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Abstract: This paper presents an individualized multiple linear regression model based on composi-
tional data where we predict the mean and coefficient of variation of blood glucose in individuals
with type 1 diabetes for the long-term (2 and 4 h). From these predictions, we estimate the minimum
and maximum glucose values to provide future glycemic status. The proposed methodology has been
validated using a dataset of 226 real adult patients with type 1 diabetes (Replace BG (NCT02258373)).
The obtained results show a median balanced accuracy and sensitivity of over 90% and 80%, re-
spectively. A information system has been implemented and validated to update patients on their
glycemic status and associated risks for the next few hours.
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1. Introduction

Type 1 diabetes (T1D) is a metabolic disorder that causes abnormal regulation of
blood glucose (BG), which can lead to short- and long-term health complications and even
death if not adequately controlled [1]. Prediction models can learn personalized glucose
and insulin dynamics based on sensor measurements and daily activity of each individ-
ual. Notwithstanding the widespread use of machine learning techniques for glucose
prediction [2–8], a dearth of up-to-date literature reviews exists on the subject of modeling
strategies applied to personalized BG prediction, as pointed out in [9]. Currently, glucose
prediction models exhibit significant discrepancies with reality due to factors such as sensor
noise and delays. As a result, long-term glucose prediction remains poor and continues to
be a very challenging task despite the increase in data availability [10].

Chronic hyperglycemia is the main risk factor for the development of complications
in diabetes mellitus; however, it is believed that large or frequent glucose fluctuations
may contribute independently to these complications. Glycemic variability (GV) refers
to this fluctuation of glucose levels, describing variations throughout the day, including
hypoglycemic episodes and postprandial increases, as well as variations in glucose levels
at different times of the day and at the same time on different days [11,12].

Glycemic control can be assessed by continuous glucose monitoring (CGM) using time
in range (TIR), serving as a surrogate for glycated hemoglobin (HbA1c) for use in clinical
management [13]. Compositional data (CoDa) are data that transmit information about
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the parts of a whole expressed in proportions or percentages, as is the case of the vector
of daily times in each of the glucose ranges: time below range (TBR) (<70 mg/dL), TIR
(70–180 mg/dL), and time above range (TAR) (>180 mg/dL) [14], where all the components
are positive and of constant sum. Previous studies have treated the percentage of time
in the glucose range as a composition, yielding favorable outcomes, and this variable
is of paramount importance in this field [15–17]. Furthermore, regression models have
demonstrated favorable results overall, both in scalar variables and CoDa, due to their
simplicity of implementation and robustness in prediction outcomes. Several studies
have developed models for prediction in the field of diabetes, such as the relationship
between HbA1c and glucose values, adaptive adjustment of bolus calculator parameters,
and glucose prediction [18–20]. In the literature, regression models for the prediction of
diabetes have been previously reported [21]. In [22], a total of 89 studies published between
2011 and 2021 were included.

Although regression analysis is a widely used statistical technique, there is limited
literature available when it comes to CoDa [23–29]. No research has been found that specif-
ically examines the application of CoDa to individualized regression models for diabetes.
None of them were related to glucose prediction, mean, or coefficient of variation (CV).
Although short-term prediction reviews have been found, there are not many publications
with relevant metrics for long-term glycemic state predictions [30–33].

This study presents individualized multiple regression models for each hour of the
day aimed at predicting blood glucose (BG) and the CV over extended prediction horizons.
The models incorporate a CoDa type regressor (TBR, TIR, TAR), along with other scalar
variables that proved valuable in distinguishing when compositional variables exhibited
similarities. The dependent variables in the models are the mean and CV of glucose
measurements for the next 2 and 4 h.

2. Materials and Methods
2.1. Dataset

The REPLACE-BG dataset, publicly available (NCT02258373) [34], was employed and
consists of 226 adult subjects with T1D who underwent CGM for 26 weeks. The study was
conducted between May 2015 and March 2016 in adult participants with T1D of more than
1-year duration and with HbA1c of 9.0% (75 mmol/mol) or less. All participants used the
Dexcom G4 Platinum CGM system.

