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Abstract: This article deals with the queuing-inventory system, composed of c junior servers, a senior
server, two finite waiting halls, and an infinite orbit. On occasion, junior servers encounter challenges
during customer service. In these instances, they approach the senior server for guidance in resolving
the issue. Suppose the senior server is engaged with another junior server. The approaching junior
servers await their turn in a finite waiting area with a capacity of c for consultation. Concerning
this, we study the performance of junior servers approaching the senior server in the retrial queuing-
inventory model with the two finite waiting halls dedicated to the primary customers and the junior
servers for consultation. We formulate a level-dependent QBD process and solve its steady-state
probability vector using Neuts and Rao’s truncation method. The stability condition of the system is
derived and the R matrix is computed. The optimum total cost has been obtained, and the sensitivity
analyses, which include the expected total cost, the waiting time of customers in the waiting hall
and orbit, the number of busy servers, and a fraction of the successful retrial rate of the model, are
computed numerically.

Keywords: multi-server; classical retrial facility; (s, Q) ordering policy

MSC: 60K25

1. Introduction

Over the past two decades, researchers have dedicated significant efforts to developing
a range of queuing-inventory models. In this paper, we introduce a distinctive queuing-
inventory model characterized by a novel feature: Junior servers can seek guidance from
senior servers when facing challenges in customer service. This interactive dynamic injects
a fresh perspective into the conventional server–customer relationship. Within this inno-
vative system, junior servers, though proficient in their roles, have the option to consult
senior servers when encountering complexities in customer interactions. This collaborative
approach, akin to seeking mentorship from a seasoned expert, enhances the efficiency and
problem-solving capabilities of the queuing-inventory framework. This research aims to
thoroughly investigate this intriguing model, scrutinizing its performance and the intricate
interplay between junior and senior servers. Ultimately, it offers invaluable insights into
the dynamics of this specialized queuing-inventory system.

1.1. Motivation

The considered queuing-inventory model was developed based on the real-life experi-
ence of one of the authors. When the author went to purchase an android from the local
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multi-brand mobile showroom located in Chennai, junior sales executives received him.
While the junior executive explained the features of the mobile, the author asked a query
regarding the credit card offer. Unfortunately, the junior executive could not address the
issue. So, the junior executive sought help from a senior executive. Then, both junior and
senior executives together addressed the author’s query. The incident happened in the
author’s life and motivated him to develop the retrial queuing-inventory model where less
experienced junior servers assist customers by approaching the experienced senior server.

1.2. Literature Review

Positive service time was originally introduced by Melikov and Molchanov [1] as
well as Sigman and Simchi-Levi [2] within the context of inventory modeling. They con-
sidered a facility that utilizes inventory to cater to customers, with the service time being
distributed arbitrarily. Yadavalli et al. [3] conducted an analysis on a perishable inventory
model employing continuous review and a multi-server service configuration with MAP.
Additionally, they took into account a separate group of negative customers following an in-
dependent MAP. In this setup, a negative customer displaces one of the existing customers
in the queue. Under the (s, S) ordering policy, Yadavalli et al. [4] examined a multi-server
service facility with the inventory system in the finite population in which any arriving
customer who finds that all the servers are busy are then sent to the orbit. Nair et al. [5]
studied the behavior of a two-dimensional multi-server queuing-inventory system (QIS)
with the (s, S) ordering policy. When there are at least s + 1 customers in the system, they
guarantee a minimal service with rate (s + 1)µ. Krishnamoorthy et al. [6] assumed that the
customer may receive an item at the end of the service under Bernoulli’s schedule in the
QIS with a multi-server facility. For the original two unbounded level challenges, Wang [7]
proposed two modeling approximations. They applied enumerative and quasi-Newton
search methods in a heuristic manner to fine-tune the quantity of the stock, servers, reorder
thresholds, and both the service and retrial facility. Wang et al. [8] studied a priority-type
multi-server inventory model with an identical service time distribution. For the case of
non-identical service rates, generalized stochastic Petri net (GSPN) models have been used.
When service rates are the same, they demonstrate how the two approaches are equivalent.

Hanukov et al. [9] analyzed an inventory model denoted as M/M/2, where customer
interest is piqued by observing the quantity of available stocks. Jeganathan et al. [10]
conducted a comparative study on a Markovian inventory model employing dual servers,
examining both homogeneous and heterogeneous server configurations. Their numerical
results underscored the superior efficiency of the heterogeneous system. Suganya and
Sivakumar [11] delved into QIS featuring retrials, incorporating two distinct servers and
incorporating vacation periods. In this scenario, customers arrive following a MAP, and the
two concurrent servers offer services in different phases. Jose and Beena [12] investigated a
production inventory system employing two servers of differing capabilities, considering
retrial customers and allowing for server vacations. One server had the flexibility for multi-
ple breaks, while the other operated continuously without any time off. The assumption
was made that either when the inventory’s stock level reaches zero or when both conditions
are met, the servers would go on vacation. Chakravarthy and Rumyantsev [13] explored
batch demands within two distinct models. Both models assumed that the demands fol-
lowed a Markovian point process. In the first model, if a customer arrived and found the
inventory level at zero, the customer would be lost. In the second model, any waiting
customers would be lost when the inventory reached zero. Jeganathan and Reiyas [14]
analyzed delayed and modified working vacations in the QIS with two distinct servers in
which the first server is capable of executing a modified working vacation and the second
server can engage in a delayed working vacation.

Chakravarthy et al. [15] investigated a QIS with infinite servers and a queue with a size
of infinite. They assumed the self-service facility under exponential distribution and MAP
for customer arrival in the system. Hanukov et al. [16] studied the preparatory service in
order to decrease the waiting time of customers during the idle time in a multi-server QIS
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with stock-dependent arrival. Jeganathan et al. [17] considered two groups of multi-servers
in such a way that each group of servers is designed to operate for two types of customers.
The first type of customers can purchase the commodity whereas the second type can
receive the service only. Rasmi et al. [18] addressed a multi-server queuing-inventory
system featuring diverse customer types (K in total) arriving in accordance with a marked
Markovian arrival process. Each customer class seeks a distinct type of service and distinct
priorities are allocated to each class. Rasmi and Jacob [19] explored a Markovian QIS with
c servers and a self-service feature is optionally available. Service for the customers is
initiated whenever an item and a server is available. In the event that a customer arrives to
find all servers occupied but free inventory is still accessible, they have the choice to either
wait in line for a server or opt for self-service. In the multi-server production inventory
system, when the on-hand inventory level drops to zero, an immediate replenishment of
one item is initiated as an emergency measure to meet customer demands, with no lead
time considered by Shajin et al. [20]. Jeganathan et al. [21] studied a queuing-inventory
model offering sales of fresh and refurbished items and services alone to the customers
managed by the dedicated servers.

Almaqbali et al. [22] analyzed a batch arrival and service pattern for the customers.
If there are j customers in a batch, it is called category j and j = 1, 2, . . . , k. A customer in
category j can receive service only when j items are in stock. Aghsami et al. [23] proposed
a multi-server queuing-inventory model based on the hospital blood bank, considering the
request for blood as arrival and blood as inventory. Selvakumar et al. [24] analyzed the
home delivery service facility in the QIS considering two distinct servers. The first server
was always available in the system in order to maintain the sales of items, and the second
server was used for the delivery process of purchased items who is offered the vacation
facility. Yue et al. [25] conducted a study on a multi-server QIS with a vacation policy.
In this setup, a subset of servers take a collective vacation once the on-hand inventory is
exhausted. After each vacation period, if there is still inventory available, these servers
return to the system to resume serving customers.

The retrial QIS finds extensive applications across various domains, including sup-
ply chain and manufacturing systems. Artalejo et al. [26] pioneered the incorporation of
the retry strategy of customers into stochastic inventory systems, examining numerical
solutions and optimal decision making. Building upon this work, Ushakumari [27] in-
vestigated a QIS with retrials and random lead time, deriving the optimal ordering point.
Amirthakodi and Sivakumar [28] examined a QIS with a finite queue and assumed that
unsatisfied customers could potentially enter an orbit, where they could attempt service
directly if the server is available. The authors investigated the distribution of waiting times
for both the queue and retrial queues. Lopez-Herrero and Jesus [29] focused on assessing
waiting durations, reorder intervals, and the duration of a pending request within a finite
retrial group. Hanukov [30] proposed that customers have the option to move to the orbit
during their service, making more efficient use of their time. Sugapriya et al. [31] examined
the stock-dependent demand in a retrial QIS. Melikov et al. [32] assumed that in the event
of a primary customer arriving when the inventory level is zero, this customer would,
according to the Bernoulli scheme, either depart from the system or enter an unbounded
buffer to reiterate their request at a later time.

