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Abstract: With the continuous development of the Automatic Train Operation (ATO) system in
high-speed railways, automatic driving is progressively supplanting manual operations, ushering
in a new era of predictability and reliability for high-speed railway transport. Concurrently, the
advent of the ATO system provides a notable impact on real-time rescheduling during disruptions,
as it equips dispatchers with precise insights into train operation statuses. This paper is dedicated
to a thorough analysis of how the transition to automatic driving in train operations influences
the real-time rescheduling model. Based on the distinctive impact of the ATO system on real-time
rescheduling, we have proposed a mixed-integer linear programming model that combines train
re-timing, reordering, and the minimization of passenger delays. To validate the effectiveness of our
model, we present several experiments conducted using data from the Beijing–Shanghai high-speed
railway line. The results unequivocally demonstrate that our ATO-based model significantly mitigates
train delay time, demonstrating its practical value in optimizing high-speed railway operations.

Keywords: high-speed railway; real-time rescheduling; mixed-integer programming; automatic train
operation

MSC: 90C11

1. Introduction

With the advancement of railway information technology, dispatching and train oper-
ation control systems are progressively transitioning towards automation. This transition
forms the technical basis for implementing integrated optimization techniques in train
operation adjustment and control. Across the globe, Automated Train Operation (ATO)
systems have become integral to urban transit networks. ATO systems enhance the safety,
efficiency, and automation of urban rail transit, concurrently reducing operational expenses.
The ATO system for high-speed railways has also seen significant development. In China,
the China Train Control System (CTCS) stands as a fundamental component in ensuring
the safety and enhancing the efficiency of railway transportation. The high-speed railway
Automatic Train Operation (ATO) system is built upon the CTCS-2/CTCS-3 train control
system. In comparison to manual driving, the ATO system offers numerous advantages,
including improved operational efficiency, reduced energy consumption for traction, dimin-
ished driver workload, and enhanced passenger experience. This aligns with the evolving
trajectory of high-speed railways.

Traditional real-time rescheduling and train running processes are independently
layered, with limited communication between them. After a disturbance occurs, the
dispatcher formulates rescheduling plans based on the disturbance situation, primarily
modifying train arrival and departure times, arrival and departure sequences, and track
utilization, aiming to minimize the impact of the disturbance. When the train receives the
rescheduling plan, the driver formulates corresponding driving control strategies based
on the track conditions and dispatch instructions. The train is then driven to the target
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stopping point according to the schedule. On busier high-speed rail lines, dispatchers
find it challenging to have real-time dynamic information for all trains. Delays in driver
information reception and the lack of information about the operation of surrounding trains
make it difficult for dispatchers and drivers to develop high-quality operation adjustment
and control plans.

The research on train operation adjustment is mainly limited to the train operation
control parameters given. There are few studies on the train operation process that consider
the impact of train operation status such as train speed trajectory [1]. Therefore, it is difficult
to further improve the quality of real-time rescheduling plans. The ATO (Automatic Train
Operation) system for high-speed railways can meet the stringent control requirements
during station start, inter-station operation, and station stopping, allowing dispatchers
to accurately grasp and predict the train’s operational status during disturbances. Con-
sequently, when examining the real-time rescheduling problem, it becomes imperative to
consider the unique characteristics of the ATO system to remain in line with the evolving
trends in railway development.

In the context of real-time rescheduling problems, researchers face the crucial task
of constructing an accurate and efficient model to adapt to disruptions in the timetable.
Among the key aspects of formulating such a rescheduling model is the parameterization,
including variables like train running time, train headway, dwell time, and more, all of
which can be significantly influenced by the presence of an ATO system. For instance, ATO
systems employ varying driving strategies in response to disturbances, rendering the train
running time a dynamic variable within a specific range. Moreover, with the ATO system’s
ability to precisely monitor the train operation process, fixed train headways alone may
prove insufficient for the rescheduling model.

This paper addresses the challenge of real-time rescheduling within a high-speed
railway system equipped with an ATO system, particularly during disturbance events such
as train delays caused by equipment failures or extreme weather conditions. We propose a
mixed-integer programming model for this issue, which incorporates the objective function
of reducing the overall weighted delay of all trains. We also analyze the influence of
the ATO system on the real-time rescheduling model to formulate an effective solution.
Furthermore, we present a series of experiments utilizing data from the Beijing–Shanghai
high-speed railway line to validate the efficacy of our proposed model.