Data Preprocessing

The CGM measurements of the patients’ glucose profiles contain gaps in the measure-
ments, thus the data were linearly interpolated when the missing data gap did not exceed
30 consecutive minutes (6 measurements). After interpolating the data, the days with gaps
were filtered to obtain valid days. Subsequently, the measurements were organized for the
2 h before and 2 h and 4 h after each hour of the day (00 h, 01 h, 02 h, . . . , 23 h) (Figure 1).
With these measurements already divided into groups of 2 h and 4 h, the times in the
different glucose ranges for the 2 h prior to the prediction were calculated, which were
treated as three-part CoDa (<70, 70–180, >180) whose sum is constant at 100%.

Figure 1. The distribution of 2 h periods prior to the prediction (yellow) and the following 2 h and
4 h periods (green). The 2 h period preceding the prediction was treated as a three-part CoDa.
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2.2. CoDa

A compositional vector of D parts, whose sample space is the simplex SD, is defined
as a vector in which the only relevant information is contained in the relationships between
its components (Equation (1)). One way to simplify the use of compositions is to represent
them in closed form, that is, as positive vectors, whose parts add up to a positive constant
k (in our case 100%). From any vector, it is possible to obtain a composition X of SD by
conveniently scaling the components so that their sum is equal to constant k. In other
words, applying the closure operator defined by Equation (2) [23]:{

xi > 0, i = 1, 2, . . . , D.

∑D
i=1 xi = k k = cte.

(1)

{(X1, X2, . . . , XD) =

(
X1

∑D
i=1 Xi

,
X2

∑D
i=1 Xi

, . . . ,
XD

∑D
i=1 Xi

)
. (2)

The importance of the scale invariance principle has been demonstrated where the
value of k is not relevant, and it has been observed that its practical implementation
requires working with component ratios. Therefore, the analysis of logarithmic ratios was
implemented for composition problems. Logarithms of ratios are mathematically more
manageable than ratios, which has led to the use of log-ratio functions for obtaining the
components [23].

The centered log-ratio function (clr) (Equation (3)) is symmetric, where g(x) is the
geometric mean by Equation (4).

clr(x) = [clr1x, clr2x, . . . , clrDx]

=

[
ln

x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD
g(x)

]
.

(3)

g(x) =

(
D

∏
i=1

xi

) 1
D

. (4)

Let e1, e2, . . . , eD−1 be an olr-basis in SD, the function that assigns coordinates with
respect to e1, e2, . . . , eD−1 to a composition x ∈ SD is called the isometric transformation
log-ratio ilr: SD → <D−1 (Equation (5)) [24]. The olr base associated with a sequential
binary partition (SBP) can be defined in several ways. The word isometric in ilr refers to the
preservation of distance. In [35], the name olr was introduced to avoid confusion because
the clr transformation is also an isometric log-ratio transformation.

ilr(x) = [〈x, e1〉a, . . . , 〈x, eD−1〉a]. (5)

The study methodology is described in Figure 2, which includes the analysis of BG
measurements, data processing, and implementation of the multiple regression model,
whose inputs are the olr-coordinates (olr1(x), olr2(x)) corresponding to the CoDa vector
(TBR, TIR, TAR), transformed scalar variables (mean, CV, minimum, and maximum) of the
2 h before and the outputs are the transform of the mean and CV of 2 and 4 h after, model
validation, and, finally, the application of “traffic light with symbols” as a decision support
system (DSS).
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Figure 2. Methodology for data analysis, validation, and application.

2.3. Regression Model with CoDa

In general, there are three types of linear regression models (LRM) that involve
CoDa [23,36,37]. Type I (multivariate model) has a composition as the response and
one or more non-compositional (scalar) variables as explanatory [23]. Type II has composi-
tion as explanatory and a non-compositional response; if the response is univariate, it is
a multiple LRM. Finally, type III has both composition as explanatory and composition
as response, becoming a multivariate multiple LRM. For each type, the regression model
can be constructed using the Euclidean structure of the simplex or the olr coordinates or
transformed clr scores. However, because there are infinite possibilities to construct olr
coordinates [24], it is important to focus on those that allow interpretation of the model
and the corresponding regression coefficients.