Nithya et al. [33] introduced controlled arrivals in a retrial QIS with an essential
interruption and an intermittently available server. Reiyas and Jeganathan [34] conducted
a study on a standard retrial QIS that incorporates a two-component demand rate. Jain
and Kumar [35] carried out an analysis of the optimization of costs in a QIS with two-level
supply modes, retrial demands, and numerous vacations. To achieve this optimization, the
researchers employed a genetic algorithm. Jeganatahan et al. [36] studied the classical retrial
queuing model with scrap items where the server takes a vacation once the storage becomes
full or there are no customers in the queue. Bazizi et al. [37] explored the optimization of
an (s, Q) retrial inventory system with partial backlogging demands using a generalized
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stochastic Petri net approach. Very recently, Jeganathan et al. [38] studied the asynchronous
vacation policy in the retrial QIS with the (s, Q) ordering policy.

1.3. Research Gap

The previously mentioned studies have explored various service configurations within
the QIS. However, there is currently no published research in the queuing-inventory domain
specifically addressing scenarios where junior servers consult the senior server on behalf
of customers. Moreover, there is a scarcity of literature on queuing models involving
junior servers approaching the senior server. Chakaravarthy [39] investigated a queuing
model where the primary server (senior server) not only serves customers directly but
also provides guidance to other servers (junior servers). Junior servers can seek advice
only while actively assisting a customer, and the senior server addresses these requests in
the order they are received. Priority is given to regular service over consultations, even
if it requires interrupting their service to customers. Recently, Hanukov [40] examined
a queuing model involving n multi-servers. Initially, a junior server handles the first
phase, which may involve gathering information or providing an initial service. The junior
server then collaborates with a senior server to complete the service together. However,
if the senior server is already assisting another junior server, the latter must join a queue
along with other servers awaiting the availability of the senior server. Very recently,
Chakravarthy et al. [41] investigated a novel queuing model where the system attempts to
recruit secondary servers from the pool of consumers who have already received services
and expressed an interest in serving.

To fill this research gap, we present an innovative model featuring a team of c junior
servers working alongside a senior server in the QIS, implementing the (s, Q) ordering
policy. We conduct a thorough examination of its performance and distinctive attributes.

1.4. Novelty and Contribution of the Model

• Innovative Service Configuration: This research introduces a unique stochastic retrial
queuing-inventory system where junior servers provide service to the customers and
receive consultation from the senior server as per the specific circumstances.

• Analysis of the System: The paper contributes by utilizing the Neuts and Rao trunca-
tion method to solve the level-dependent QBD and Neuts matrix geometric method to
establish the stability condition and calculate the stationary probability vector.

• Comprehensive Performance Analysis: Through rigorous numerical analysis, the
study delves into various critical aspects including the expected total cost, waiting
time, and the workload of junior servers. This detailed investigation provides practical
insights into the system’s operational efficiency under different modes of operation
for junior servers.

Overall, this research advances the understanding of stochastic retrial QIS by propos-
ing an innovative service approach, employing a specialized analytical method, and con-
ducting a thorough performance assessment. It contributes significantly to both theoretical
and practical domains within queuing-inventory modeling.

The subsequent sections of this paper are organized as follows: Section 2 outlines
the specific assumptions underlying our proposed model. In Section 3, we provide the
mathematical formulation and conduct an in-depth analysis of the model. Section 4
calculates the R matrix and the probability vector in a steady state. We establish a set of
metrics to evaluate the system’s performance in Section 5. The model’s effectiveness is
evaluated via numerical analysis in Section 6, and we conclude with a summarizing section
in Section 7.

2. Model Description

The study examines an inventory system characterized by a maximum storage capacity
of S items, two physical queues with capacities N and c, and an infinite capacity virtual
waiting area (Orbit). The primary customers arrive at the waiting area of size N under
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the Poisson process at a rate of λ. If the waiting hall is full, any arriving customers
compulsorily enter the orbit. The customer in the orbit always tries to enter the waiting
hall. The retrial is successful when the number of customers in the waiting hall is less
than N. The duration between consecutive attempts of orbital customers, known as the
inter-retrial time, is estimated via an exponential distribution with the rate θ and it occurs
under the classical retrial policy. The system employs a group of c junior servers to serve
customers, with an additional senior server available to assist juniors facing difficulties
during service. The service time of each junior server follows an exponential distribution
with the parameter µ. Junior servers can operate in two modes: server mode (S-mode) and
consultant mode (C-mode).

• When the junior server takes on the duty of offering service to the customers in the
waiting hall, he performs the role of a server, known as server mode (S-mode).

• When a junior server seeks assistance from the senior server in solving the encountered
problem in S-mode, the junior server receives consultation from the senior server
(Consultant), known as consultant mode (C-mode).

If a customer arrives and the inventory is available with at least one free junior server,
the service begins immediately. However, if the inventory is empty or all junior servers are
occupied, the customer must wait in the waiting area (if the waiting area is not full). If the
junior server successfully serves the customer (i.e., no issues arise), having completed the
purchase, the customer exits the system with probability p. In cases where the junior server
encounters a problem during service, they approach the senior server for consultation. In
such a situation, the customer remains in the waiting area and the junior server, acting on the
customer’s behalf, enters the queue of size c dedicated for the junior servers to consult with
the senior server with a probability of q. The junior server informs the issue faced in S-mode
to the senior server when it is available. Upon providing a comprehensive explanation
of the matter to the senior server, a collaborative effort is undertaken by the senior server
and the junior server to successfully provide the service. Upon completion, the customer
leaves the system after making a purchase of an item, and the junior server transitions back
from C-mode to S-mode. The duration of this service follows an exponential distribution
with a rate of α. If both the inventory and customer (excluding the servicing customer)
are available, the junior server immediately resumes service in S-mode. Otherwise, they
remain idle in S-mode. When the junior server approaches the senior server and finds the
senior server is assisting some other junior server, the junior server is required to wait in
the waiting area of size c until it is their time to be served.

The system follows a (s, Q) ordering policy, where an order for Q(=S− s) items is
placed from an external supplier as soon as the inventory level reaches the designated
threshold, s. The lead time for orders also follows an exponential distribution with the rate
β. The relationship between the number of junior servers and the reorder point is defined
as c < s. The flow chart of the considered model is given in Figure 1.
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Figure 1. Model flow chart.

3. Mathematical Analysis

Consider the following random variables A1(t), A2(t), A3(t), and A4(t), representing
the number of customers in the orbit at time t, the number of customers in the waiting hall
at time t, the number of junior servers in C-mode at time t, and the number of items in the in-
ventory at time t, respectively. The collection A(t) = {(A1(t), A2(t), A3(t), A4(t)) : t ≥ 0}

constitutes a four-dimensional stochastic process with the state space P =
2⋃

i=1
Pi where

P1 = {(a1, a2, a3, a4) | a1 ∈ 0, ∞, a2 ∈ 0, c, a3 ∈ 0, a2, a4 ∈ a3, S}
P2 = {(a1, a2, a3, a4) | a1 ∈ 0, ∞, a2 ∈ c + 1, N, a3 ∈ 0, c, a4 ∈ a3, S}

The stochastic process A(t), which is characterized by discrete state space and
continuous time, exhibits the Markov property. Furthermore, it can be shown that any state
in P is accessible from any other state. Therefore, we may classify A(t) as a continuous time
irreducible Markov chain (CTIMC). The CTIMC is described by the infinitesimal generator
matrix given below.

T =



0 1 2 3 4 . . .
0 T0,0 T0,1
1 T1,0 T1,1 T0,1
2 T2,0 T2,2 T0,1
3 T3,0 T3,3 T0,1
...

. . . . . . . . .

, (1)

where the T0,1 matrix symbolizes the transitions of the customers joining the orbit. This
happens when a primary customer arrives and there is no place for customers in the
waiting hall.

T0,1 =

λI
(c+1)S+1− c(c−1)

2 ,
a2 = N; a′2 = a2;

0, Otherwise.
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The matrices Ta1,0 for a1 = 1, ∞ represent the transitions of retrial customers entering the
waiting hall.

Ta1,0 =



a1θ IS+1−a3 , a2 = 0, c− 1; a′2 = a2 + 1;
a3 = 0, a2; a′3 = a3;

a1θ IS+1−a3 , a2 = c, N − 1; a′2 = a2 + 1;
a3 = 0, c; a′3 = a3;

0, Otherwise.

