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Abstract: In this study, we investigate a possible relationship between fuzzy differential subordination
and the theory of geometric functions. First, using the Al-Oboudi differential operator and the
Babalola convolution operator, we establish the new operator BSm,t

α,λ :An → An in the open unit

disc U. The second step is to develop fuzzy differential subordination for the operator BSm,t
α,λ. By

considering linear transformations of the operator BSm,t
α,λ, we define a new fuzzy class of analytic

functions in U which we denote by Tλ,t
z (m, α, δ). Several innovative results are found using the concept

of fuzzy differential subordination and the operator BSm,t
α,λ for the function f in the class Tλ,t

z (m, α, δ).
In addition, we explore a number of examples and corollaries to illustrate the implications of our key
findings. Finally, we highlight several established results to demonstrate the connections between
our work and existing studies.

Keywords: linear transformation; fuzzy differential subordination; fuzzy set; analytic functions;
Al-Oboudi differential operator; Babalola convolution operator

MSC: 30C45; 30C50

1. Introduction and Definitions

The history of fuzzy sets theory began in 1965 with the publication of “Fuzzy Sets” [1]
by Zadeh, which was first received with distrust but is now mentioned in more than
95,000 publications. Many links between fuzzy sets theory and other areas of mathematics
have been developed due to the widespread interest in this topic among mathematicians.
The excellent review article [2] from 2017 is a dedication to Zadeh’s work and explains
how the fuzzy sets concept has developed over time and how it is connected to many
various areas of mathematics, science, and technology. This issue celebrates the centennial
of Zadeh birth with a number of excellent review articles, including one [3] that provides
background on the evolution of fuzzy sets theory and shines a light on the work of Dzitac,
a former student and colleague of Zadeh. In 2008, he collaborated on a book [4] with Zadeh,
forever linking both of their names.

One of the most recent research techniques in the theory of single complex variable
functions is the differential subordination method. It was investigated in [5] and introduced
by Miller and Mocanu in [6,7].This technique allows novel findings to be rapidly acquired
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while simultaneously presenting certain well-established outcomes in the field. One of the
more common results of the differential subordination approach is differential inequalities.
Numerous papers and monographs on the theory of single functions of complex variables
have been published as a direct consequence of the advancement of this method.

According to [8], “Knowing the properties of differential expression for a function,
we can determine the properties of that function on a given interval.” This is the rationale
behind the development of the differential subordination theory. In publishing their
works [8,9], the authors intended to establish a new line of inquiry in mathematics by
merging concepts from the domain of complex functions with those from fuzzy sets theory.
As previously stated, the authors support their claim that a function’s characteristics can
be ascertained on a certain fuzzy set by understanding the characteristics of a differential
expression on that set. The case of actual functions has been left as an “open problem” by
the authors, who only examined the case of a single complex function.

Fuzzy subordination was first mentioned in [8]. The concept of fuzzy differential
subordination has been defined in [9]. The fuzzy differential subordination produced by
the differential operator was studied in [10–12].

This kind of research is crucial for improving our comprehension of the relationships
between various mathematical ideas and for creating new tools and approaches to solve
mathematical difficulties.

Motivated by the studies of [8,9], our aim in this paper is to establish properties
of differential subordination and fuzzy differential subordination associated with linear
combinations of the Al-Oboudi differential operator and the Babalola convolution operator
as defined in the open unit disc.

We refer to the set of all analytic functions (AFs) f in U= {τ ∈ C : |τ| < 1} asH(U)
and to the class of all normalized analytic functions as A, (A1 =A). The Taylor series for
each f ∈ An is of the following form:

f (τ) = τ + bn+1τn+1 + . . . , τ ∈ U.

When b ∈ C and n ∈ N∗ = N∪ {0}, we write

H[b, n] =
{

f ∈ H(U) : f (τ) = b + bnτn + bn+1τn+1 + . . . , τ ∈ U
}

.

The family of all convex functions of order α for 0 ≤ α < 1 is represented by C(α), and is
defined as

C(α) =

{
f ∈ A: Re

(
1 +

τ f
′′
(τ)

f ′(τ)

)
> α

}
.

When α = 0, then the class C of convex functions is obtained.
We subsequently discuss the background works that generate the notion of fuzzy

differential subordinations and their corresponding definitions.

Definition 1 ([1]). Let Y be a non-empty set, let FL :Y→ [0, 1], and let

L = {x ∈ Y : 0 < FL(x) ≤ 1}.

Then, a pair (L, FL) is a fuzzy subset of Y.