This paper aims to finalize the integrated optimization model’s design. First, this
paper reviews the development of the real-time rescheduling model in Section 2. Section 3
presents the notations, scenario, and model assumption. Section 4 proposes and introduces
the key behind the functions of the real-time rescheduling model with the ATO system.
Further, Section 5 shares the result of our model in solving the real-time rescheduling
problem. Lastly, remaining questions for future studies are described and concluding
remarks are given in Section 6.

2. Literature Review

The rescheduling problem describes developing a new timetable to reduce delays when
train operations deviate from the original timetable due to external disturbances. Cacchiani
et al. [2], Corman and Meng Lingyun [1], and Fang et al. [3] conducted comprehensive
literature reviews on the problem of railway rescheduling in public transportation systems. In
this section, we provide introductions to some of the rescheduling problem studies.

Dorfmanet et al. [4] employed a discrete event model to develop a local feedback-based
travel advance strategy for trains along railway lines. Tornqurist et al. [5] introduced an
optimization approach for solving the rescheduling problem. D’Ariano et al. [6] combined
the job-shop model with an alternative graph model to minimize the maximum secondary
delay time of trains passing through all stations, along with a branching delimitation
method. Schöbel et al. [7] formulated a mixed-integer linear model to decide whether
trains should wait for passengers or depart on time. Selim et al. [8] employed a genetic
algorithm to address the single-track railway train scheduling problem. They used an
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artificial neural network to simulate dispatcher adjustment decisions and compared the
results with the adjustments obtained from the genetic algorithm. Corman et al. [9]
developed a fast heuristic algorithm for computing train timetables and assessing the
effectiveness of different neighborhood structures. Lamorgese et al. [10] employed graph
theory to describe the single-track railway train scheduling problem. They established a
mixed-integer linear programming model and designed a column generation algorithm
to decompose the model into a master problem and subproblems, aiming to enhance
computational efficiency. Meng Lingyun et al. [11] developed a two-stage stochastic
programming model to address the single-track railway train scheduling problem under
conditions of stochastic interval running times and uncertain delay times. They also
designed a multi-stage, multi-layer branch-and-bound algorithm to efficiently solve the
model. Yang et al. [12] proposed a two-stage integer programming model to address the
double-track railway train scheduling problem. They utilized optimization software GAMS
to obtain high-quality adjustment solutions. Pellegrini et al. [13] proposed a mixed-integer
linear programming formulation, highlighting the notable impact of granularity on train
delays. Zhan et al. [14] conducted a study on high-speed train operation adjustments in
cases of partial failures in high-speed railway sections. Experimental results indicate that
the proposed method effectively reduces the impact of disturbances on train operations.
Xu et al. [15] integrated traffic management measures, speed, braking, and headway
supervision into a single job-shop model for efficient traffic management. Wang et al. [16]
studied the integrated adjustment of speed trajectories and timetables to reduce train delays
and energy consumption, aiming for Pareto optimality. They designed three heuristic train
operation adjustment strategies. Wu et al. [17] propose an “ad hoc” bus propagation
model taking into account vehicle overtaking and distributed passenger boarding (DPB)
behavior. Luan [18] developed three innovative integrated optimization approaches for
real-time traffic management, including train control. Liu et al. [19] investigate a real-time
rescheduling problem to restore HSR operation from the delay caused by a disturbance.
The relationships between both the running and departure times at the disturbance area are
considered in this paper. Wu et al. [20] introduce a bi-objective multi-depot electric vehicle
scheduling problem. A time-expanded network model is devised to represent this problem,
while the bi-objective optimization model is reformulated by the lexicographic method.
Zhan et al. [21] developed an integer linear programming model and decomposed it into
sub-problems using the Alternating Direction Method of Multipliers (ADMM) algorithm.
Jie et al. [22] proposed a depth-first search crew recovery (DFSCR) method to deal with
the real-time crew rescheduling problem. Liu et al. [23] proposed a real-time rescheduling
model combined ATO driving strategy to restore the train operation from the delay caused
by disturbance. Zhang et al. [24] developed an efficient heuristic algorithm to solve the
train rescheduling problem in a railway network with the goal of reducing passenger
inconvenience.

To the best of our understanding, there exists a disparity in the existing literature re-
garding real-time timetable rescheduling problems, particularly in the context of reschedul-
ing. This disparity is evident in the gap between practical applications and theoretical
research on the subject.