The matrices Ta1,a1 for a1 = 0, ∞ represent the transitions of all other remaining parameters,
and the entries along the diagonal are populated by the total sum of elements in their
respective rows, with an opposite sign to ensure that the sum of all row entries equals zero.

Ta1,a1 =



Da2 , a2 = 0, c; a′2 = a2;
Dc, a2 = c + 1, N − 1; a′2 = a2;
DN , a2 = N; a′2 = a2;
Fa2 , a2 = 0, c− 1; a′2 = a2 + 1;
Fc, a2 = c, N − 1; a′2 = a2 + 1;
Ea2 , a2 = 1, c; a′2 = a2 − 1;
Ec+1, a2 = c + 1, N; a′2 = a2 − 1;
0, Otherwise.

For a2 = 0, c

Da2 =



β, a3 = 0, a2; a′3 = a3;
a4 = a3, s; a′4 = a4 + Q;

δ̄a20(a4 − a3)qµ, a3 = 0, a2 − 1; a′3 = a3 + 1;
a4 = a3 + 1, a2; a′4 = a4;

δ̄a20(a2 − a3)qµ, a3 = 0, a2 − 1; a′3 = a3 + 1;
a4 = a2 + 1, S; a′4 = a4;

−[λ + β + a1θ+ a3 = 0, a2; a′3 = a3;
δ̄a20δ̄a2a3(a4 − a3)µ + δ̄a20δ̄a30α], a4 = a3, a2; a′4 = a4;
−[λ + H(s− a4)β + a1θ+ a3 = 0, a2; a′3 = a3;
δ̄a20(a2 − a3)µ + δ̄a20δ̄a30α], a4 = a2 + 1, S; a′4 = a4;
0, Otherwise.

DN =



β, a3 = 0, c; a′3 = a3;
a4 = a3, s; a′4 = a4 + Q;

(a4 − a3)qµ, a3 = 0, c− 1; a′3 = a3 + 1;
a4 = a3 + 1, c; a′4 = a4;

(c− a3)qµ, a3 = 0, c− 1; a′3 = a3 + 1;
a4 = c + 1, S; a′4 = a4;

−[λ + β+ a3 = 0, c; a′3 = a3;
δ̄a3c(a4 − a3)µ + δ̄a30α], a4 = a3, c; a′4 = a4;
−[λ + H(s− a4)β+ a3 = 0, c; a′3 = a3;
(c− a3)µ + δ̄a30α], a4 = c + 1, S; a′4 = a4;
0, Otherwise.
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For a2 = 0, c

Fa2 =


λ, a3 = 0, a2; a′3 = a3;

a4 = a3, S; a′4 = a4;
0, Otherwise.

For a2 = 1, c

Ea2 =



(a4 − a3)pµ, a3 = 0, a2 − 1; a′3 = a3;
a4 = a3 + 1, a2; a′4 = a4 − 1;

(a2 − a3)pµ, a3 = 0, a2 − 1; a′3 = a3;
a4 = a2 + 1, S; a′4 = a4 − 1;

α, a3 = 1, a2; a′3 = a3 − 1;
a4 = a3, S; a′4 = a4 − 1;

0, Otherwise.

Ec+1 =



(a4 − a3)pµ, a3 = 0, c− 1; a′3 = a3;
a4 = a3 + 1, c; a′4 = a4 − 1;

(c− a3)pµ, a3 = 0, c− 1; a′3 = a3;
a4 = c + 1, S; a′4 = a4 − 1;

α, a3 = 1, c; a′3 = a3 − 1;
a4 = a3, S; a′4 = a4 − 1;

0, Otherwise.

3.1. Neuts and Rao Matrix Geometric Approximation
The structure of Equation (1) indicates that the assumed Markov chain, denoted as

{A(t), t ≥ 0}, conforms to the level-dependent QBD process. To solve this system, we
employ Neuts and Rao’s truncation method [42], which involves capping the orbit level at a
specified point, denoted as M. This truncation shifts the system from being level-dependent
to level-independent. Essentially, the equilibrium of the system is determined by setting
Ta1,0 = TM,0 and Ta1,a1 = TM,M for all a1 ≥ M. In this scenario, the modified generator
matrix for {A(t), t ≥ 0} is given by

T̂ =



T01 T10 0 0 0 · · · 0 0 0 0 0 · · ·
T10 T11 T10 0 0 · · · 0 0 0 0 0 · · ·
0 T20 T22 T10 0 · · · 0 0 0 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . .
0 0 0 0 0 · · · TM0 TMM T10 0 0 · · ·
0 0 0 0 0 · · · 0 TM0 TMM T10 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . .


,

In order to obtain the necessary stationary probability vector, we use the rate matrix T∗,
which is generated using this equation T∗ = TM0 + TMM + T10 and is given by

T∗ =



D̂a2 , a2 = 0, c; a′2 = a2;
D̂c, a2 = c + 1, N − 1; a′2 = a2;
D̂N , a2 = N; a′2 = a2;
F̂a2 , a2 = 0, c− 1; a′2 = a2 + 1;
F̂c, a2 = c, N − 1; a′2 = a2 + 1;
Ea2 , a2 = 1, c; a′2 = a2 − 1;
Ec+1, a2 = c + 1, N; a′2 = a2 − 1;
0, Otherwise.
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For a2 = 0, c

D̂a2 =



β, a3 = 0, a2; a′3 = a3;
a4 = a3, s; a′4 = a4 + Q;

δ̄a20(a4 − a3)qµ, a3 = 0, a2 − 1; a′3 = a3 + 1;
a4 = a3 + 1, a2; a′4 = a4;

δ̄a20(a2 − a3)qµ, a3 = 0, a2 − 1; a′3 = a3 + 1;
a4 = a2 + 1, S; a′4 = a4;

−[λ + β + Mθ+ a3 = 0, a2; a′3 = a3;
δ̄a20δ̄a2a3(a4 − a3)µ + δ̄a20δ̄a30α], a4 = a3, a2; a′4 = a4;
−[λ + H(s− a4)β + Mθ+ a3 = 0, a2; a′3 = a3;
δ̄a20(a2 − a3)µ + δ̄a20δ̄a30α], a4 = a2 + 1, S; a′4 = a4;
0, Otherwise.

D̂N =



β, a3 = 0, c; a′3 = a3;
a4 = a3, s; a′4 = a4 + Q;

(a4 − a3)qµ, a3 = 0, c− 1; a′3 = a3 + 1;
a4 = a3 + 1, c; a′4 = a4;

(c− a3)qµ, a3 = 0, c− 1; a′3 = a3 + 1;
a4 = c + 1, S; a′4 = a4;

−[λ + β+ a3 = 0, c; a′3 = a3;
δ̄a3c(a4 − a3)µ + δ̄a30α], a4 = a3, c; a′4 = a4;
−[λ + H(s− a4)β+ a3 = 0, c; a′3 = a3;
(c− a3)µ + δ̄a30α], a4 = c + 1, S; a′4 = a4;
0, Otherwise.

For a2 = 0, c

F̂a2 =


λ + Mθ, a3 = 0, c; a′3 = a3;

a4 = a3, S; a′4 = a4;
0, Otherwise.

Theorem 1. The steady state probability vector ψ to the matrix T∗ is given by

ψ(a2) = ψ(0)χa2 , ∀ a2 ∈ 0, N (2)

where

χ0 = I; χi =
i

∏
j=1

Γj

Γj =


−F̂j−1[D̂j + Γj+1Ej+1]

−1, j ∈ 1, c,
−F̂c[D̂c + Γj+1Ec+1]

−1, j ∈ c + 1, N − 1,
−F̂cD̂−1

N , j = N.

and ψ(0) is obtained by solving the equations

ψ(0)(D̂0 + Γ1E1) = 0, (3)

N

∑
a2=0

ψ(0)e = 1. (4)
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Proof. The probability vector ψ in steady state satisfies the below equations:

ψT∗ = 0, (5)

ψe = 1. (6)

In Equation (5), after explicitly expressing ψ and T∗ and simplifying it, we arrive at the
N + 1 set of equations as follows:

ψ(a2)D̂a2 + ψ(a2+1)Ea2+1 = 0, a2 = 0, (7)

ψ(a2−1)F̂a2−1 + ψ(a2)D̂a2 + ψ(a2+1)Ea2+1 = 0, a2 ∈ 0, c, (8)

ψ(a2−1)F̂c + ψ(a2)D̂c + ψ(a2+1)Ec+1 = 0, a2 ∈ c + 1, N − 2, (9)

ψ(a2−1)F̂c + ψ(a2)D̂a2 = 0, a2 = N − 1. (10)

The steady-state probability vectors ψ(a2) for all a2 in the set 0, N are obtained by solving
the system of Equations (7) and (10) iteratively. This allows us to express these vectors
in terms of the steady-state probability vector ψ(0) as shown in Equation (2). Solving
Equations (3) and (4), we obtain ψ(0) and use the vector ψ(0) to obtain ψ.