Remark 1. The function that determines membership in the fuzzy set (L, FL) is termed FL, and the
set L is known as the support of the fuzzy set (L, FL). In addition, it is possible to indicate that

L = Supp(L, FL). (1)
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Remark 2. Suppose that L ⊂Y; then,

FL(x) =
{

1, if x ∈ L
0, if x /∈ L.

Definition 2 ([13]). Let U ⊂ C. For a fixed point, let τ0 ∈ U and let the functions f , g ∈ H(U).
Then, we can say that f is fuzzy subordinate to g and write

f ≺F g or f (τ) ≺F g(τ) (2)

if the following conditions are satisfied:

f (τ0) = g(τ0)

and

Ff (U) f (τ) ≤ Fg(U)g(τ), τ ∈ U.

Definition 3 ([6]). Let us say that ψ : C3×U→ C and that

ψ(b, 0; 0) = b.

Let h be univalent in U with h(0) = b. If ϕ is analytic in U with ϕ(0) = b and satisfies the
second-order fuzzy differential subordination

Fψ(C3×U)ψ
(

ϕ(τ), τϕ′(τ), τ2 ϕ′′(τ); τ
)
≤ Fh(U)h(τ), τ ∈ U, (3)

then ϕ is referred to as a fuzzy solution of the fuzzy differential subordination.

Remark 3. Any univalent function q satisfying (3) is called fuzzy dominant with respect to the
fuzzy solutions of the fuzzy differential subordination

Fϕ(U)ϕ(τ) ≤ Fq(U)q(τ), τ ∈ U.

Then, the fuzzy dominant q̃ that satisfies

Fq̃(U) q̃(τ) ≤ Fq(U)q(τ), τ ∈ U

is referred as the fuzzy best dominant for all fuzzy dominants of (3).

Real and complex order integrals and derivatives have shown promise in mathematical
modeling and analysis of practical issues in the sciences, and this work has made an
impact on the study of geometric functions. A novel model of the human liver [14] and an
examination of the dynamics of dengue transmission [15] are only two examples of the kind
of research that can be considered part of the aforementioned field; and see [16–19]. The
family of integral operators connected to the first-kind Lommel functions was introduced
in [20], and has important applications in both pure and applied mathematics. As a
consequence of the existence of differential and integral operators, functional analysis and
operator theory can be used in the study of differential equations. Here, we employ the
characteristics of differential operators to solve differential equations using the operator
technique; such operators may be involved in the solution of partial differential equations,
although this needs more study. The Babalola convolution operator is well recognized for
its attractive results in geometric function theory. Its nature and several of its distinguishing
characteristics are described below.
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Definition 4 ([21]). Let f be an analytic function in A. The Babalola convolution operator, denoted
as Bm

t , is defined by
Bm

t f (τ) =
(

Ψm,t ∗Ψ(−1)
m,t ∗ f

)
(τ),

where
Ψm,t =

τ

(1− τ)m−t+1 , m− t + 1 > 0, and m, t ∈ N0 = N∪ {0}

and where (
Ψm,t ∗Ψ(−1)

m,t ∗ f
)
(τ) =

τ

1− τ
.

Equivalently,

Bm
t f (τ) = τ +

m + 1
m− t + 1

b2τ2 +
(m + 1)(m + 2)

(m− t + 1)(m− t + 2)
b3τ3 + .... (4)

From (4), we have

Bm
t f (τ) = τ +

∞

∑
n=2

(
[m + n− 1]!

m!

)(
[m− t]!

[m + n− t− 1]!

)
bnτn. (5)

Remark 4. B0
0 f (τ) = f (τ), B1

1 f (τ) = τ f
′
(τ); further, Bm

m f (τ) = Rm f (τ), as introduced by
Ruscheweyh [22].

Remark 5. If f ∈An and if

f (τ) = τ +
∞

∑
j=n+1

bjτ
j,

then

Bm
t f (τ) = τ +

∞

∑
j=n+1

(
[m + j− 1]!

m!

)(
[m− t]!

[m + j− t− 1]!

)
bjτ

j

= τ +
∞

∑
j=n+1

Cm
m+j−1,t(n)bnτn,

where

Cm
m+j−1,t(n) =

(
[m + j− 1]!

m!

)(
[m− t]!

[m + j− t− 1]!

)
.

The Al-Oboudi differential operator, studied in [23], is a generalization of the Salagean
differential operator.