Therefore, the primary research objective of this paper is to bridge this gap by construct-
ing an optimization model that addresses the challenges associated with HSR rescheduling.
This paper focuses on analyzing the impact of the train operation process under the ATO
system on the real-time rescheduling model and establishing a real-time rescheduling
model under the ATO system. We propose a mixed-integer linear programming model
that combines train re-timing, reordering, and passenger delay time. The proposed model
considers the impact of the ATO system on the real-time rescheduling model and aims
to provide real-time train rescheduling strategies. These strategies are designed to assist
dispatchers in making informed scheduling decisions.
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3. Problem Description
3.1. Notations

We introduce the parameters and notations in Table 1.

Table 1. Parameters and notation.

Input Parameters

Symbol Description

N A set of stations in the same direction, N = {1, 2, . . . , N}.
n Station number, n ∈ N.
T A set of trains, T = {1, 2, . . . , T}.
i, j Train number, i, j ∈ T.
L A set of driving strategies, L = {1, 2, . . . , L}.
l Driving strategy number, l ∈ L.
Rl

i,n The inter-station travel time of train i between
station n and station n + 1 using driving strategy l.

Ha
i,j,n The arrival headway between train i and train j at station n.

Ha,p
i,n The minimum arrival headway between train i and

the preceding train at station n when train i does not stop.
Ha,s

i,n The minimum arrival headway between train i and
the preceding train at station n when train i stops.

Hd
i,j,n The departure headway between train i and train j at station n.

Hd,p
i,n The minimum departure headway of train i at station n

when the preceding train does not stop.
Hd,s

i,n The minimum departure headway of train i at station. n
when the preceding train stops.

e The minimum stopping time.
epi,n Time of train i pass station n.
Oa

i,n The arrival time of train i at station n in the initial timetable.
Od

i,n The departure time of train i from station n in the initial timetable.

Decision Variables

Symbol Description

di,n Time of train i departure from station n.
ai,n Time of train i arrival at station n.
ηl

i,n A binary variable: If the driving strategy of train i between
station n and station n + 1 is l, ηl

i,n = 1, otherwise, ηl
i,n = 0.

µi,j,n A binary variable: The order of train i and train j between
station n and station n + 1. if train i is later than train j,
µi,j,n = 1, otherwise, µi,j,n = 0.

Qi,n The number of trains stop at station n when train i
arrive at station n.

3.2. Scenario

Figure 1 represents the research scenario of this paper, depicting situations in high-
speed railway operations where disturbances lead to train departure delays. The horizontal
axis corresponds to time, the vertical axis to space, and the trains move in an upward
direction. The solid black line represents the unaffected timetable, while the solid red line
represents the disrupted time. The red dashed line illustrates the train speed trajectory
impacted by the disturbance. The shaded area represents the space-time affected by
the disturbance.
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Figure 1. The rescheduling problem when a disturbance occurs in a section.

3.3. Model Assumption

The following assumptions are made with regard to the proposed model.

1. The high-speed railway system can achieve real-time and precise perception of the
information of disturbance occurrence by implementing sensor networks and infor-
mation fusion in complex environments.

2. At each station, there are designated arrival and departure tracks for up-direction
and down-direction trains, respectively. Given the similarity in the rescheduling
processes for up-direction and down-direction trains, our study centers on examining
the real-time rescheduling problem for a single direction.

3. The train speed trajectories with different driving strategies are pre-calculated in
this paper.

4. Model Formulation
4.1. Objective Function

The objective of our real-time rescheduling model is to minimize deviations from the
original timetable while expediting the return to the normal timetable. To achieve this
objective, we define the following optimization objectives:

min f =
T

∑
i=1

(ai,N −Oa
i,N) (1)

4.2. Departure Time and Dwell Time Constraints

In order to allow passengers to catch the train in time, the train cannot depart the
station before its planned departure time (Equation (2)). When establishing the dwell time
constraint, we take into account the train stop plan as outlined in the original timetable.
Specifically, if Train i is scheduled to stop at Station n, we enforce a minimum dwell time of
e to allow passengers sufficient time for boarding and alighting. Conversely, if Train i does
not make a stop at Station n, we set the dwell time to epi,n based on the train speed and
station data.

di,n ≥ Od
i,n. (2)

di,n − ai,n = epi,n (i f xi,n = 0) (3)

di,n − ai,n ≥ e (i f xi,n = 1) (4)
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In Equations (3) and (4), ai,n represents the arrival time of train i at station n, and
di,n represents the departure time of the same train at the same station. e is the minimum
stopping time. epi,n is the time that train i needs to pass station n when train i does not stop
at station n.