Theorem 2. The inequality

c

∑
a3=0

S

∑
a4=a3

ψ(M,N,a3,a4)λ <

{
c

∑
a2=0

a2

∑
a3=0

S

∑
a4=a3

+
N−1

∑
a2=c+1

c

∑
a3=0

S

∑
a4=a3

}
ψ(M,a2,a3,a4)Mθ (11)

gives the stability condition for the infinitesimal generator matrix, T̂.

Proof. Based on the result given by Neuts [43], the existence of a steady-state probability
vector ψ for the modified infinitesimal generator matrix T̂ is dependent upon the fulfillment
of the following condition.

ψT0,1e < ψTM,0e. (12)

Through the above Theorem (1) in inequality (12) and writing elaborately on all ψ,
T0,1, TM,0 and e and simplifying it, the required stability condition in (11) is obtained.

3.2. Limiting Probability Distribution

The generating matrix T yields the steady-state probability vector ϕ = (ϕ(0), ϕ(1), ϕ(2), · · · ),
which meets the stability requirement. Consequently, the Markov process denoted as

{(A1(t), A2(t), A3(t), A4(t)), t ≥ 0},

with a state space denoted as P is classified as regular. Hence, the ultimate probability
distribution is denoted as

ϕ(a1,a2,a3,a4) = lim
t→∞

Pr[A1(t) = a1, A2(t) = a2, A3(t) = a3, A4(t) = a4 |

A1(0) = 0, A2(0) = 0, A3(0) = 0, A4(0) = 0].

It exists and is observed to be independent of the initial state.

4. Computation of R Matrix

To obtain the steady-state probability vector ϕ = (ϕ(0), ϕ(1), ϕ(2), . . . ), it is essential to
calculate the rate matrix R.
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Theorem 3. The rate matrix R is the minimal non-negative solution of the matrix quadratic equation

TM,0R2 + TM,MR+ T0,1 = 0, (13)

and the R matrix structure is

R =



0 1 · · · S− 1 S

0 0 0 · · · 0 0

1 0 0 · · · 0 0
...

...
... · · ·

...
...

N − 1 0 0 · · · 0 0

N A(0) A(1) · · · A(N−1) A(N)


(14)

For a2 ∈ 0, N

A(a2) =



0 1 · · · c− 1 c

0 <0,0
a2 <0,1

a2 · · · <0,c−1
a2 <0,c

a2

1 <1,0
a2 <1,1

a2 · · · <1,c−1
a2 <1,c

a2

...
...

... · · ·
...

...

c− 1 <c−1,0
a2 <c−1,1

a2 · · · <c−1,c−1
a2 <c−1,c

a2

c <c,0
a2 <c,1

a2 · · · <c,c−1
a2 <c,c

a2


(15)

For u, v ∈ 0, c

<u,v
a2

=



v v + 1 · · · S− 1 S

u ϑu,v
a2,u,v ϑu,v+1

a2,u,v · · · ϑu,S−1
a2,u,v ϑu,S

a2,u,v

u + 1 ϑu+1,v
a2,u,v ϑu+1,v+1

a2,u,v · · · ϑu+1,S−1
a2,u,v ϑu+1,S

a2,u,v

...
...

... · · ·
...

...

S− 1 ϑS−1,v
a2,u,v ϑS−1,v+1

a2,u,v · · · ϑS−1,S−1
a2,u,v ϑS−1,S

a2,u,v

S ϑS,v
a2,u,v ϑS,v+1

a2,u,v · · · ϑS,S−1
a2,u,v ϑS,S

a2,u,v


(16)

Proof. The matrix quadratic Equation (13) is fulfilled by the rate matrix R, which is con-
structed based on the block tridiagonal structure of the infinitesimal modified generating
matrix T̂. At first, it is presumed that (14) contains the unknown R-matrix. In fact, the
R-matrix structure may be determined simply by counting the number of non-zero rows
in the T0,1 matrix. Since each row in the final block of the T0,1 matrix contains at least one
non-zero element, all of the rows in the final block of the R-matrix should be regarded as
non-zero rows. These presumptions lead to the structure of the unknown R-matrix being
as shown in (14). The following set of non-linear homogeneous equations is derived by
using each block matrix in Equation (13).
If a2 = N; a′2 ∈ 0, N; a3 ∈ 0, c− 1; a′3 ∈ 0, c; a4 ∈ a3, c; a′4 ∈ a′3, S;

[
λ + β + δ0a4 a4µ + δ̄a30α

]
ϑ

a4,a′4
a2,a3,a′3

+ βϑ
Q+a4,a′4
a2,a3,a′3

+ δa40q(a4 − a3)µϑ
a4,a′4
a2,a3,a′3

+ λδa′2 N = 0. (17)

If a2 = N; a′2 ∈ 0, N; a3 ∈ 0, c− 1; a′3 ∈ 0, c; a4 ∈ c + 1, S; a′4 ∈ a′3, S;

[
λ + H(s− a4)β + cµ + δ̄a30α

]
ϑ

a4,a′4
a2,a3,a′3

+ H(s− a4)βϑ
Q+a4,a′4
a2,a3,a′3

+ q(c− a3)µϑ
a4,a′4
a2,a3,a′3

+ λδa′2 N = 0. (18)
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If a2 = N; a′2 ∈ 0, N; a3 = c; a′3 ∈ 0, c; a4 ∈ a3, c; a′4 ∈ a′3, S;[
λ + β + α

]
ϑ

a4,a′4
a2,a3,a′3

+ βϑ
Q+a4,a′4
a2,a3,a′3

+ λδa′2 N = 0. (19)

If a2 = N; a′2 ∈ 0, N; a3 = c; a′3 ∈ 0, c; a4 ∈ c + 1, S; a′4 ∈ a′3, S;[
λ + H(s− a4)β + α

]
ϑ

a4,a′4
a2,a3,a′3

+ H(s− a4)βϑ
Q+a4,a′4
a2,a3,a′3

+ λδa′2 N = 0. (20)

Solving the above set of Equations (17)–(20) via Gauss–Seidel Method, we obtain the
exact entries of the rate matrix R.

Theorem 4. The probability vector ϕ(a1), ∀ a1 = 1, 2, 3, . . . of the Markov chain can be derived

by ϕ(a1) =

{
ϕ(0)Λa1 , ∀ a1 = 0, M,
ϕ(0)ΛMRa1−M, ∀ a1 > M.

where R is the solution of the matrix quadratic Equation (13) and

Λa1 =

I, if a1 = 0,
a1
∏
i=0

T0,1 Ai, if a1 = 1, M.

Xj =

{
−(T0,1Xj+1Tj+2,0 + T(j+1),(j+1))

−1, ∀ j = 0, M− 2,
[−(TM,M +RTM,0)]

−1, ∀ j = M− 1.
and

ϕ(0) =

[
I +

M−1

∑
a1=1

i−1

∏
j=0

T0,1Xj +
M−1

∏
j=0

T0,1Xj(I −R)−1
]−1

Proof. Let ϕ = (ϕ(0), ϕ(1), ϕ(2), . . . ) be a probability vector which satisfies

ϕT̂ = 0 and ϕe = 1. (21)

Let us use the matrix geometric method to solve (21). Let us consider a rate matrix R
which is the solution of the matrix quadratic equation R2TM,0 +RTM,M + T0,1 = 0. Let us
assume that

ϕ(a1) = ϕ(M)R(a1−M) ∀ a1 = M, ∞. (22)

By solving ϕT∗ = 0, we obtain the following system of equations

ϕ(0)T0,0 + ϕ(1)T1,0 = 0 (23)

ϕ(a1−1)T0,1 + ϕ(a1)Ta1,a1 + ϕ(a1+1)Ta1+10 = 0 ∀ a1 = 1, n− 1 (24)

ϕ(M−1)T0,1 + ϕ(M)(TM,M +RTM,0) = 0 (25)

and
[ M−1

∑
a1=0

ϕ(a1) + ϕ(M)(I −R)−1
]
e = 1. (26)

From (25) ϕ(M) = ϕ(M−1)T0,1XM−1, where XM−1 = [−(TM,M +RTM,0)]
−1.