2.3.1. LRM with Compositional Predictor and Scalar Response

Multiple linear regression (MLR) models are a statistical technique widely used to
predict a response variable (y) from one or more explanatory variables (x). In the context of
an MLR model, the compositional vector x (belonging to the simplex composition space,
SD) is used as the explanatory variable of the model to predict the response variable y.
In this type of model, no statistical assumptions are made about the composition of x,
but only about the residuals u of the response variable y that is being predicted. It is
assumed that the residuals are normally distributed and have constant variance. Residual
diagnostics are performed in the same way as in a standard MLR and a single equation
model is fitted, whose coefficient of determination (<2) is directly interpretable [38].

Steps for the Creation of the Model Based on CoDa

1. An olr base is selected in SD using an SBP (Table 1) [38].

Table 1. Sequential binary partition.

i X<70 X70−180 X>180 p(+) n(−)

1 +1 +1 −1 2 1
2 +1 −1 0 1 1

2. The predictor is represented in olr-coordinates (Equation (6)). The compositions are,
by definition, multivariate and therefore must be mapped in some way, linear or
non-linear, to a single number. To compute such a regression model, the principle
of working in coordinates is used to transform the model into a multiple regression
problem. The olr-coordinate x∗, of a composition x with respect to a base linked to a
SBP, is calculated as Equation (7).

x∗j = olr(x) ∈ <D−1. (6)
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x∗j =

√
pj ∗ ni

pj + ni
ln
(xk1 . . . xkpj

)1/pi

(xl1 . . . xlnj
)1/ni

(7)

where k1, . . . , kpj are the labels of the parts in the numerator (encoded by +1 in the ith
row of SBP), l1, . . . , lnj are the labels of the parts in the denominator (encoded by −1
in the same row) and j : 1, . . . , D− 1.

3. The ordinary regression model is solved to obtain the coefficients β∗ with Equation (8)
for i = 1, . . . , n.

yi = β0 + β∗1x∗i1 + . . . + β∗D−1x∗iD−1 + ui. (8)

The ilr transformation has been used, as it satisfies the requirement that the analysis
has to be permutation invariant. On the other hand, the clr transformation is not easy to
interpret with compositional explanatory variables because it produces numerical problems
with singular matrices in the tests [26].

2.3.2. Data Preprocessing

The compositional input could contain zeros if some of the parts of the CoDa vector
were zero; therefore, a pre-treatment was done because CoDa is based on log-ratios of
parts. The detection matrix (dL) used in the imputation of the zeros was interpreted
as in [17], taking into account the consecutive zeros. In this case, where we are only
analyzing three parts, there could only be two consecutive zeros; the dL value will then
be calculated by dividing 5 min (sensor measurement interval) by 120 min, which is the
time analyzed from the previous 2 h, dL = 0.04166. We consider that the further zero is
from the non-zero value, the smaller this value should be in the dl matrix, as presented in
Table 2. To make the replacement, we used the multRepl (multiplicative simple replacement)
function implemented in the package “zCompositions” of R version 4.1.2; this method
provides a compositional counterpart to the common simple substitution by a fixed fraction
of the censoring threshold. The remaining components are multiplicatively adjusted to
preserve the relative multivariate structure of the data [39–41]. The scalar variables have
also been transformed (function ln) beforehand to estimate the ordinary regression models
(Step 3). This decision is shared by all LRMs because it is an option due to the nature of
the covariate (sample space, distribution, etc.). In addition, an outlier analysis could be
performed at this step [38].

Table 2. Detection limit matrix for 2 and 4 h.