Definition 5. For λ ≥ 0, m ∈ N0 = N∪ {0}, and f ∈ A, the operator Sm
λ : A→ A, is defined by

S0
λ f (τ) = f (τ),

S1
λ f (τ) = (1− λ) f (τ) + λτ f

′
(τ) = Sλ f (τ)

· · ·

Sm
λ f (τ) = (1− λ)Sm−1 f (τ) + λτ

(
Sm−1

q f (τ)
)′

= Sλ(Sm−1
λ f (τ)).

After a few simple calculations, we have

Sm
λ f (τ) = τ +

∞

∑
n=2
{λ(n− 1) + 1}mbnτn. (6)

Remark 6. S0
0 f (τ) = f (τ), S1

1 f (τ) = τ f
′
(τ), Sm+1

λ f (τ) = τ
(
Sm

λ f (τ)
)′

, τ ∈U.
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Remark 7. If f ∈An and

f (τ) = τ +
∞

∑
j=n+1

bjτ
j,

then

Sm
λ f (τ) = τ +

∞

∑
j=n+1

{λ(j− 1) + 1}mbjτ
j.

The operator that is utilized to obtain the original results of this study is defined in
the following.

Definition 6. Let α ≥ 0, m ∈ N0 = N ∪ {0}, and n ∈ N, and denote by BSm,t
α,λ the operator

provided by BSm,t
α,λ :An →An:

BSm,t
α,λ f (τ) = (1− α)Bm

t f (τ) + αSm
λ f (τ).

Remark 8. When t = m and λ = 1, then BSm
α,λ = Lm

α , as introduced in [24].

Remark 9. If f ∈An and

f (τ) = τ +
∞

∑
j=n+1

bjτ
j,

then

BSm,t
α,λ f (τ) = τ +

∞

∑
j=n+1

(
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1

)
bjτ

j, τ ∈ U. (7)

Remark 10. If α = 0, then BSm,t
0,λ f (τ) = Bm

t f (τ), while for α = 1 we have BSm,t
1,λ f (τ) =

Sm
λ f (τ).

Remark 11. For λ = t = m = 0, then BS0,0
α,0 f (τ) = (1− α)B0

0 f (τ) + αS0
0 f (τ) = f (τ) =

B0
0 f (τ) = S0

0 f (τ).

Remark 12. For t = m = 1 and λ = 1 in (7), we have

BS1,1
α,1 f (τ) = (1− α)B1

1 f (τ) + αS1
1 f (τ)

= (1− α)τ f
′
(τ) + ατ f

′
(τ)

= τ f
′
(τ) = B1

1 f (τ) = S1
1 f (τ), τ ∈ U.

Definition 7 ([25]). Let

f (U) = sup
(

f (U), Ff (U)

)
=

{
τ ∈ U : 0 < Ff (U) f (τ) ≤ 1

}
,

where f (U) is the membership function for the fuzzy set Ff (U), and is connected to the function
f . The membership function of the fuzzy set ( f + g)(U) connected to the function f + g coincides
with the half of the sum of the membership functions of the fuzzy set f (U), that is,

F( f+g)(U)( f + g)(τ) =
Ff (U) f (τ) + Fg(U)g(τ)

2
, τ ∈ U.

Remark 13. Let 0 < Ff (U) f (τ) ≤ 1 and let 0 < Fg(U)g(τ) ≤ 1; then, it is obvious that
0 < F( f+g)(U)(( f + g)(τ)) ≤ 1, τ ∈ U.
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First, using the operator provided by the definition above, a novel class of fuzzy
analytic functions is defined.

Definition 8. Let the function f ∈An be contained in the class Tλ,t
z (m, α, δ) if

F
(BSm,t

α,λ f )
′
(U)

(
BSm,t

α,λ f (τ)
)′

> δ, τ ∈ U, (8)

where δ ∈ (0, 1], α ≥ 0, m ∈ N0, and n ∈ N.
This study follows a notable current trend in the study of fuzzy differential subor-

dination, namely, the creation and study of new fuzzy classes of functions using new
operators. Based on the recently discovered linear differential operator BSm,t

α,λ, a novel class

Tλ,t
z (m, α, δ) of fuzzy differential subordinations is generated in Section 1. In Section 2, we

provide the known lemmas that establish our main results. The main results of the paper
are presented in Section 3. In this section, we prove the convexity of the newly formed class
and obtain fuzzy differential subordination via the operator BSm,t

α,λ. These primary findings
provide interesting corollaries, including the fuzzy best dominants for the investigated
fuzzy differential subordination. We provide several examples to illustrate the value of
these new results. In the last portion, we provide our final remarks.

2. Preliminaries

To prove our main results, we apply the following lemmas.