From(24) ϕ(M−1) = ϕ(M−2)T0,1XM−2 ,where XM−2 = [−(T(M−1)×(M−1)+T0,1GM−1TM,0)]
−1

Using (24) again, similarly we obtain ϕ(M−2) = ϕ(M−3)T0,1XM−3
where XM−3 = [−(T(M−2),(M−2) + T0,1XM−2TM,0)]

−1

In general

ϕ(a1) = ϕ(a1−1)T0,1Xa1−1 ∀ a1 = 1, M (27)
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where Xa1 =

{
[−(TM,M +RTM,0)]

−1 a1 = M− 1
[−(Ta1,a1 + T0,0 Aa1 Ta1+1,1)]

−1 a1 = 1, M− 2

From (27)

ϕ(a1) = ϕ(0)Λa1 ∀ a1 = 0, M (28)

ℵa1 =

I if a1 = 0
a1
∏
i=0

T0,1 Ai if a1 = 1, M
(29)

By substituting (28) in (25), we obtain

ϕ(0)
[

I +
M−1

∑
a1=0
ℵa1 + ℵM(I −R)−1

]
e = 1 (30)

By substituting (29) in (30), we obtain

ϕ(0) =

[
I +

M−1

∑
a1=1

a1−1

∏
i=0

T0,1Xi +
M−1

∏
i=0

T0,1Xi(I −R)−1
]−1

. (31)

Using (31) in (28), we can obtain each ϕ(i).

5. System Performance Measures

In this section, various performance measures of the system are defined to construct
the total cost function and to illustrate numerical examples.

1. Mean Inventory level:

Z1 =
∞
∑

a1=0

c
∑

a2=0

a2
∑

a3=0

S
∑

a4=a3

a4 ϕ(a1,a2,a3,a4) +
∞
∑

a1=0

N
∑

a2=c+1

c
∑

a3=0

S
∑

a4=a3

a4 ϕ(a1,a2,a3,a4)

2. Mean Reorder Rate:

Z2 =
∞
∑

a1=0

c
∑

a2=1

a2−1
∑

a3=0
(a2 − a3)pµϕ(a1,a2,a3,s+1) +

∞
∑

a1=0

N
∑

a2=c+1

c−1
∑

a3=0
(c− a3)pµϕ(a1,a2,a3,s+1)

+
∞
∑

a1=0

c
∑

a2=1

a2
∑

a3=1
αϕ(a1,a2,a3,s+1) +

∞
∑

a1=0

N
∑

a2=c+1

c
∑

a3=1
αϕ(a1,a2,a3,s+1)

3. Mean Number of Customers in Waiting Hall:

Z3 =
∞
∑

a1=1

c
∑

a2=0

a2
∑

a3=0

S
∑

a4=a3

a2 ϕ(a1,a2,a3,a4) +
∞
∑

a1=0

N
∑

a2=c+1

c
∑

a3=0

S
∑

a4=a3

a2 ϕ(a1,a2,a3,a4)

4. Mean Number of Customers Enter into the Waiting Hall:

Z4 =
∞
∑

a1=0

c
∑

a2=0

a2
∑

a3=0

S
∑

a4=a3

λϕ(a1,a2,a3,a4) +
∞
∑

a1=0

N−1
∑

a2=c+1

c
∑

a3=0

S
∑

a4=a3

λϕ(a1,a2,a3,a4)

5. Mean Waiting Time of Customers in Waiting Hall:

Z5 =
Z3

Z4
6. Mean Number of Junior Servers in C-mode:

Z6 =
∞
∑

a1=1

c
∑

a2=1

a2
∑

a3=1

S
∑

a4=a3

a3 ϕ(a1,a2,a3,a4) +
∞
∑

a1=0

N
∑

a2=c+1

c
∑

a3=1

S
∑

a4=a3

a3 ϕ(a1,a2,a3,a4)

7. Mean Number of Junior Servers Enter into C-mode:

Z7 = qµ

[
∞
∑

a1=0

c
∑

a2=1

a2−1
∑

a3=0

a2

∑
a4=a3+1

(a4 − a3)ϕ(a1,a2,a3,a4) +
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∞
∑

a1=0

c
∑

a2=1

a2−1
∑

a3=0

S
∑

a4=a2+1
(a2 − a3)ϕ(a1,a2,a3,a4) +

∞
∑

a1=0

N
∑

a2=c+1

c−1
∑

a3=0

c
∑

a4=a3+1
(a4 − a3)ϕ(a1,a2,a3,a4) +

∞
∑

a1=0

N
∑

a2=c+1

c−1
∑

a3=0

S
∑

a4=c+1
(c− a3)ϕ(a1,a2,a3,a4)

]
8. Mean Waiting Time of Junior Servers in C-mode:

Z8 =
Z6

Z7
9. Mean Number of Busy Junior Servers in S-mode:

Z9 =
∞
∑

a1=0

c
∑

a2=1

a2−1
∑

a3=0

a2

∑
a4=a3+1

(a4 − a3)ϕ(a1,a2,a3,a4) +
∞
∑

a1=0

c
∑

a2=1

a2−1
∑

a3=0

S
∑

a4=a2+1
(a2 − a3)ϕ(a1,a2,a3,a4)

+
∞
∑

a1=0

N
∑

a2=c+1

c−1
∑

a3=0

c
∑

a4=a3+1
(a4 − a3)ϕ(a1,a2,a3,a4) +

∞
∑

a1=0

N
∑

a2=c+1

c−1
∑

a3=0

S
∑

a4=c+1
(c− a3)ϕ(a1,a2,a3,a4)

10. Mean Number of Idle Junior Servers in S-mode:
Z10 = c− (Z6 + Z9)

11. Mean Number of Customers in the Orbit:

Z11 =
M−1
∑

a1=1
ϕ(a1)e + (Mϕ(M)(I −R)−1 + ϕ(M)R(I −R)−2)e

12. Mean Number of Customers Enter into Orbit:

Z12 =
∞
∑

a1=0

a2
∑

a3=0

S
∑

a4=a3

λϕ(a1,N,a3,a4)

13. Mean Waiting Time of Customers in Orbit:

Z13 =
Z11

Z12
14. Successful Rate of Retrial:

Z14 =
M−1
∑

a1=1

c
∑

a2=0

a2
∑

a3=0

S
∑

a4=a3

a1θϕ(a1,a2,a3,a4) +
M−1
∑

a1=1

N−1
∑

a2=c+1

c
∑

a3=0

S
∑

a4=a3

a1θϕ(a1,a2,a3,a4)

+ (Mθϕ(M)(I −R)−1 + ϕ(M)θR(I −R)−2)e
15. Overall Rate of Retrial:

Z15 = θZ11
16. Fraction of Successful Rate of Retrial:

Z16 =
Z14

Z15

The Expected Total Cost

The expected total expenditure of the considered queuing-inventory system is defined as

ETC = c1Z1 + c2Z2 + c3Z3 + c4Z6 + c5Z11 + c6Z9 + c7Z10 (32)

where

c1 refers to the expense associated with holding each unit of an item.
c2 signifies the cost incurred for setting up each unit of an item.
c3 represents the cost accrued for each customer in the waiting hall per unit of time.
c4 denotes the cost incurred for each junior server in C-mode per unit of time.
c5 pertains to the cost accrued for each customer in orbit per unit of time.
c6 represents the expenditure linked to each engaged junior server.
c7 signifies the cost associated with each idle junior server.

6. Cost Analysis and Numerical Illustration

The study will employ the system’s cost and parameter values to analyze the four-
dimensional stochastic multi-server QIS under examination. The investigation will involve
the study of the total cost, active servers, proportion of the successful retrial rate, and
waiting times for customers in the orbit, waiting area, and servers in both S-mode and
C-mode, by varying the parameters. Based on the results obtained from the stability
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conditions and normalizing property, the following parameters and costs of the Markov
process are assumed: S = 28; s = 10;c1 = 0.008; c2 = 1; c3 = 2; c4 = 2; c5 = 0.1; c6 =
2; c7 = 1; Q = S− s; N = 6; c = 3; M = 100; p = 0.5; q = 1− p; θ = 0.9; λ = 1; µ = 3; α =
8; and β = 2; for the analysis of the numerical discussions.