Consecutive Zeros Position 1 Position 2

For 2 h, 5/120 = 0.04166

1 dL = 0.04166
2 dL/3 = 0.01388 2 dL/3 = 0.0277

For 4 h, 5/240 = 0.02083

1 dL = 0.02083
2 dL/3 = 0.00694 2 dL/3 = 0.01388

In this study, 24 multiple LRMs were implemented for each hour of the day. We utilized
a compositional input based on the time vector within each BG range, starting from 2 h
before, and obtained scalar outputs representing the mean and coefficient of variation (CV)
of glucose levels 2 h and 4 h later. Subsequently, a multiclass classifier was implemented
(Figure 3), utilizing the predictions of mean and CV, as well as estimates of minimum
and maximum glucose levels, to categorize the periods into 3 and 5 classes. Following
this, validation was conducted using 80% of the data for training and the remaining 20%
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for validation. Although it is an individualized model, the results are presented for the
entire cohort.

Figure 3. Multiclass classifier.

2.4. Prediction of Minimum and Maximum Glucose

CV is calculated according to Equation (9). It is a measure of variability relative to
the mean [42]; solving for Equation (10) (glucose standard deviation (STD)) is obtained,
knowing the mean and CV previously predicted by the multiple LRM for the next 2 h and
4 h. Under the assumption of normality, it can be said that the minimum and maximum
glucose values are in the range of ±3STD (99.7∼100%), where x̄ is the mean glucose.

CV =
STD

x̄
∗ 100. (9)

STD =
CV ∗ x̄

100
. (10)

2.5. Confusion Matrix—Metrics for Multi-Class Classification

In machine learning, “multi-class classification” tasks involve categorizing data into
more than two classes [43–45]. Performance metrics are valuable for assessing and compar-
ing various classification models or machine learning methods (Table 3). The confusion
matrix, represented in Table 4, quantifies agreements and discrepancies between actual
and predicted classifications. It displays classes in a consistent order in both rows and
columns, with accurate predictions located on the main diagonal, indicating the frequency
of correct predictions.
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Table 3. Metrics for multi-class classification.

Metrics Equation
Accuracy metric accounts for the correct classifications (TP and TN) and incorrect
classifications in the confusion matrix. Accuracy = TP+TN

TP+TN+FP+FN

Balanced Accuracy (BA) calculates the average recall for each true class, consid-
ering class imbalances to provide a fair assessment of model performance across
all classes.

BA =
AA

∑ row1
+ BB

∑ row2
+ CC

∑ row3
totalclass

BA Weighted (BAW) leverages the BA formula by incorporating class weights,
determined by class frequencies in the dataset. This enables the monitoring of
algorithm performance for individual classes and highlights the impact of each
class based on its frequency.

BAW =
AA

∑ row1
∗AA+ BB

∑ row2
∗BB+ CC

∑ row3
∗CC

AA+BB+CC

Precision Precisionclass =
TPclass

TPclass+FPclass

Recall Recallclass =
TPclass

TPclass+FNclass

Macro Average Precision (MaAP) MaAP = ∑classmax
calss=1 Precisionclass

classmax

Macro Average Recall (MaAR) MaAR = ∑classmax
calss=1 Recallclass

classmax

Micro F1-Score Micro F1-Score = ∑classmax
calss=1 TPclass

Total

Macro F1- Score Macro F1- Score = 2 ∗ MAP * MAR
MAP + MAR

Macro F1- Score Macro F1- Score = 2 ∗ MAP * MAR
MAP + MAR

Micro Average Precision (MiAP) MiAP = ∑classmax
calss=1 TPclass

total per column

Micro Average Recall (MiAR) MiAR = ∑classmax
calss=1 TPclass

total per row

Matthews Correlation Coefficient (MCC) where K is the number of classes, nii
is the number of samples correctly classified in class i, and nij is the number
of samples that were classified as i but belong to class j. The numerator of the
formula represents the covariance between the predictions and the true labels,
whereas the denominator is a normalization to bring the result in the range
[−1, 1].

MCC =
∑K

i=1 ∑K
j=1 niinjj−∑K

i=1 nii ∑K
j=1 nij√

(∑K
i=1 nii−∑K

i=1 ∑K
j=1 nij)(∑K

i=1 nii−∑K
j=1 nij)

Table 4. Confusion matrix.

