplets of the tail entity and the relation between entities
obtained based on the head entity, gTE_HE represents the triplets of the head entity and
the relation between entities obtained based on the tail entity, and g denotes the final
predicted triplets.

4.5. Loss Function

The training loss is defined as below:

L =
|D|
∑

j=1

[
∑

E∈Tj

log pθ

(
EHead

∣∣∣XHE
j

)
+ ∑

E∈Tj

log pθ

(
ETail

∣∣∣XTE
j

)
+ ∑

r∈Tj |E
log pφr

(
ETail | EHead, XHE

j

)
+ ∑

r∈Tj |E
log pφr

(
EHead | ETail , XTE

j

)
+ ∑

r∈RrTj |E
log pφr

(
ETail∅ | EHead, xj

)
+ ∑

r∈RrTj |E
log pφr

(
EHead∅ | ETail , xj

)]
(23)

where parameters θ =
{

θ, {∅r}r∈R
}

, pθ(EHead | XHE), and pθ(ETail | XTE) are defined in
Equations (7) and (8), and pφr (ETail | EHead, XHE) and pφr (EHead | ETail , XTE) are defined in
Equations (13) and (14).
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5. Experiments

The effectiveness of the proposed framework is validated with experiments. The
datasets and evaluation metrics are first introduced, and then the model names are com-
pared with different baseline models.

5.1. Experiment Setup and Experiment Description

As most of the previous studies conducted experiments using English datasets, this
study conducted experiments using two publicly English available datasets, NYT [25]
and WebNLG [26], and compared the results of the experiments with 10 baseline models.
Due to the specificity of the Chinese language, the complexity and difficulty of Chinese
triple extraction is considerably greater than that of English relations [27]. We used two
Chinese datasets, DuIE2.0 [28] and CMeIE-V2 [29]. DuIE2.0 is the most comprehensive
Chinese relational extraction dataset in the industry [30]. CMeIE-V2 is a Chinese medical
information extraction dataset, specifically designed for pediatrics and covering more than
a hundred common diseases.

This model performs head entity recognition and tail entity recognition in the entity
recognition part and performs the corresponding triple extraction based on the experimental
results. In the experiments, the head entity recognition model and the tail entity recognition
model are used individually for comparison experiments to verify the reliability and
validity of the experiments. The schematic diagram of the head entity recognition module
and the tail entity recognition module is shown in Figure 4.
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Figure 4. (a) Schematic diagram of the head entity recognition module. (b) Schematic diagram of the
tail entity recognition module.

The DERP framework is implemented using TensorFlow. In the BERT encoder section,
the framework is implemented on English datasets using the cased_L-12_H-768_A-12
model and on Chinese datasets using the RoBERTa model. Dropout is applied to word
embeddings and hidden states with a rate of 0.1. Network weights are optimized with
Adam. The learning rate is set as 1 × 10−5. The max length of the input sentence is set
to 100. The batch size is set as 6. We use 100 epochs and choose the model with the best
performance on the validation set to output results on the test set.

In our experimental procedures, for the sake of maintaining consistency with prior
research, an extracted triple is deemed accurate if the head entity, the relation, and the
tail entity are each validated as correct. The study reports standard metrics, including
micro-precision (Prec.), recall (Rec.), and F1 score (f1), in line with the established baselines.

5.2. Baseline

To evaluate the performance of the DERP Framework, it is compared with ten baseline
models: NovelTagging [3], CopyRE [31], GraphRel [32], ETL-Span [17], CopyMTL [33],
CasRel [4], TPLinker [34], RSAN [13], CGT [35], and RIFRE [36].

Unless otherwise noted, the results of these baseline models were taken from the
original papers.
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5.3. Results

Table 1 shows the results of our model relative to other baselines extracted from entities
and relations on both datasets. On the WebNLG dataset, DERP outperformed all baselines
in both recall and F1 score, and on the NYT dataset, DERP achieved the second highest F1
score. These results directly validate the utility of the proposed DERP framework.

Table 1. Precision (%), recall (%) and F1 score (%) of the compared models on the NYT and WebNLG
databases. * marks results quoted directly from the original papers.