Lemma 1 ([6]). Suppose that h ∈ An; then,

L[ f ](τ) = F(τ)

=
1

nτ
1
n

∫ τ

0
h(t)t

1
n−1dt, τ ∈ U.

If

Re
(

τh′′(τ)
h′(τ)

+ 1
)
> −1

2
, τ ∈ U,

then L( f ) = F ∈ C.

Lemma 2 ([26]). Suppose that γ ∈ C∗ is a complex number, Reγ ≥ 0, and h is a convex function
with h(0) = b; then, if ϕ ∈ H[b, n] with ϕ(0) = b, ψ : C2×U→ C,

ψ
(

ϕ(τ), τϕ′(τ); τ
)
= ϕ(τ) +

1
γ

τϕ′(τ),

an analytic function in U, and

Fψ(C2×U)

(
ϕ(τ) +

1
γ

τϕ′(τ)

)
≤ Fh(U)h(τ),

i.e, ϕ(τ) +
1
γ

τϕ′(τ) ≺ F h(τ), τ ∈ U, (9)

then

Fϕ(U)ϕ(τ) ≤ Fg(U)g(τ) ≤ Fh(U)h(τ),

i.e., ϕ(τ) ≺ F g(τ) ≺F h(τ), τ ∈ U,

meaning that

g(τ) =
γ

nτγ/n

∫ τ

0
h(t)tγ/n−1dt, τ ∈ U
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is the fuzzy best dominent and is convex.

Lemma 3 ([26]). Suppose that g represents a convex function in U; moreover, suppose that

h(τ) = g(τ) + nατg′(τ), τ ∈ U,

where α > 0 and n ∈ Z+.
Let

ϕ(τ) = g(0) + ϕnτn + ϕn+1τn+1 + . . . , τ ∈ U,

be analytic in U, and
Fϕ(U)

(
ϕ(τ) + ατϕ′(τ)

)
≤ Fh(U)h(τ),

that is,
ϕ(τ) + ατϕ′(τ) ≺ Fh(τ), τ ∈ U.

Then,
Fϕ(U)ϕ(τ) ≤ Fg(U)g(τ),

that is,
ϕ(τ) ≺F g(τ), τ ∈ U,

and this result is sharp.

3. Main Results

Theorem 1. The set Tλ,t
z (m, α, δ) is convex.

Proof. Consider the functions

f j(τ) = τ +
∞

∑
j=n+1

bjkτ j ∈ Tλ,t
z (m, α, δ).

To approach the necessary conclusion, the function

h(τ) = µ1 f1(τ) + µ2 f2(τ) (10)

must belong to the class Tλ,t
z (m, α, δ) with µ1,µ2 ∈ Z+ such that µ1 + µ2 = 1. Next, we

show that h ∈Tλ,t
z (m, α, δ). Taking the derivative of (10), we have

h
′
(τ) = (µ1 f1(τ) + µ2 f2(τ))

′
(τ) = µ1 f

′
1(τ) + µ2 f

′
2(τ)

and (
BSm,t

α,λh(τ)
)′

=
(
BSm,t

α,λ(µ1 f1(τ) + µ2 f2(τ))
)′
(τ) = µ1

(
BSm,t

α,λ f1(τ)
)′

+ µ2

(
BSm,t

α,λ f2(τ)
)′

.
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From Definition 7, we have

F
(BSm,t

α,λh)′ (U)

(
BSm,t

α,λh(τ)
)′

= F
((BSm,t

α,λ(µ1 f1+µ2 f2))
′
(U)

(
BSm,t

α,λ(µ1 f1 + µ2 f2)(τ)
)′

= F
((BSm,t

α,λ(µ1 f1+µ2 f2))
′
(U)

(
µ1

(
BSm,t

α,λ f1(τ)
)′

+ µ2

(
BSm,t

α,λ f2(τ)
)′)

=

F
(µ1(BSm,t

α,λ f1(τ))
′
(U)

(
µ1

(
BSm,t

α,λ f1(τ)
)′)

+ F
(µ2(BSm,t

α,λ f2(τ))
′
(U)

(
µ2

(
BSm,t

α,λ f2(τ)
)′)

2

=

F
(BSm,t

α,λ f1(τ))
′
(U)

((
BSm,t

α,λ f1(τ)
)′)

+ F
(BSm,t

α,λ f2(τ))
′
(U)

(
BSm,t

α,λ f2(τ)
)′

2
.

If f1, f2 ∈Tλ,t
z (m, α, δ), then

δ < F
(BSm,t

α,λ f1)
′
(U)

(
BSm,t

α,λ f1(τ)
)′
≤ 1.