4.3. Running Time Constraints
4.3.1. Driving Strategy

In the event of a disruption, the operational plan becomes temporarily unavailable
while the ATO onboard equipment automatically defaults to a pre-selected driving strategy
for controlling train operations. Additionally, the driver has the option to manually adjust
the pre-selected driving strategy based on the train’s operational circumstances

Figure 2a illustrates various driving strategies and provides an example of how these
strategies can address disruptions. In Figure 2, we present four driving strategies within an
inter-station context: driving strategy 1, driving strategy 2, driving strategy 3, and driving
strategy 4, corresponding to the shortest running time, the second short-running time, the
planned running time, and the longest running time, respectively.

Driving strategy 1

Driving strategy 2

Driving Strategy 3

Driving Strategy 4

Station B

Station A

Station B

Station A

Train i Train j Time

Time
Train i Train j

(a)

(b)

Figure 2. Illustration of choosing different driving strategies.

In the event of a disturbance ahead of a train’s direction, as depicted in Figure 2b, train
i at station n may experience a delayed departure due to equipment failure. In response,
train i can opt for driving strategy 2 to minimize the delay. Train j, on the other hand, has
more flexibility in responding to disruptions. It can choose driving strategy 4 to extend the
running time between inter-stations, relieving station capacity stress. Alternatively, under
the safety constraints, it can choose driving strategy 1 or 2 to reduce running time and
energy consumption between inter-stations. Therefore, the real-time rescheduling model
must account for the selection of train driving strategies.

4.3.2. Train Stop Plan

In a high-speed railway system without the ATO (Automatic Train Operation) system,
train operations are manually controlled by a driver. This manual control often leads to
uncertainty in the running times between stations. Previous research typically addressed
this uncertainty by adding extra time to accommodate individual train stop plans.

However, with the introduction of the ATO system, the approach of simply setting
additional time based on stop plans no longer satisfies the demand for promptly restoring
the timetable when disruptions occur.
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For instance, consider a train scheduled to pass through five stations but making stops
only at stations 2 and 5. The speed trajectories corresponding to different stop plans are
depicted in Figure 3.

1 2 3 4 5 Station

V(m/s)

Figure 3. Train speed trajectories with different stop plan.

In Figure 3, if the train departs from station 1 without stopping at station 2, the speed
trajectory is represented by the red line. If the train departs from station 4 and stops at
station 5, the train’s speed trajectory follows the blue line. Similarly, the green line and
brown line represent other train stop plans alternatively.

According to the train stop plan, the train running time with a fixed driving strategy
should be formulated as:

Rl
i,n =


Rl

i,n(1) xi,n = 1, xi,n+1 = 1
Rl

i,n(2) xi,n = 1, xi,n+1 = 0
Rl

i,n(3) xi,n = 0, xi,n+1 = 1
Rl

i,n(4) xi,n = 0, xi,n+1 = 0

(5)

Rl
i,n is the inter-station travel time of train i between station n and station n + 1 using

driving strategy l. xi,n is the stop plan of train i at station n As we mentioned above,
the train running time at each inter-station is related to the train stop plan and different
driving strategies (l). The train running time with a fixed driving strategy in an inter-station
corresponds to different stop plans.

The linearized form of Equation (5) is as follows:

Rl
i,n =Rl

i,n(1) ∗ xi,n ∗ xi,n+1 + Rl
i,n(2)

∗ xi,n ∗ (1− xi,n+1) + Rl
i,n(3) ∗ (1− xi,n)

∗ xi,n+1 + Rl
i,n(4) ∗ (1− xi,n)(1− xi,n+1)

(6)

Meanwhile, the different ATO driving strategies should also be considered in our
model. So, the running time constraint is:

ai,n+1 − di,n =
L

∑
l=1

ηl
i,n ∗ Rl

i,n (7)

ηl
i,n is a binary variable, if the driving strategy of train i at inter-station s is l, ηl

i,n = 1,
otherwise, ηl

i,n = 0.

4.4. Headway Constraints

The headway between adjacent trains depends on the stop plans of these two trains.
In Figure 4, we present the speed trajectory of train i as it arrives at station n, and this
trajectory is determined by train i’s stop plan. Specifically, the blue dash line illustrates
train i’s speed trajectory when it makes a stop at station n, while the red line depicts the
speed trajectory when it does not stop at station n.
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Train i

Train j

Station n

V(m/s)

Train i do not stop at station n

Train i stop at station n

S(m)Sao Sah

Figure 4. Arrival Headway.

The calculation method for the minimum arrival headway between train i and train
j is:

Ha =
Sah
Vi

+ tao (8)

Ha is the arrival headway. Sah is the minimum distance between two trains. Sao and
tao are the distance and time that the station needs to finish the operation when a train
arrives at the station.