Predicted Data

Class A B C

Real Data

A AA AB AC

B BA BB BC

C CA CB CC

3. Results

Below are the detailed results for glucose mean and CV prediction as well as metrics
for the classification and DSS.

3.1. Overall LRM Test Results

Compared to univariate linear regression, it is not possible to display the strength
of the relationship between multiple composition variables (orthogonal basis of different
time in ranges of glucose) and a dependent variable (mean, CV) in a single XY scatter plot
because X has several potentially influential components [26].
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To test the normality assumption of the residuals, the Shapiro–Wilk test was used,
which showed a p-value > 0.05, suggesting that we cannot reject the null hypothesis that
the data come from a normally distributed population.

Non-constant variance score and Breusch–Pagan tests were performed to verify the ho-
moscedasticity assumption, that is, “all errors have the same variance”. The results showed
a p-value > 0.05, suggesting that the homoscedasticity assumption is met. Additionally,
the independence assumption of the errors was checked using the Durbin Watson test,
and no evidence of violation of this assumption was found (p-value > 0.05).

3.2. Validation of the Multivariable LRM of Mean and CV Prediction

The results are presented in terms of root mean squared error (RMSE) and mean
absolute error (MAE) to estimate performance and evaluate the model fit for the entire
cohort at different times of the day. Figure 4 shows the results for the mean and CV
prediction model for the next 2 h and 4 h. We analyzed both errors since the MAE error is
more robust and does not give much importance to outliers, unlike the RMSE, which gives
more importance to outliers by squaring the absolute value of the difference. As expected,
the RMSE error is higher than the MAE error.

The results show that for the CV prediction, both the RMSE and MAE errors for all
models were higher when predicting the next 4 h than when predicting the next 2 h. How-
ever, this did not happen with the mean glucose prediction, which remained more uniform.

It is very useful to identify glycemic trends at different times of the day, quantify
glycemic variability, and stratify the risk of hypoglycemia based on the hours. In the early
morning hours (01:00 to 08:00 h), the RMSE and MAE errors were lower for the mean model
compared to the rest of the hours. Similarly, for the CV model, the RMSE error during
the hours from 00:00 to 07:00 h was lower than the rest of the hours, and the MAE error
was lower from 23:00 to 07:00 h. This shows that our model is capable of predicting early
morning hours with higher reliability (lower errors). This factor is significant for both the
risk of experiencing nocturnal hypoglycemia and the dawn phenomenon, which typically
happens between 04:00 and 08:00 h in the morning.

43 39 37 33 31 31 33 36 38 40 41 40 42 44 44 44 44 43 44 46 46 44 43 43

45 44 40 36 34 32 34 35 37 38 38 39 41 42 42 42 42 43 44 45 46 45 46 46

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Model_hour

R
M

S
E

 M
e

a
n

RMSE_Mean_2h_2h RMSE_Mean_2h_4h

32 30 27 24 23 22 24 27 29 30 31 30 31 33 34 33 33 32 33 35 36 34 34 33

35 33 29 26 24 24 25 27 28 29 29 30 31 33 32 32 32 33 34 35 35 35 36 36

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Model_hour

M
A

E
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e
a

n

MAE_Mean_2h_2h MAE_Mean_2h_4h

7 6 7 5 5 6 7 8 8 8 8 8 8 8 8 8 8 9 8 9 8 8 8 7
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00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Model_hour

R
M

S
E

 C
V

RMSE_CV_2h_2h RMSE_CV_2h_4h

4 4
3 3 3 3 4 5 5 6 5 5 6 6 6 6 6 6 6 6 6 5 5 5

6 6 5 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 8 7 7 7 7 7

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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M
A
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V

MAE_CV_2h_2h MAE_CV_2h_4h

Figure 4. RMSE and MAE results from the mean and CV prediction model for the next 2 h and 4 h.