6.1. Analysis on the Expected Total Cost

In this section, the expected total cost is analyzed under the parameters. The obtained
convex in Figure 2 ensures the model’s efficiency. The impacts of each parameter on ETC
are given in Tables 1–3. The characteristics of the parameters are listed below:

• As the arrival rate λ rises, there is a notable upswing in ETC due to the increased
presence of customers inside the waiting hall.

• Elevating the probability value p hinders junior servers from approaching their senior
counterparts. As a result, customers inside the waiting hall tend to depart promptly at
the end of service in S-mode, resulting in a decrease in ETC.

• With an increase in the retry rate θ, the anticipated orbit level diminishes as an
increasing number of customers enter the waiting area. Since the expected orbit level
correlates with the total cost, this leads to a reduction in ETC.

• Higher service rates µ and α lead to a drop in each customer’s mean service duration.
Consequently, Z3 decreases, contributing to a decrease in ETC.

• Raising the rate β results in a decrease in the average lead time per order. Consequently,
the expected total cost decreases.

• Altering the number of junior servers in the system incurs additional expenses. Hence,
an increase in c leads to an increase in ETC.

• An expansion in the waiting hall size corresponds to a rise in Z3. As a result, the
overall cost exhibits a positive correlation with the parameter N.

Expected total cost is a pivotal measure utilized to assess and enhance the effectiveness
of a system. The efficiency of the model is significantly influenced by factors like the service
rate, reorder rate, and the quantity of servers.

Figure 2. Expected total cost for S vs. s.
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Table 1. ETC vs. µ, α, and p.

µ α p 0.00 0.25 0.50 0.75 1.00

3
7 6.031736 5.065806 4.594173 4.313232 4.126693
8 5.939920 5.006762 4.550207 4.278155 4.097510
9 5.870337 4.961519 4.516374 4.251100 4.074969

4
7 5.488890 4.714822 4.332903 4.105023 3.953676
8 5.396855 4.655079 4.288480 4.069652 3.924297
9 5.326736 4.609159 4.254219 4.042323 3.901571

5
7 5.171290 4.506030 4.176982 3.980651 3.850284
8 5.078740 4.445875 4.132323 3.945139 3.820815
9 5.008045 4.399572 4.097844 3.917677 3.798003

Table 2. ETC vs. λ, θ, β, and p.

λ θ β p 0.00 0.25 0.50 0.75 1.00

1.0

0.1
2 5.941777 5.006924 4.550238 4.278163 4.097513
3 5.935194 5.002773 4.547378 4.276104 4.095999
4 5.931683 5.000643 4.545962 4.275120 4.095300

0.5
2 5.940224 5.006786 4.550212 4.278156 4.097510
3 5.933647 5.002635 4.547351 4.276097 4.095996
4 5.930138 5.000505 4.545936 4.275112 4.095297

0.9
2 5.939920 5.006762 4.550207 4.278155 4.097510
3 5.933346 5.002612 4.547347 4.276096 4.095995
4 5.929838 5.000481 4.545932 4.275111 4.095297

1.5

0.1
2 7.539386 5.970785 5.263147 4.848807 4.575142
3 7.524784 5.960969 5.255680 4.842871 4.570300
4 7.516844 5.955703 5.251778 4.839841 4.567878

0.5
2 7.514470 5.968412 5.262689 4.848674 4.575092
3 7.499993 5.958607 5.255224 4.842738 4.570250
4 7.492103 5.953344 5.251322 4.839708 4.567828

0.9
2 7.509099 5.967982 5.262613 4.848653 4.575084
3 7.494679 5.958184 5.255149 4.842718 4.570243
4 7.486809 5.952924 5.251248 4.839688 4.567821

2.0

0.1
2 9.652635 7.022696 6.000656 5.429878 5.058704
3 9.623882 7.005369 5.987205 5.418726 5.049210
4 9.609102 6.996062 5.980050 5.412893 5.044321

0.5
2 9.563897 7.005378 5.997239 5.428880 5.058325
3 9.534545 6.988206 5.983825 5.417744 5.048842
4 9.519482 6.978943 5.976676 5.411911 5.043953

0.9
2 9.532591 7.002251 5.996667 5.428720 5.058266
3 9.503364 6.985142 5.983269 5.417590 5.048786
4 9.488287 6.975898 5.976124 5.411758 5.043898

Table 3. ETC vs. c, N, and p.

c N p 0.00 0.25 0.50 0.75 1.00

3
6 5.939920 5.006762 4.550207 4.278155 4.097510
7 5.943270 5.007606 4.550499 4.278280 4.097572
8 5.945190 5.008096 4.550672 4.278356 4.097610

4
6 7.328508 6.329089 5.816626 5.504202 5.293634
7 7.328949 6.329197 5.816658 5.504214 5.293639
8 7.329114 6.329223 5.816665 5.504216 5.293640

5
6 8.678503 7.621454 7.063953 6.717419 6.480568
7 8.678304 7.621446 7.063953 6.717419 6.480568
8 8.678374 7.621456 7.063955 6.717420 6.480568
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6.2. Analysis on Mean Waiting Time of Customers in the Waiting Hall

This section analyzes the customer’s waiting time in the waiting hall under the parameter
variation shown in Tables 4–6. Each parameter is varied under the probability p.

• As the waiting hall size N is enlarged, there is an observed rise in waiting time
attributable to an increase in Z4.

• Augmenting the service rates for both junior and senior servers reduces their average
service period. Hence, customer’s waiting time decreases.

• An escalation in the arrival rate λ corresponds to an uptick in primary arrivals, leading
to an increase in Z3. Likewise, as the retry rate θ rises, orbiting customers transition
into the waiting hall, influencing Z5.

• It is a well-established fact that an augmentation in the number of servers generally
leads to a decrease in waiting time. Accordingly, the parameter c is reflected in Z5.

• Increasing the rate β results in a reduction in the average lead time per order and
Z5 diminishes.

By thoroughly analyzing waiting times in a waiting hall, businesses and organiza-
tions can implement strategies to enhance customer satisfaction, optimize operations, and
improve overall service quality.

Table 4. Z5 vs. λ, θ, and p.

λ θ p 0.00 0.25 0.50 0.75 1.00

1
0.7 0.818034 0.676300 0.576869 0.503096 0.446129
0.9 0.818077 0.676309 0.576872 0.503096 0.446130
1.1 0.818122 0.676322 0.576876 0.503098 0.446130

1.5
0.7 0.853010 0.693696 0.587304 0.510087 0.451152
0.9 0.853583 0.693816 0.587331 0.510093 0.451153
1.1 0.854016 0.693942 0.587372 0.510108 0.451159

2
0.7 0.944325 0.730811 0.606190 0.521327 0.458600
0.9 0.949729 0.731874 0.606448 0.521392 0.458614
1.1 0.952303 0.732582 0.606687 0.521479 0.458648

Table 5. Z5 vs. c, β, and p.

c β p 0.00 0.25 0.50 0.75 1.00

2
1 0.894707 0.718120 0.603122 0.521038 0.459102
2 0.894216 0.717907 0.602988 0.520932 0.459009
3 0.894138 0.717889 0.602984 0.520932 0.459010

3
1 0.818223 0.676429 0.576976 0.503191 0.446218
2 0.818040 0.676300 0.576870 0.503096 0.446129
3 0.818026 0.676296 0.576868 0.503095 0.446129

4
1 0.810804 0.672472 0.574604 0.501661 0.445179
2 0.810654 0.672354 0.574502 0.501568 0.445092
3 0.810646 0.672351 0.574501 0.501567 0.445092

Table 6. Z5 vs. N, µ, α, and p.

N µ α p 0.00 0.25 0.50 0.75 1.00

5

2
7 1.203648 0.779707 0.579805 0.461953 0.384052
8 1.178165 0.765030 0.569407 0.453902 0.377485
9 1.159069 0.753881 0.561460 0.447727 0.372437

3
7 0.841619 0.551896 0.411114 0.327681 0.272442
8 0.817536 0.537408 0.400787 0.319667 0.265897
9 0.799442 0.526400 0.392894 0.313520 0.260864

4
7 0.669833 0.439553 0.327314 0.260796 0.216771
8 0.645964 0.425118 0.317012 0.252796 0.210233
9 0.628029 0.414150 0.309138 0.246659 0.205206
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Table 6. Cont.