In Equation (8), it is important to note that tso remains fixed to ensure that the station
has sufficient time to carry out the arrival operation. The safety distance Sah between two
trains during inter-station travel is determined by the maximum speed of train i. Vi is
determined by train i’s stop plan.

Therefore, the arrival headway between train i and train j is contingent upon both
the maximum speed of train i and the specific stop plan of train i. In Figure 4, train i is
considered the later train while train j is the former train. However, for a comprehensive
analysis that includes the arrival of a train between these two, we must also account for the
scenario where train j is the later train. As a result, the minimum arrival headway between
two trains can be expressed using the following equation:

Ha
i,j,n =



Ha,p
i,n , xi,n = 0, µi,j,n−1 = 1

Ha,s
i,n , xi,n = 1, µi,j,n−1 = 1

Ha,s
j,n , xj,n = 0, µi,j,n−1 = 0

Ha,p
j,n , xj,n = 1, µi,j,n−1 = 0

(9)

Ha
i,j,n is the arrival headway, Ha,p

i,n is the arrival headway of train i and train j at station
n when train i is the former train and does not stop at station n. Ha,s

i,n is the arrival headway
of train i and train j at station n when train i is the former train and stop at station n. Ha,p

j,n
is the arrival headway of train i and train j at station n when train j is the former train and
does not stop at station n. Ha,s

i,n is the arrival headway of train i and train j at station n when
train j is the former train and stop at station n.

Meanwhile, the departure headway between two trains is calculated similarly to the
arrival headway, but it is mainly decided by the former train stop plan. Simultaneously,
the departure headway between two trains is computed in a similar manner as the arrival
headway, but it primarily depends on the stop plan of the former train. In Figure 5, we
illustrate the speed trajectory of train j as it departs from station n, and this trajectory is
determined by train j’s stop plan at station n. The blue dash line depicts train j’s speed
trajectory when it makes a stop at station n, while the red line represents the speed trajectory
when it does not stop at station n.
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Sdh Sdo

Train j

Train i

Station n

V(m/s)

Train j do not stop at station n

Train j stop at station n

S(m)

Figure 5. Departure Headway.

The calculation method for the minimum departure headway between train i and
train j is:

Hd =
Sdh
Vj

+ tdo (10)

Sdh is the distance that train j needs to leave the station, and it is a fixed value. tdo is
also a fixed time that the station needs to complete the operations when a train departs
from the station. So, the departure headway between train i and train j is related to the
maximum speed of train i and the stop plan of train j. In Figure 5, train j is the former train,
train i is the later train. Similar to the minimum arrival headway, the minimum departure
headway is:

Hd
i,j,n =



Hd,p
i,n , xi,n = 0, µi,j,n = 0

Hd,s
i,n , xi,n = 1, µi,j,n = 0

Hd,s
j,n , xj,n = 0, µi,j,n = 1

Hd,p
j,n , xj,n = 1, µi,j,n = 1

(11)

Hd
i,j,n is the departure headway, Hd,p

i,n is the departure headway of train i and train j at

station n when train i is the former train and does not stop at station n. Hd,s
i,n is the departure

headway of train i and train j at station n when train i is the former train and stop at station
n. Hd,p

j,n is the departure headway of train i and train j at station n when train j is the former
train and does not stop at station n. Ha,s

i,n is the departure headway of train i and train j at
station n when train j is the former train and stop at station n.

The Equations (12) and (13) are piecewise functions, we linearize them as:

Ha
i,j,n = Ha,p

i,n ∗ xi,n ∗ µi,j,n−1 + Ha,s
i,n ∗ xi,n ∗ µi,j,n−1 + Ha,s

j,n ∗ xj,n ∗ µi,j,n−1 + Ha,p
j,n ∗ xj,n ∗ µi,j,n−1 (12)

Hd
i,j,n = Hd,p

i,n ∗ xi,n ∗ µi,j,n + Hd,s
i,n ∗ xi,n ∗ µi,j,n + Hd,s

j,n ∗ xj,n ∗ µi,j,n + Hd,p
j,n ∗ xj,n ∗ µi,j,n (13)

The headway constraint can be set as:

di,n − dj,n ≥ Hd
i,j,n + (µi,j,n − 1) ∗M (14)

di,n − dj,n ≤ µi,j,n ∗M− Hd
i,j,n (15)

ai,n+1 − aj,n+1 ≥ Ha
i,j,n + (µi,j,n − 1) ∗M (16)

ai,n+1 − aj,n+1 ≤ µi,j,n ∗M− Ha
i,j,n (17)

Equations (14) and (15) are used to determine the order of train i and train j departure
from station n. Hd

i,j,n is the minimum departure time. Equations (16) and (17) are used
to determine the order of train i and train j arrive at station n + 1. Ha

i,j,n is the minimum
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arrival headway . µi,j,n is a binary variable, which means that if the departure time of train
i is later than train j at station n, µ = 1.