Also, the distributions between the real and predicted means and CV were compared
to detect if there were differences between them. The Kolmogorov–Smirnov statistic was
used. The main advantage of this statistic is that it is sensitive to differences in both
the location and shape of the cumulative distribution function. The results showed a
p-value > 0.05 in all time periods, suggesting that we cannot reject the null hypothesis that
the analyzed data follow the same distribution.
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3.3. Application, Example of the “Traffic Light” Proposed for a Specific Patient

“Traffic light” systems for clinical information and clinical support are well known [46,47].
Using the multiple linear regression model’s predictions for mean and coefficient of varia-
tion, in addition to the estimates for minimum and maximum glucose levels over the next
2 and 4 h, a methodology was implemented to categorize each hour of the day into 3 and
5 categories, as illustrated in Figure 3. The categorization criteria were defined based on
the standards outlined in [13]. The glucose time in range percentages were as follows: for
three categories, BG < 70 mg/dL, 70 ≤ BG ≤ 180 mg/dL, and BG > 180 mg/dL. The cri-
teria for the five categories were more stringent: BG < 54 mg/dL, 54 ≤ BG < 70 mg/dL,
70 ≤ BG ≤ 180 mg/dL, 180 < BG ≤ 250 mg/dL, and > 250 mg/dL. This system provides
qualitative information about the future glucose state based on these estimates.

Patient 1, Day 3 Characterized by High Variability

Table 5 presents an example of the proposed “traffic light” system for patient 1.
We have analyzed day 3, as it is a day with high glucose variability (36.53%), severe
hyperglycemia both during the day and at night, and also the presence of hypoglycemia.
Column 4 shows the description for each of the previously mentioned classes. Analyzing
the predictions of the states for 3 class (column 2 of Table 5), it can be seen that from 00:00 to
18:00 h, for every hour in that interval, the model predicted that the patient would be
there for the next 2 h in hyperglycemia (>180 mg/dL); the actual states validate that the
model was correct every time. During the night period, from 22:00 h of the previous day to
8:00 h, this patient experienced a glucose variability of 6.5%, with a minimum reading of
269 mg/dL and a maximum of 371 mg/dL, indicating severe hyperglycemia.

From 19:00 to 20:00 h, he was in the target glucose range (70–180 mg/dL), a situation
that the model also correctly predicted. However, from 21:00 to 23:00 h, the patient was in
hypoglycemia, a situation predicted by the model.

Still considering the prediction of 2 h, by analyzing the results for 5 class, from 00:00 to
17:00 h, the model predicted severe hyperglycemia, being more specific than when it
was analyzed for 3 class. It was found that the minimum glucose was 244 mg/dL and
the maximum was 329 mg/dL, and the CV for 2 h was between 2% and 8%. However,
at 18:00 h, the model predicted risk of hyperglycemia; here we verified that the patient
had a minimum of 70 mg/dL and a maximum of 321 mg/dL with a CV of glucose for
the next 2 h of 40%, and vector time in range was 0% below 70 mg/dL, and 50% for both
TIR and hyperglycemia above 180 mg/dL, that is, half of the next 2 h was spent time in
normoglycemia and the rest in hyperglycemia.

Hence, at 19:00 and 20:00 h, the patient will behave in range time. At 21:00 and 22:00 h,
the model predicted risk of hypoglycemia; however, the validation corroborated that it was
accurate for 21:00 h, but for 22:00 h, the real state reported severe hypoglycemia. The time
vector in range glucose reported 66% of time below 70 mg/dL, 33.3% in TIR, and 0% above
180 mg/dL. For 23:00 h, both the model and reality reported severe hypoglycemia. In
practice, as we have shown in this example, it is expected that the patient will have the
24 models for each hour of the day, and the prediction model will update him on his future
status for the next 2 h.

Figure 5 displays the BG measurements for Patient 1 for day 3. This day showed
severe hyperglycemia for over 50% of the time, with the first minimum peak at 70 mg/dL
occurring at 20:00 h, increasing glucose levels, and levels remaining in range until 22:00 h
before dropping to hypoglycemia level 1 with few normoglycemic measurements.
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Table 5. Example of “traffic light” for patient 1, day 3, with 3 and 5 class to predict the next 2 h.

3 Class 5 Class
Predicted Real Predicted Real

Hour State State State State Characteristics of the States

00:00 3 class

01:00

02:00

03:00

04:00

05:00

06:00

07:00 5 class

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00
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Figure 5. BG of patient 1, day 3.