Furthermore,

δ < F
(BSm,t

α,λ f2)
′
(U)

(
BSm,t

α,λ f2(τ)
)′
≤ 1, τ ∈ U.

Therefore,

δ <
F
(BSm,t

α,λ f1)
′
(U)

(
BSm,t

α,λ f1(τ)
)′

+ F
(BSm,t

α,λ f2)
′
(U)

(
BSm,t

α,λ f2(τ)
)′

2
≤ 1.

Thus, we obtain

δ < F
(BSm,t

α,λh)
′
(U)

(
BSm,t

α,λh(τ)
)′
≤ 1,

which means that h ∈Tλ,t
z (m, α, δ) and Tλ,t

z (m, α, δ) is convex.

Theorem 2. Suppose that g is a convex function in U and is defined as

h(τ) = g(τ) +
1

c + 2
τg′(τ)

with c > 0, τ ∈U. Moreover, let f ∈Tλ,t
z (m, α, δ) and

G(τ) = Ic( f )(τ) =
c + 2
τc+1

∫ τ

0
tc f (t)dt, τ ∈ U.

Then, the fuzzy differential subordination

F
(BSm,t

α,λ f )
′
(U)

(
BSm,t

α,λ f (τ)
)′
≤ Fh(U)h(τ), (11)

i.e.,
(
BSm,t

α,λ f (τ)
)′
≺ F h(τ), τ ∈ U,

implies that

F
(BSm,t

α,λG)
′
(U)

(
BSm,t

α,λG(τ)
)′
≤ Fg(U)g(τ), (12)

i.e.,
(
BSm,t

α,λG(τ)
)′
≺ Fg(τ), τ ∈ U,
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and this result is sharp.

Proof. As a consequence of our definition of the function G(τ), we have

τc+1G(τ) = (c + 2)
∫ τ

0
tc f (t)dt. (13)

Differentiating Equation (13) with respect to τ, we obtain

(c + 1)G(τ) + τG′(τ) = (c + 2) f (τ)

and have

(c + 1)BSm,t
α,λG(τ) + τ

(
BSm,t

α,λG(τ)
)′

= (c + 2)BSm,t
α,λ f (τ), τ ∈ U. (14)

Differentiating (14), we have(
BSm,t

α,λG(τ)
)′

+
1

c + 2
τ
(
BSm,t

α,λG(τ)
)′′

=
(
BSm,t

α,λ f (τ)
)′

, τ ∈ U. (15)

From Equation (15), the fuzzy differential subordination is

FBSm,t
α,λG(U)

((
BSm,t

α,λG(τ)
)′

+
1

c + 2
τ
(
BSm,t

α,λG(τ)
)′′)

≤ Fg(U)

(
g(τ) +

1
c + 2

τg′(τ)
)

. (16)

Let
ϕ(τ) =

(
BSm,t

α,λG(τ)
)′

, τ ∈ U (17)

and let ϕ ∈ H[1, n]. By substituting (17) into (16), we obtain

Fϕ(U)

(
ϕ(τ) +

1
c + 2

τϕ′(τ)

)
≤ Fg(U)

(
g(τ) +

1
c + 2

τg′(τ)
)

, τ ∈ U.

Lemma 3 allows us to have

Fϕ(U)ϕ(τ) ≤ Fg(U)g(τ),

i.e., F
(BSm,t

α,λG)
′
(U)

(
BSm,t

α,λG(τ)
)′
≤ Fg(U)g(τ), τ ∈ U.

The most effective best dominant is g, meaning that we have(
BSm,t

α,λG(τ)
)′
≺F g(τ), τ ∈ U.

Example 1. Let f ∈T1,1
z (1, 1

2 , 1); then,

f ′(τ) + τ f ′′(τ) ≺F
3− 2τ

3(1− τ)2

and
G′(τ) + τG′′(τ) ≺F

1
1− τ
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with
G(τ) =

3
τ2

∫ τ

0
t f (t)dt.

Theorem 3. Suppose that

h(τ) =
1 + (2β− 1)τ

1 + τ
, β ∈ [0, 1)

and let m− t > −1, c > 0 and

Ic( f )(τ) =
c + 2
τc+1

∫ τ

0
tc f (t)dt, τ ∈ U.

Then,
Ic

[
Tλ,t
z (m, α, β)

]
⊂ Tλ,t

z (m, α, β∗), (18)

where

β∗ = 2δ− 1 +
(c + 2)(2− 2δ)

n

∫ 1

0

t c+2
n − 1
1 + t

dt.