4.5. Station Capacity Constraints

We will primarily focus on the capacity constraint of intermediate stations. To ensure
compliance with the station’s capacity constraints (as defined in Equation (24)), each
intermediate station must allocate a siding line for every train. In other words, when a train
arrives at a station, there must be at least one siding line available for its use.

dj,n − ai,n − τ ≥ (γi,j,n − 1) ∗M (18)

dj,n − ai,n + τ ≤ γi,j,n ∗M (19)

−γi,j,n + ζi,j,n ≤ 0 (20)

−µi,j,n + ζi,j,n ≤ 0 (21)

µi,j,n + γi,j,n − ζi,j,n ≤ 1 (22)

Qi,n =
T

∑
j=2

ζi,j,n (23)

Qi,n ≤ scn − 1 (24)

The order of train i and train j arrive and departure from station n is determined by
Equations (18) and (19). γi,j,n is a binary variable, which means that if train i departure
from station n later than train j arriving at station n, γi,j,n = 1. Meanwhile, when γi,j,n = 1

and µ
i,j
s =1, ζi,j,n = 1, otherwise, ζi,j,n = 0 (Equations (20)–(22)), which means that when

train i arrive at station n, train j do not leave station n. Qi,n is the number of trains that
arrive and do not leave the station n when train i arrives at station n.

4.6. Real-Time Rescheduling Model

We formulate the problem described in this chapter as the following integer program-
ming model:

min f =
T

∑
i=1

(ai,N −Oa
i,N) (25)

s.t.

di,n ≥ Od
i,n, (26)

di,n − ai,n = epi,n (i f xi,n = 0) (27)

di,n − ai,n ≥ e (i f xi,n = 1) (28)

ai,n+1 − di,n =
L

∑
l=1

ηl
i,n ∗ Rl

i,n (29)

di,n − dj,n ≥ Hd
i,j,n + (µi,j,n − 1) ∗M (30)

di,n − dj,n ≤ µi,j,n ∗M− Hd
i,j,n (31)
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ai,n+1 − aj,n+1 ≥ Ha
i,j,n + (µi,j,n − 1) ∗M (32)

ai,n+1 − aj,n+1 ≤ µi,j,n ∗M− Ha
i,j,n (33)

Qi,n ≤ scn − 1 (34)

Constraints (26)–(28) are the departure time and dwell time constraints. Constraint (29)
is the running time constraint. Constraints (30)–(33) are the headway constraints. Con-
straint (34) is the station capacity constraint.

5. Case Study

The test bed we are using is a segment of the Beijing–Shanghai high-speed railway
line, which happens to be one of the busiest railway lines in China. In this study, we have
chosen to focus on a specific section of this railway line, running from Xuzhou East Station
to Shanghai Hongqiao Station. This segment comprises 13 stations. Our primary focus
is on the train traffic moving in a single direction, specifically from Xuzhou to Shanghai.
It is worth noting that we are not considering the opposite direction, where trains travel
from Shanghai to Nanjing. This decision is made to avoid complexities related to rolling
stock circulation.

In this case, we operate under the assumption of having prior knowledge of distur-
bance events, which allows us to anticipate their impact on the duration and location of
the disturbances. With this understanding, we establish multiple disturbance scenarios
by varying the duration time of the disturbance initially. We explore the impact of distur-
bances by considering different duration times, ranging from 10 min, 20 min, 30 min, to
60 min. Next, we introduce variability in the locations of disturbances along the railway
line. Specifically, when a disturbance occurs at station 1, we categorize the scenarios into
four types based on the duration and the number of affected trains: disturbance lasting
10 min at station 1 (10,1), disturbance lasting 20 min at station 1 (20,1), disturbance lasting
30 min at station 1 (30,1), and disturbance lasting 60 min at station 1 (60,1).

In our study, we employ a highly demanding timetable. This timetable is constructed
by selecting 12 consecutive trains from the real timetable. We have based our train stop
plans and travel times at each station on authentic data obtained from the real timetable.
Moreover, the line data used to establish various ATO driving strategies is also sourced
from real-world data. The distance of each inter-station is listed in Table 2.