3.4. Results of the Metrics for Multi-Class Classification

Once the actual and predicted data from the validation data were classified, the confu-
sion matrix was created for each of the 24 models and each of the 226 patients. Although this
is an individualized model, the metrics results are shown for the entire cohort. Figure 6
shows the results for accuracy, BA, BAW, sensitivity, and macro and micro F1-scores. Each
of the results will be discussed below.

3.4.1. Accuracy Results

The accuracy returns a general measure of how correctly the model predicts for all
samples. The results for the entire cohort are shown in the boxplot in Figure 6 (first graph
on the left).

The diagrams show the results of the predictions of the 24 models (M_00, M_01,
. . . , M_23) corresponding to each hour of the day. The prediction of 2 h and 4 h with
3 and 5 classes are shown. This type of graph allows us to identify outliers and compare
distributions, as well as knowing in a comfortable and fast way how 50% of the central
values are distributed. The dimensions of the boxes are determined by the distance of
the 25th–75th interquartile ranges. At all times, these distances were greater when the
prediction horizon (PH) was longer (4 h), and they increased for the 5-class categorization.

For the prediction of 2 h, 3 and 5 classes, it is evident that the median is located in
the center of the box, then the distribution is symmetric and the mean, median, and mode
coincide, except for 2 h 3 class (M_04, M_07, M_11, M_14, M_20) and for 2 h, 5 class (M_07,
M_08). For the prediction of 4 h, 3 class for schedules M_00 and M_06 to M_18, negative
asymmetry is shown, as the longest part is the lower part of the median. Therefore, the
data were concentrated in the upper part of the distribution. Here, the mean is usually less
than the median; this shows dispersion in the data, not a greater value. For the prediction
of 2 h and 4 h for 3 classes at all times, an accuracy greater than 85% was reached at all
times of the day with a 75th quartile close to 100%. For 5 classes, the 4 h forecast presented
better performance, although the data were more dispersed, with a 75th close to 90% for
all times.

3.4.2. Balanced Accuracy and Balanced Accuracy Weighted Results

Figure 6 shows the results of the BA and BAW (second and third graph, respectively,
from left to right). The results of the BA for 2 h, 3 classes for schedules M_00 to M_05 and
M_15 behave symmetrically; however, the model for schedules M_13, M_17, M_20, M_21,
and M_23 show negative asymmetry. For the 4 h forecast, except for the hours M_00 to
M_02, there was positive asymmetry. For M_22 and M_23, all the results were concentrated
in the median. At all times, the 75th quartile was above 70%. For the prediction to 5 classes,
symmetry was observed only for 2 h in M_03, M_04, and M_07 to M_10. For the rest, there
was generally positive asymmetry. Here, the 75th quartile was above 60%; however, it
improved for the 4 h forecast, exceeding 80%. The results for 3 classes are satisfactory,
although no symmetric distribution was observed in the results for any model. In all cases,
the median was greater than 90% and the 75th quartile close to 100%. For the prediction
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with 5 classes, the results were observed to be more dispersed, especially in the hours from
M_08 to M_10, M_16, and M_17. Symmetry was not observed.

3.4.3. Sensitivity Results

The results show that, for the prediction with 3 classes, the median was above 80%
in all cases, with the 75th quartile close to 100%. However, the cohort data were more
dispersed when 5 classes were evaluated, finding the median close to 75% for all hours
and with a greater dispersion in daytime hours from M_05 to M_20 (Figure 6 (fourth graph
from left to right)).
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Figure 6. Results for multi-class classification, 2h_3classes, 2h_5classes, 4h_3classes, and 4h_5classes
(from the bottom up, from dark blue, light blue, dark yellow, light yellow).
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3.4.4. F1-Score

In this study for the prediction with 3 classes, the results of the median for the entire
model for the prediction at both 2 h and 4 h was higher than 80%, with a 75th quartile close
to 100%, thus, the same in the hours from M_05 to M_19, indicating that the algorithm
performs well in all classes. However, for 5 classes, the median for 2 h in all cases was
above 60% but for 4 h in some cases above 70% (M_06 to M_21).