Proof. We can use the same justifications as in the proof of Theorem 2, as the function h
presented in the theorem is convex. When we interpret the premise of Theorem 3, we can
see that

Fϕ(U)

(
ϕ(τ) +

1
c + 2

τϕ
′
(τ)

)
≤ fh(U)h(τ),

where ϕ(τ) is provided by (17). By applying Lemma 2, the following fuzzy inequality is ob-
tained:

Fϕ(U)ϕ(τ) ≤ Fg(U)g(τ) ≤ Fh(U)h(τ),

i.e.,

F
(BSm,t

α,λG)
′
(U)

(
BSm,t

α,λG

)′
≤ Fg(U)g(τ) ≤ Fh(U)h(τ),

where

g(τ) =
c + 2

nτ
c+2

n

∫ τ

0
t

c+2
n −1 1 + (2δ− 1)

1 + t
dt

= 2δ− 1 +
(c + 2)(2− 2δ)

nτ
c+2

n

∫ 1

0

t c+2
n − 1
1 + t

dt.

It is understood that g(U) is symmetric with regard to the real axis using the notion of
convexity for function g, and we can write

FBSm,t
α,λG(U)

(
BSm,t

α,λG(τ)
)′

(19)

≥ min
|τ|=1

Fg(U)g(τ) = Fg(U)g(1)

and

β∗ = g(1) = 2δ− 1 +
(c + 2)(2− 2δ)

n

∫ 1

0

t c+2
n − 1
1 + t

dt.

From (19), it is possible to deduce inclusion (18).

Theorem 4. Let the function g be a convex function with g(0) = 1 and

h(τ) = g(τ) + τg′(τ), τ ∈ U,
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let f ∈ An satisfy

F
(BSm,t

α,λ f )
′
(U)

(
BSm,t

α,λ f (τ)
)′
≤ Fh(U)h(τ),

i.e.,
(
BSm,t

α,λ f (τ)
)′
≺ F h(τ), τ ∈ U. (20)

and let m− t > −1. Then, we obtain the following fuzzy differential subordination:

FBSm,t
α,λ f (U)

BSm,t
α,λ f (τ)

τ
≤ Fg(U)g(τ),

i.e,
BSm,t

α,λ f (τ)
τ

≺ F g(τ), τ ∈ U.

and the result is sharp.

Proof. Using Equation (7) about the operator BSm,t
α,λ , we can write

BSm,t
α,λ f (τ) = τ +

∞

∑
j=n+1

[
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1,t

]
bjτ

j, τ ∈ U.

Considering

ϕ(τ) =
BSm,t

α,λ f (τ)
τ

=

τ +
∞
∑

j=n+1

[
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1,t

]
bjτ

j

τ

= 1 + ϕnτ + ϕn+1τn+1 + ....

we can deduce that ϕ ∈ H[1, n].
Let τϕ(τ) = BSm,t

α,λ f (τ), for τ ∈ U. Taking the derivative, we obtain

(
BSm,t

α,λ f (τ)
)′

= ϕ(τ) + τϕ
′
(τ). (21)

Using (21) in (20), we can then write

Fϕ(U)

(
ϕ(τ) + τϕ

′
(τ)
)
≤ Fh(U)h(τ)

= Fg(U)

(
g(τ) + τg

′
(τ)
)

.

Using Lemma 3, we obtain
Fϕ(U)ϕ(τ) ≤ Fg(U)g(τ),

that is,

F
(BSm,t

α,λ f )
′
(U)

BSm,t
α,λ f (τ)

τ
≤ Fg(U)g(τ), τ ∈ U.

Therefore,
BSm,t

α,λ f (τ)
τ

≺F g(τ), τ ∈ U,

and this result is sharp.
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Theorem 5. Suppose that h denotes a convex function of order − 1
2 with h(0) = 1. Let f ∈An

satisfy

F
(BSm,t

α,λ) f )
′
(U)

(
BSm,t

α,λ f (τ)
)′
≤ Fh(U)h(τ),

i.e., (
BSm,t

α,λ f (τ)
)′
≺ Fh(τ), τ ∈ U,

and let m− t > −1. Then,

FBSm,t
α,λ f (U)

BSm,t
α,λ f (τ)

τ
≤ Fq(U)q(τ), (22)

i.e.,
BSm,t

α,λ f (τ)
τ

≺ F q(τ), τ ∈ U,

where
q(τ) =

1

nτ
1
n

∫ τ

0
h(t)t

1
n−1dt

is both convex and fuzzy best dominant.