Table 2. Distance of Inter-station.

Index Station Distance Index Station Distance

1 Xuzhoudong - 8 Danyangbei 25 km
2 Suzhoubei 79 km 9 Changzhoubei 32 km
3 Bengbunan 77 km 10 Wuxidong 57 km
4 Dingyuan 53 km 11 Suzhounan 26 km
5 Chuzhou 62 km 12 Kunshannan 32 km
6 Nanjingnan 59 km 13 Shanghaihongqiao 43 km
7 Zhenjiangnan 69 km - - -

In this section, three experiments are presented to verify the effectiveness of the
proposed model. The simulation experiments were programmed using MATLAB R2016a,
calling the commercial optimization software CPLEX 12.6.2 as a model solver, and using the
YALMIP toolbox as an interface between CPLEX and MATLAB. The simulation platform
is a personal computer with Windows (64-bit) operating system, where the memory is
16.00 GB and the processor is 1.6 GHz Intel Core i5.
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In the forthcoming section on case analysis, we begin by examining how different
disturbance scenarios affect train operations. This analysis will yield real-time rescheduling
tailored to each disturbance scenario. Next, we evaluate the train rescheduling model
under each disturbance scenario while considering various numbers of driving strategies.
Our aim is to optimize train speed and efficiency. Lastly, we compare and analyze the
solutions derived from our optimization model, particularly focusing on the timetable
without optimization. This will help us assess the quality and effectiveness of the solutions
provided by this model.

5.1. Case 1: Impact of Different Disturbance Scenarios

The real-time rescheduling problem was solved for different disturbance scenarios,
and the results are shown in Table 3.

This section assesses the adaptability of the model in solving various disturbance
scenarios. To expedite the model’s solving speed, we will compare the results and precision
analysis of solving with time limits set at 180 s and 360 s. The first column in the table
represents disturbance scenarios, with the two numbers in parentheses indicating the
disturbance duration and the station number where the disturbance occurs. The second
column displays the total train delay, the third column represents the solving time, and the
fourth column displays the solving gap (Table 3).

Table 3. Rescheduling results under different disturbance scenarios.

Time Limit 180 (s) 360 (s)

Index Total Computing Gap (%) Total Computing Gap (%)
Delay (s) Time (s) Delay (s) Time (s)

(10,1) 0 13 0 0 13 0
(20,1) 698 21 0 698 21 0
(30,1) 4632 180 2.35 4535 360 0.43
(45,1) 17,050 180 5.49 16,032 360 4.45
(60,1) 28,778 180 8.52 27,393 360 6.91
(10,3) 24 4 0 24 4 0
(20,3) 1751 6 0 1751 6 0
(30,3) 4888 37 0 4888 37 0
(45,3) 14,497 180 3.12 13,849 360 2.68
(60,3) 24,343 180 5.1 24,149 360 4.89
(10,5) 817 3 0 817 3 0
(20,5) 3125 8 0 3125 8 0
(30,5) 7137 25 0 7137 25 0
(45,5) 16,087 180 3.45 15,846 360 2.87
(60,5) 28,316 180 5.12 27,914 360 4.66

From Table 3, it is evident that when the disturbance duration is within 30 min, the
algorithm’s solving error remains below 3%. When the disturbance duration extends to
60 min, all solving errors stay within 6%. In the comparison between solving times of 180 s
and 360 s, when the disturbance duration is 45 min and 60 min, there is a reduction solving
gap, albeit not significantly. Disturbances occurring at different locations along the railway
line have varying impacts on train operations. For instance, with the same disturbance
duration of 30 min, disturbances occurring at Location 1 have a more significant impact
than those occurring at Location 3. However, disturbances occurring at Location 5 have a
more significant impact than those occurring at Location 1. This is because disturbances
occurring later when trains are approaching the terminal station have no time and space to
catch the timetable.
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5.2. Case 2: Evaluation of Different Driving Strategies

This section analyzes the impact of ATO driving strategies on optimization results,
primarily from two aspects. First, we examine the influence of the number of pre-stored
ATO driving strategies. Second, we investigate the effect of ATO’s maximum and minimum
speeds on optimization results.

As mentioned in Section 5.1, disturbances have a greater impact when they occur
closer to the beginning. Therefore, for this section, the station affected by disturbances is
set to Station 1. The first column represents the lowest and highest speeds for ATO driving
strategies. The second, third, and fourth columns display the total train delay times when
the disturbance duration is 20 min for ATO driving strategy quantities of 3, 5, and 7. The
fifth, sixth, and seventh columns show the total train delay times when the disturbance
duration is 30 min for ATO driving strategy quantities of 3, 5, and 7 (Table 4).