N µ α p 0.00 0.25 0.50 0.75 1.00

6

2
7 1.208293 0.780137 0.579873 0.461968 0.384057
8 1.182238 0.765400 0.569464 0.453914 0.377489
9 1.162759 0.754211 0.561510 0.447738 0.372440

3
7 0.842290 0.551948 0.411122 0.327683 0.272442
8 0.818072 0.537448 0.400793 0.319668 0.265897
9 0.799896 0.526432 0.392899 0.313521 0.260864

4
7 0.670011 0.439567 0.327317 0.260797 0.216771
8 0.646091 0.425128 0.317013 0.252796 0.210233
9 0.628128 0.414157 0.309139 0.246659 0.205207

7

2
7 1.223024 0.782166 0.580291 0.462086 0.384098
8 1.195385 0.767176 0.569825 0.454015 0.377524
9 1.174808 0.755817 0.561834 0.447827 0.372471

3
7 0.845365 0.552284 0.411189 0.327701 0.272449
8 0.820602 0.537717 0.400845 0.319683 0.265902
9 0.802076 0.526660 0.392943 0.313533 0.260869

4
7 0.671008 0.439674 0.327338 0.260803 0.216773
8 0.646849 0.425206 0.317029 0.252800 0.210235
9 0.628743 0.414219 0.309151 0.246662 0.205208

6.3. Analysis of Mean Waiting Time for Customer in the Orbit

The mean waiting time for the customers in the orbit is analyzed in this section for
each parameter under the variation in P shown in Tables 7–9. The impact of the parameters
is listed below:

• By increasing N, the waiting hall offers more space, allowing orbital customers to
transition into the waiting hall. As a result, their waiting time is reduced.

• Elevating the service rates for both junior and senior servers leads to a reduction in
their average service time. Consequently, customers in the waiting hall tend to leave
promptly, creating room for orbital customers to enter. This leads to a reduction in the
waiting time for orbital customers.

• An increase in λ signifies a rise in primary arrivals, causing Z3 to also increase. This,
in turn, results in an extended Z13.

• Similarly, as the rate θ rises, orbital customers move into the waiting hall, decreas-
ing Z13.

• It is a well-established fact that augmenting the number of servers generally leads to a
decrease in waiting time. Therefore, the parameter c contributes to optimizing Z13.

• The rate of parameter β is being increased. It is associated with a reduction in the lead
time per order that minimizes Z13.

The examination provides valuable insights into minimizing the waiting time for
customers in the orbit. Ultimately, these parameters impact the efficiency of waiting times
for customers in the waiting hall and also affect the orbit. A decrease in the waiting time
for orbital customers leads to an increase in the business’s profitability.

Table 7. Z13 vs. N, µ, α, and p.

N µ α p 0.00 0.25 0.50 0.75 1.00

5

2
7 17.974591 16.126918 15.134281 14.557830 14.196432
8 17.385102 15.680368 14.769172 14.246196 13.923038
9 16.951712 15.348465 14.494552 14.008187 13.709900

3
7 15.496179 14.688288 14.214487 13.819129 13.354706
8 15.039793 14.342994 13.940541 13.577170 13.084691
9 14.697968 14.073332 13.711969 13.357540 12.824969

4
7 14.823263 14.195999 13.603035 12.876039 11.961140
8 14.464449 13.938156 13.340046 12.460582 11.545646
9 14.175495 13.699796 13.059647 12.004922 11.494981
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Table 7. Cont.

N µ α p 0.00 0.25 0.50 0.75 1.00

6

2
7 15.398444 13.833228 12.987423 12.502860 12.217659
8 14.886138 13.443967 12.670814 12.235936 11.988846
9 14.509286 13.154461 12.432376 12.031705 11.810049

3
7 13.290115 12.611500 12.260900 12.051000 11.885700
8 12.899227 12.324800 12.051900 11.904900 11.787000
9 12.606572 12.101900 11.879100 11.771100 11.680400

4
7 12.721641 12.279487 11.983881 11.707888 11.390321
8 12.432918 12.114537 11.906196 11.672482 11.338833
9 12.205155 11.968338 11.815081 11.598996 11.229460

7

2
7 12.982237 11.655100 10.927200 10.508000 10.264500
8 12.537662 11.316500 10.653400 10.279400 10.070800
9 12.210647 11.064900 10.447500 10.104900 9.920400

3
7 11.171236 10.580468 10.287446 10.142443 10.073247
8 10.836051 10.338327 10.114754 10.028237 10.010985
9 10.586480 10.152566 9.976379 9.929820 9.918257

4
7 10.654105 10.297545 10.115627 10.042687 10.05909
8 10.410305 10.163202 10.069510 10.034289 10.00849
9 10.224213 10.053975 9.024084 9.0077514 8.925115

Table 8. Z13 vs. λ, θ, and p

λ θ p 0.00 0.25 0.50 0.75 1.00

1
0.7 6.168542 4.411438 3.410960 2.348533 1.446406
0.9 5.039675 3.494077 2.670702 1.839568 1.137603
1.1 4.338611 2.932733 2.217329 1.524989 0.944842

1.5
0.7 9.004800 7.463500 6.438000 4.978400 3.376200
0.9 7.149300 5.759400 4.923600 3.820000 2.612900
1.1 6.016700 4.733400 4.010400 3.113900 2.141300

2
0.7 16.816769 15.988781 15.693862 14.625320 12.438549
0.9 12.899227 11.969791 11.634857 10.840719 9.288518
1.1 10.564923 9.601746 9.246775 8.601285 7.401879

Table 9. Z13 vs. c, β, and p

c β p 0.00 0.25 0.50 0.75 1.00

2
1 35.941785 29.674531 28.507375 28.603095 29.006031
2 16.676209 13.582353 12.923631 12.734906 12.420229
3 4.417784 2.637320 1.175358 0.480075 0.234289

3
1 28.543326 27.075633 27.309766 27.759411 28.048548
2 12.899227 11.969791 11.634857 10.840719 9.288518
3 2.656402 0.945474 0.300075 0.131414 0.080402

4
1 26.155253 25.882732 26.404486 26.976858 27.352461
2 11.639618 11.124192 10.458458 8.803575 6.357663
3 1.770459 0.466486 0.145741 0.071584 0.049899

6.4. Analysis on Mean Waiting Time of Junior Servers in C-Mode

This section analyzes a parameter analysis on the mean waiting time of junior servers
in C-mode. The impact of parameters can be seen in Tables 10–12 and is listed below

• As the rate of customer arrival increases, there is a corresponding growth in the
quantity of customers present in the waiting area. As a result, there is an increased
probability of junior servers operating in C-mode, hence resulting in a corresponding
rise in their waiting duration.

• Similarly, an increase in the retrial rate θ allows orbital customers to transition into the
waiting hall, resulting in an increase in Z8



Mathematics 2023, 11, 4581 20 of 31

• Increasing the value of c leads to a rise in the average number of busy junior servers.
Additionally, the number of junior servers in C-mode also increases with an increase in c.

• An expansion in the capacity of the waiting area corresponds to a proportional increase
in the number of busy servers in C-mode, as there is a rise in Z8.

• The reduction in the number of servers in C-mode is seen when there is an increase in the
service rate for the senior server. However, this relationship is reversed for junior servers.

• A reduction in the rate β always leads to a decrease in lead time, consequently resulting
in a decrease in Z8.

• Upon observing the effects of varying the probability p, there is a notable reduction in
the waiting time of junior servers in C-mode.

The importance of the number of servers lies in its direct impact on the system’s capacity
to serve customers. A higher number of servers increases the system’s capacity to process
customers simultaneously, reducing waiting times and congestion. Conversely, a lower
number of servers can lead to longer waiting times and potentially dissatisfied customers.

Table 10. Z8 vs. N, µ, α, and p.

N µ α p 0.00 0.25 0.50 0.75 1.00

5

2
7 0.214168 0.173785 0.153179 0.140672 0.132265
8 0.205232 0.165357 0.144930 0.132515 0.124167
9 0.197841 0.158327 0.138030 0.125685 0.117382

3
7 0.311016 0.243614 0.208336 0.186755 0.172203
8 0.300123 0.233510 0.198503 0.177056 0.162586
9 0.291243 0.225200 0.190392 0.169047 0.154639

4
7 0.548656 0.420817 0.348025 0.302173 0.270858
8 0.534660 0.408228 0.335948 0.290339 0.259165
9 0.523450 0.398053 0.326153 0.280728 0.249662

6

2
7 0.214574 0.173874 0.153211 0.140687 0.132273
8 0.205650 0.165451 0.144964 0.132532 0.124176
9 0.198264 0.158424 0.138066 0.125702 0.117391

3
7 0.312723 0.243974 0.208462 0.186813 0.172234
8 0.301814 0.233874 0.198631 0.177115 0.162617
9 0.292917 0.225563 0.190521 0.169106 0.154671

4
7 0.560953 0.423295 0.348857 0.302539 0.271048
8 0.546575 0.410671 0.336772 0.290703 0.259353
9 0.535072 0.400464 0.326969 0.281088 0.249849

7

2
7 0.215571 0.174074 0.153276 0.140714 0.132287
8 0.206497 0.165628 0.145023 0.132557 0.124189
9 0.199010 0.158583 0.138120 0.125726 0.117403

3
7 0.315726 0.244621 0.208679 0.186906 0.172281
8 0.304383 0.234445 0.198826 0.177200 0.162661
9 0.295190 0.226081 0.190700 0.169185 0.154712

4
7 0.571828 0.426441 0.349984 0.303037 0.271302
8 0.555640 0.413467 0.337792 0.291157 0.259587
9 0.542875 0.403013 0.327913 0.281511 0.250067

Table 11. Z8 vs. λ, θ, and p.