Proof. Let

ϕ(τ) =
BSm,t

α,λ f (τ)
τ

=

τ +
∞
∑

j=n+1

[
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1,t

]
bjτ

j

τ

= 1 +
∞

∑
j=n+1

[
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1,t

]
bjτ

j−1

= 1 +
∞

∑
j=n+1

ϕjbjτ
j−1, τ ∈ U, ϕ ∈ [1, n].

as

Re

(
1 +

τh
′′
(τ)

h′(τ)

)
>
−1
2

, τ ∈ U.

From Lemma 1, we know that

q(τ) =
1

nτ
1
n

∫ τ

0
h(t)t

1
n−1dt

is a convex function and verifies the differential equation related to the following fuzzy
differential subordination (22):

q(τ) + τq′(τ) = h(τ).

Therefore, it is the fuzzy best dominant. Taking the derivative, we obtain(
BSm,t

α,λ f (τ)
)′

= ϕ(τ) + τϕ′(τ), τ ∈ U

and
Fϕ(U)

(
ϕ(τ) + τϕ′(τ)

)
≤ Fh(U)h(τ), τ ∈ U.

From Lemma 3, we have

Fϕ(U)ϕ(τ) ≤ Fq(U)q(τ), τ ∈ U,

i.e., FBSm,t
α,λ f (U)

BSm,t
α,λ f (τ)

τ
≤ Fq(U)q(τ), τ ∈ U.
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Thus, we obtain
BSm,t

α,λ f (τ)
τ

≺F q(τ), τ ∈ U.

Corollary 1. Suppose that

h(τ) =
1 + (2β− 1)τ

1 + τ

is a convex function in U, 0 ≤ β < 1. Let m− t > −1, λ ≥ 0, α ≥ 0, m ∈ N0, n ∈ N, f ∈ An
and verify the fuzzy differential subordination

F
(BSm,t

α,λ f )
′
(U)

(
BSm,t

α,λ f (τ)
)′
≤ Fh(U)h(τ), (23)

that is, (
BSm,t

α,λ f (τ)
)′
≺F h(τ), τ ∈ U.

Then,

FBSm,t
α,λ f (U)

BSm,t
α,λ f (τ)

τ
≤ Fq(U)q(τ),

i.e.,
BSm,t

α,λ f (τ)
τ

≺ Fq(τ), τ ∈ U,

and

q(τ) = 2β− 1 +
2(1− β)

nτ
1
n

∫ τ

0

t
1
n−1

1 + t
dt, τ ∈ U

is convex and fuzzy best dominant.

Proof. We have

h(τ) =
1 + (2β− 1)τ

1 + τ

with

h(0) = 1 and h′(τ) =
−2(1− β)

(1 + τ)2

and

h′′(τ) =
4(1− β)

(1 + τ)3

along with

Re
(

τh′′(τ)
h′(τ)

+ 1
)

= Re
(

1− τ

1 + τ

)
= Re

(
1− φ cos θ − iφ sin θ

1 + φ cos θ + iφ sin θ

)
=

1− φ2

1 + 2φ cos θ + φ2 > 0 > −1
2

.

Following the same steps as in the proof of Theorem 5 and considering

ϕ(τ) =
BSm,t

α,λ f (τ)
τ

,
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the fuzzy differential subordination (23) becomes

FBSm,t
α,λ f (U)

(
ϕ(τ) + τϕ′(τ)

)
≤ Fh(U)h(τ), τ ∈ U.

According to Lemma 2, for γ = 1 we have

Fϕ(U)ϕ(τ) ≤ Fq(U)q(τ),

FBSm,t
α,λ f (U)

BSm,t
α,λ f (τ)

τ
≤ Fq(U)q(τ).

Thus,

q(τ) =
1

nτ
1
n

∫ τ

0
h(t)t

1
n−1dt, τ ∈ U

=
1

nτ
1
n

(∫ τ

0
t

1
n−1 1 + (2β− 1)t

1 + t
dt, τ ∈ U

)
= 2β− 1 +

2(1− β)

nτ
1
n

∫ τ

0

t
1
n−1

1 + t
dt, τ ∈ U.

Example 2. Suppose that

h(τ) =
1− τ

1 + τ

with
h(0) = 1, h′(τ) =

−2
(1 + τ)2

and
h′′(τ) =

4
(1 + τ)3 .