From Table 4, it is evident that the total train delay time is primarily influenced
by the maximum speed of the ATO automatic driving strategy. When the disturbance
duration is 20 min, the quantity of ATO driving strategies has no impact on the total train
delay time because, at this point, trains only need to select the fastest strategy. However,
when the disturbance duration is 30 min, the timetable is more significantly affected by
the disturbance, requiring the adjustment of inter-station travel times using non-optimal
speeds. Meanwhile, an increase in the number of train driving strategies will reduce total
delay, but it does not mean that the more driving strategies there are, the better. When the
total delay time is optimized to a certain extent, the number of driving strategies has little
impact on the reduction of total delay.

Table 4. Rescheduling results under different driving strategies.

Disturbance Time 20 min 30 min

Speed (Km/h) 3 5 7 3 5 7

(295,305) 2260 2260 2260 9222 9104 8980
(294,306) 2144 2144 2144 8538 8476 8450
(292,308) 1895 1895 1895 7881 7682 7675
(290,310) 1667 1667 1667 7492 8792 8775
(288,312) 1425 1425 1425 6800 6712 6795
(286,314) 1210 1210 1210 6266 6200 6193
(284,316) 1026 1026 1026 5704 5528 5510
(282,318) 884 884 884 5179 5089 5055
(280,320) 698 698 698 4638 4535 4530

5.3. Case 3: Comparative Analysis with the Timetable without Optimization

To compare the quality of the train scheduling adjustments obtained by the model
in this chapter with the timetable without optimization (TWO), this section analyzes the
results of both strategies across 15 disturbance scenarios. The TWO in this context involves
extending the departure times of all trains based on their delay times. The results are
presented in Table 5.

In Table 5, the first column represents the disturbance scenarios. The second and third
columns display the objective function values obtained by the model presented in this
chapter and the FSFS model, respectively. The fourth column shows the ratio of the total
delay reduction obtained by the model in this section compared to TWO.

From Table 5, it is evident that the results obtained by the model in this chapter outper-
form those obtained under the TWO strategy. Compared to TWO, the objective values of the
model in this chapter decrease in all disturbance scenarios. This is especially pronounced
for disturbances with delays less than 10 min, where the objective function values obtained
from the model decrease by almost 99%, indicating that the model presented in this paper
can return trains back to their normal schedules under such circumstances. Additionally,
for disturbances with delays exceeding 30 min, the total delay is reduced by over 30%.
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Table 5. Total delay time of different approach.

Scenario Our Model (s) TWO (s) Decline Ratio (%)

(10,1) 0 7200 100
(20,1) 698 14,400 95.1
(30,1) 4632 21,600 78
(45,1) 17,050 32,400 47
(60,1) 28,778 43,200 33
(10,3) 24 7200 99.8
(20,3) 1751 14,400 87.8
(30,3) 4888 21,600 77.3
(45,3) 14,497 32,400 55.2
(60,3) 24,343 43,200 43.6
(10,5) 817 7200 88.6
(20,5) 3125 14,400 78.2
(30,5) 7137 21,600 66.7
(45,5) 16,087 32,400 50.3
(60,5) 28,316 43,200 34.4

6. Conclusions

In this paper, we conduct a comprehensive analysis of the influence of the transition
to ATO system on real-time rescheduling models. Recognizing the distinct impact of the
ATO system on real-time rescheduling, we introduce a mixed-integer linear programming
model that encompasses train re-timing, reordering, and the minimization of passenger
delays. The primary objective of this model is to minimize train delay times.

We investigate the effects of various disturbance scenarios and different driving
strategies on real-time rescheduling problems. The results demonstrate the efficiency and
effectiveness of our model in resolving a wide range of disturbance scenarios. Furthermore,
we found that the total delay time of trains is primarily determined by the maximum speed
of the ATO system. Depending on the duration of the disturbance, the number of ATO
driving strategies has varying effects on the overall delay time. Specifically, when the
disturbance duration falls within a certain range, the number of ATO driving strategies
has no impact on the total delay time. When the disturbance duration is excessively long,
the number of ATO driving strategies does have a certain influence on the total delay time.
An increase in the number of train driving strategies will reduce delay time, but it does
not mean that the more driving strategies there are, the better. When the total delay time
is optimized to a certain extent, the number of driving strategies has little impact on the
reduction in total delay time. Compared with the timetable without optimization, our
model can significantly reduce the total delay.
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