λ θ p 0.00 0.25 0.50 0.75 1.00

1
0.7 0.298673 0.230565 0.195358 0.173921 0.159507
0.9 0.301814 0.233874 0.198631 0.177115 0.162617
1.1 0.302669 0.234794 0.199552 0.178019 0.163501

1.5
0.7 0.391362 0.295437 0.244605 0.213324 0.192213
0.9 0.395540 0.300339 0.249639 0.218302 0.197071
1.1 0.396814 0.301838 0.251218 0.219896 0.198652

2
0.7 0.484258 0.357994 0.293037 0.252562 0.225074
0.9 0.487276 0.363284 0.298753 0.258276 0.230623
1.1 0.488741 0.365234 0.300915 0.260522 0.232891
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Table 12. Z8 vs. c, β, and p.

c β p 0.00 0.25 0.50 0.75 1.00

2
1 0.200141 0.149298 0.123846 0.108641 0.098556
2 0.200125 0.149298 0.123846 0.108641 0.098556
3 0.200117 0.149297 0.123845 0.108640 0.098555

3
1 0.301820 0.233874 0.198631 0.177115 0.162617
2 0.301810 0.233873 0.198630 0.177114 0.162616
3 0.301818 0.233872 0.198629 0.177113 0.162615

4
1 0.315977 0.249250 0.212910 0.189968 0.174199
2 0.315622 0.249228 0.212908 0.189967 0.174199
3 0.315402 0.249212 0.212905 0.189966 0.174198

6.5. Analysis of Busy Junior Servers in S-Mode

This section analyzes the impact of parameters on the busy junior servers in server mode,
which are displayed in Figures 3–9. The observation of the parameters are given below:

• As arrivals increase, Z3 rises. This, in turn, raises the probability of junior servers
being in S-mode.

• Similarly, when the retrial rate θ is raised, orbital customers have a higher chance
of entering the waiting hall. Consequently, there is an uptick in the count of junior
servers in S-mode.

• Increasing the value of c results in a higher average of occupied junior servers. Simul-
taneously, there is a rise in Z9 with an increase in c.

• Expanding the capacity of the waiting hall leads to a corresponding increase in the
number of occupied servers in S-mode due to the upswing in the average number of
servers in S-mode.

• With an increase in the service rates for both senior and junior servers, Z9 decreases
due to the reduction in average service time per customer.

• An increase in the rate β consistently leads to a reduction in lead time. Consequently,
there is a decrease that can be seen in Z9.

• An examination of the effect of varying the probability p in combination with each
parameter consistently reveals a decrease in the number of junior servers in S-mode.

In service mode, the number of servers can vary based on factors such as demand
patterns, time of day, or operational decisions. Having the flexibility to adjust the number of
servers allows for responsiveness to the changing levels of demand. Increasing the number
of servers during high-demand periods can help manage waiting times and improve
customer satisfaction. Conversely, reducing the number of servers during low-demand
periods can help optimize resource utilization.

6.6. Analysis of Fraction of Successful Retrial Rate

The fraction of the successful retrial rate is analyzed in this section under the parameter
variation, shown in Figures 10–16. The observations are listed below:

• There is a gradual increase in Z16 while varying the parameter β. However, after some
point, the increase is not notably significant.

• An immediate response of increasing c can be observed in Z16 as it increases.
• The fraction of the successful retrial rate decreases when the arrival rate of the customer

increases. After some values, it moves faster towards the value zero.
• An increase in the service rate directly decreases the service time per customer. It is

suitable for the service rates of both junior and senior servers. As a result, they increase
the rate of successful retrials.

• Increasing the capacity of the waiting hall increases the chance of a retrial’s success.
Hence Z16 increases when we increase N.

• As similar to lambda, while increasing the rate θ, the waiting hall soon becomes full,
which decreases the chance of a successful retrial.
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Figure 3. Mean busy servers in S-mode vs. p and β.
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Figure 4. Mean busy servers in S-mode vs. p and c.
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Figure 5. Mean busy servers in S-mode vs. p and λ.
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Figure 6. Mean busy servers in S-mode vs. p and µ.



Mathematics 2023, 11, 4581 24 of 31

7 8 9 10 11
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ea

n 
bu

sy
 s

er
ve

rs
 in

 S
-m

od
e

p=0.00
p=0.25
p=0.50
p=0.75
p=1.00

Figure 7. Mean busy servers in S-mode vs. p and α.
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Figure 8. Mean busy servers in S-mode vs. p and N.
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Figure 9. Mean busy servers in S-mode vs. p and θ.

Analyzing the fraction of the successful retrial rate provides valuable insights into the
performance and effectiveness of a system in handling retrials. The service rates, number
of servers, waiting hall size, and reorder rate directly influence it.
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Figure 10. Fraction of successful rate of retrial vs. p and β.
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Figure 11. Fraction of successful rate of retrial vs. p and c.
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Figure 12. Fraction of successful rate of retrial vs. p and λ.
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Figure 13. Fraction of successful rate of retrial vs. p and µ.
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Figure 14. Fraction of successful rate of retrial vs. p and α.
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6.7. Observations

We present the observations that we saw in each numerical analysis.

• The obtained convexity of the total cost helps in identifying efficient configurations
that minimize the overall costs.

• The parameters β, µ, and α expose a favorable output for each analysis.
• Though the parameters N and c increase the total cost, they are actually helpful in

increasing the fraction of successful retrials.
• When p = 0, the model turns out to be the standard QIS without consultation.
• When p = 1, the model turns out to be the QIS with compulsory consultation as [40].

Also, with the inventory and retrial facility, the model looks like an extension version
of [40].

• The rate θ decreases the waiting time of customers in the orbit when it increases. But,
in the case of customers in the waiting hall, it acts inversely.

• The rate λ increases the total cost, waiting time of customers, and number of junior
servers in C and S mode.

• An increase in p means that the junior servers are developed as experienced servers.

7. Conclusions

In this article, we have investigated the queuing-inventory model, where junior servers
occasionally encounter challenges while serving customers. When faced with such sit-
uations, they seek advice from the senior server to resolve the issue. Initially, primary
customers meet junior servers to set up service. If the junior server faces no issues while
providing service, a customer leaves the system successfully with an item. Suppose that
the junior server faces an issue. He enters C-mode for consultation with a senior server.
Following this consultation, the senior and junior servers collaborate to finalize the service.
When the senior server is engaged with other junior servers, the latter joins a line and waits
for their turn. Essentially, in the second phase, junior servers assume the role of customers.

To evaluate this system, a Markovian queuing-inventory model is employed, ne-
cessitating the creation of a four-dimensional state space. By applying Neuts and Rao’s
truncation method, the study calculates the steady-state probability vector of the system
and various performance metrics. The investigation also scrutinizes customer waiting times
and the average count of active junior servers in both S-mode and C-mode. By varying the
probabilities, we gain insight into the impact of the necessity for junior server consultations
at the end of service, ranging from compulsory consultation to no consultation. As junior
servers accumulate experience from the senior server over time, the need for consultations
ultimately decreases. These analyses offer valuable insights into the model’s performance
and effectiveness. In the future, this model could be extended to incorporate more complex
arrival processes (MAP) and phase-type distributions, replacing the current Poisson and
exponential distributions.
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Notations
The following abbreviations are used in this manuscript:

0 A matrix where all entries are zero
e A column vector of appropriate dimensions, with each coordinate set to one
I An identity matrix
δij Kronecker Delta
δ̄ij 1− δij
H(x) Heaviside function
a, b a, a + 1, · · · , b, where a and b are integers
a, ∞ a, a + 1, · · ·where a is an integer
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