Furthermore, if

Re
(

τh′′(τ)
h′(τ)

+ 1
)

= Re
(

1− τ

1 + τ

)
= Re

(
1− φ cos θ − iφ sin θ

1 + φ cos θ + iφ sin θ

)
=

1− φ2

1 + 2φ cos θ + φ2 > 0 > −1
2

,

then the function h is convex in U.
Suppose that

f (τ) = τ + τ2, τ ∈ U.

For n = 1, λ = 1, α = 2, m = t = 1, we obtain

BS1,1
2,1 f (τ) = −B1

1 f (τ) + 2S1
1 f (τ)

= −τ f ′(τ) + 2τ f ′(τ)

= τ f ′(τ)

= τ + 2τ2.

Then, (
BS1,1

2,1 f (τ)
)′

= 1 + 4τ
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and
BS1,1

2,1 f (τ)
τ

= 1 + 2τ

Because

q(τ) =
1
τ

∫ τ

0

1− t
1 + t

dt = −1 +
2 ln(1 + τ)

τ
.

From Theorem 5, we have

1 + 4τ ≺ F 1− τ

1 + τ
, τ ∈ U,

which induces

1 + 2τ ≺ F − 1 +
2 ln(1 + τ)

τ
, τ ∈ U.

Theorem 6. Let h(τ) = g(τ) + τg′(τ), τ ∈U and let g be a convex function in U with g(0) = 1;
furthermore, let f ∈An satisfy

F(BSm,t
α,λ f (U))

(
τBSm+1,t

α,λ f (τ)

BSm,t
α,λ f (τ)

)′
≤ Fh(U)h(τ), i.e,

(
τBSm+1,t

α,λ f (τ)

BSm,t
α,λ f (τ)

)′
≺ Fh(τ), τ ∈ U, (24)

with α ≥ 0, m − t > −1 , m ∈ N0, n ∈ N. Then, we obtain the sharp fuzzy differential
subordination

FBSm,t
α,λ f (U)

BSm+1,t
α,λ f (τ)

BSm,t
α,λ f (τ)

≤ Fg(U)g(τ),

i.e.,
BSm+1,t

α,λ f (τ)

BSm,t
α,λ f (τ)

≺ F g(τ), τ ∈ U.

Proof. Because

f ∈ An and f (τ) = τ +
∞

∑
j=n+1

bjτ
j,

we have

BSm,t
α,λ f (τ) = τ +

∞

∑
j=n+1

[
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1,t

]
bjτ

j, τ ∈ U.

Considering

ϕ(τ) =
BSm+1,t

α,λ f (τ)

BSm,t
α,λ f (τ)

=

τ +
∞
∑

j=n+1

[
α{λ(j− 1) + 1}m+1 + (1− α)Cm+1

m+j,t

]
bjτ

j

τ +
∞
∑

j=n+1

[
α{λ(j− 1) + 1}m + (1− α)Cm

m+j−1,t

]
bjτ

j
,

we have

ϕ′(τ) =

(
BSm+1,t

α,λ f (τ)
)′

BSm,t
α,λ f (τ)

− ϕ(τ) ·

(
BSm,t

α,λ f (τ)
)′

BSm,t
α,λ f (τ)

and we obtain

ϕ(τ) + τϕ′(τ) =

(
τBSm+1,t

α,λ f (τ)

BSm,t
α,λ f (τ)

)′
.

Thus, the relation from (24) becomes

Fϕ(U)

(
ϕ(τ) + τϕ′(τ)

)
≤ Fh(U)h(τ) = Fg(U)

(
g(τ) + τg′(τ)

)
, τ ∈ U.
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Following the application of Lemma 3, we have the required result.

4. Conclusions

In this article, fuzzy differential subordination is studied in relation to geometric
function theory. First, we develop a new operator BSm,t

α,λ :An → An in the open unit disc
U. Then, taking this operator into consideration, we create fuzzy differential subordination.
Next, we define a particular fuzzy class of analytic functions in U, which we call Tλ,t

z (m, α, δ).
Using the idea of fuzzy differential subordination and the operator BSm,t

α,λ for the function

f in the class Tλ,t
z (m, α, δ), many novel results can be proved. When λ = 1 and t = m, all

the results provided in this article reduce to known results proved previously in [11].
For conclusions that offer coefficient estimates, distortion theorems, or closure theo-

rems, as is typical in geometric function theory, further research on the newly introduced
class may be needed. Additionally, the introduction of this class can serve as an inspiration
for future research that introduces and characterizes additional intriguing fuzzy classes. In
order to identify additional feasible values of δ for accurate definitions of fuzzy classes, the
constraint placed on δ ∈ (0, 1] should be further examined.
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