Model
NYT WebNLG

Prec. Rec. f1 Prec. Rec. f1

NovelTagging* [3] 61.5 41.4 49.5 - - -
CopyRE* [31] 61.0 56.6 58.7 37.7 36.4 37.1

GraphRel* [32] 63.9 60.0 61.9 44.7 41.1 42.9
ETL-Span* [17] 53.8 65.1 59.0 84.3 82.9 83.1
CopyMTL* [33] 75.7 68.7 72.0 58.0 54.9 56.4

CasRel* [4] 89.7 89.5 89.6 93.4 90.1 91.8
TPLinker* [34] 91.3 92.5 91.9 91.8 92.0 91.9

RSAN* [13] 85.7 83.6 84.6 80.5 83.8 82.1
CGT* [35] 94.7 84.2 89.1 92.9 75.6 83.4

RIFRE* [36] 93.6 90.5 92.0 93.3 92.0 92.6

DERP 92.05 89.94 90.98 92.82 92.90 92.86
DERP_HeadEntity 91.12 90.47 90.80 92.10 92.18 92.28
DERP_TailEntity 92.03 72.49 81.10 93.42 86.70 90.35

Table 2 shows the experimental results of DERP on the DuIE2.0 and CMeIE-V2 datasets,
which shows an improvement over CasRel in terms of F1 score results. The F1 score of
DERP_HeadEntity is also higher than CasRel when experiments are conducted using
DERP_HeadEntity.

Table 2. Precision (%), recall (%) and F1 score (%) of the compared models on the DuIE2.0 and
CMeIE-V2 databases. * marks results of reproduced experiments.

Model
DuIE2.0 CMeIE-V2

Prec. Rec. f1 Prec. Rec. f1

CasRel* 69.56 65.54 67.49 47.56 42.56 44.91
DERP 71.06 65.35 68.09 47.51 46.11 46.80

DERP_HeadEntity 70.38 65.80 68.01 47.27 45.15 46.19
DERP_TailEntity 73.97 53.50 62.09 49.10 43.01 45.85

We conducted experiments on CasRel under the same experimental conditions as the
DERP framework. On the NYT dataset, CasRel* scored precision 88.87%, recall 90.34%,
and F1 score 89.60%; on the WebNLG dataset, CasRel* scored precision 91.92%, recall
91.39%, and F1 score 91.65%. Compared with the replicated CasRel* framework, DERP
has 1.38 percent improvement in F1 score on the NYT dataset, 1.21 percent improvement
in F1 score on the WebNLG dataset, 0.6 percent improvement in F1 score on the DuIE2.0
dataset, and 1.98 percent improvement in F1 score on the CMeIE-V2 dataset. On the four
datasets of NYT, WebNLG, DuIE2.0, and CMeIE-V2, in the experiments using head entity
recognition and tail entity recognition alone for triple prediction, DERP_HeadEntity has
higher precision, recall and F1 score than the original CasRel model in the experiments.
In the DERP tail entity experiment, the features of the tail entity are not as easy to recog-
nize as the features of the head entity, resulting in weaker F1 experimental results than
DERP_HeadEntity on the four datasets.

Table 1 also presents that in the experiments on the two English datasets, with the
existing models compared, a significant gap in processing performance between the models
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is found, which proves that DERP performs better in dealing with redundant entities
and overlapping triples. In the comparison experiments on four datasets, NYT, WebNLG,
DuIE2.0, and CMeIE-V2, it is demonstrated that dividing entity recognition into head
entity recognition and tail entity recognition, as in the DERP framework, can effectively
improve the accuracy of entity recognition, and can produce more accurate results in
relation extraction and triple prediction.

6. Conclusions

In this study, a double-headed entities and relations prediction framework for joint
triple extraction is proposed. The entity recognition part is decomposed into head entity
recognition and tail entity recognition. Specifically, relation prediction and tail entity recog-
nition are executed for the head entities, and in parallel, relation prediction and head entity
recognition are performed for the tail entities. In addition, a triple prediction module is
designed to solve the entity overlapping problem in previous joint triple extractions. We
systematically conducted experiments across four distinct datasets and compared them
with ten baseline models. By proceeding with joint triple extraction, a good foundation
is constructed for subsequent natural language processing or knowledge graph construc-
tion efforts. The results of these rigorous investigations substantiate that the conceptual
framework introduced in this paper exhibits certain improvements when juxtaposed with
prior models.

In the DERP framework, we have only improved the case of missing triple extraction,
and in future work, we will conduct research on the case of error in triple extraction. We will
also conduct research on Chinese text triple extraction to study the special characteristics of
Chinese text triple extraction and improve the accuracy and effectiveness of Chinese text
triple extraction.
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