Micro-average considers all units together, without taking into account possible dif-
ferences between classes, just like accuracy. Both measures give more importance to large
classes, because they only consider all units together. In our case, all classes are important,
so we should not underestimate the small ones. In addition, at some times the large classes
for our model are usually TIR, which, although they provide information, do not suggest
any corrective action. Even so, the results showed a median higher than 8% and 75% for
when there are 3 classes and 5 classes, respectively. Very scattered results were not observed
in any case, although there was a difference between the prediction with 3 and 5 classes.

3.4.5. Matthews Correlation Coefficient for Multi-Class Classification

Among the advantages of this metric, we can see that MCC includes all the entries
of the confusion matrix in both the numerator and the denominator [48,49]. Our results
(Figure 7) show that, for the prediction with 3 classes, especially for 4 h, the median for the
hours from M_05 to M_23 was 1, indicating a perfect prediction. However, for 5 classes,
such a median was only obtained for the models from M_07 to M_22 for 4 h. The rest of the
hours, the median was close to 0.5 (greater than 0.5 is considered good). For some isolated
cases, it was close to 0, which corresponds to a random prediction of the model, and some
very isolated samples were below zero, which indicated a totally incorrect prediction. For
3 classes, it could be considered as an accurate model; however, for some schedules of
5 classes, it indicates that the model is not better than a random prediction.
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Figure 7. MCC results for multiclass classification, 2 and 4 h prediction.

4. Discussion

DSSs have proven to be useful tools for patients and physicians [2,46,47]. Although glu-
cose profiles have been treated as CoDa vectors in previous studies [15–17], there is no
application in this branch of mathematics that is focused on predicting the mean and the
CV as an information system or DSS tool for patients with T1D at specific hours of the day
oriented to wide PH (2 h and 4 h). In this work, CoDa variables and transformed scalars
have been used to predict the mean and CV of glucose in patients with T1D. In addition,
the different times of the day of the patients have been categorized to provide an idea of
the behavior of glucose in the next 2 h and 4 h. The results have been validated using a
sample of 226 adult patients from a real cohort.
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Although no study was found that predicted the mean and CV for patients with T1D
at a PH of 120 and 240 min, prior research has focused on glucose prediction within time
horizons ranging from 15 to 120 min [3–8]. As expected, the longer the forecast horizon,
the greater the error. Specifically, for a 120 min PH, errors typically exceed 45 mg/dL,
as reported in previous studies [5,6,8,50].

The results show that the MAE mean prediction error is between 23 and 36 mg/dL
for all times, when predicting at both 2 h and 4 h. The CV is between 4 and 7% for the 2 h
prediction and between 6 and 8% for the 4 h prediction. The RMSE and MAE prediction
error of the mean and CV at all times of the day was higher for the 4 h forecast horizon in
the entire cohort, but the early morning times presented a lower error. It was confirmed
that the CV at this time was lower than during the daytime hours.

Previous studies have used some of these metrics based on the confusion matrix to
evaluate the performance of different methodologies [48,49]. In [48], population outcomes
for the mid-term continuous prediction module to predict hypoglycemia and population
outcomes for the nocturnal hypoglycemic events predictor module are reported, with
average mean of accuracy of 86.1% and 80.1%, respectively. Also, mean sensitivity of
48.5% and 44%, respectively, was reported. Here, there was a mean MCC of 0.51 with
a minimum of −0.18 and a maximum of 0.86 for the mid-term continuous prediction
module to predict hypoglycemia. In [49], a cohort of 10 real patients was studied using
support vector machines. The researchers presented the results, which evaluated the
model’s performance with and without including physical activity measures. The findings
showed that the median sensitivity for both scenarios was 71% and 70%, respectively.
Furthermore, analyzing individual patients revealed that the median F1-scores ranged from
37% (patient 12) to 80% (patient 45), indicating varying levels of accuracy. Remarkably,
excluding physical activity measures did not result in significant changes in this metric.
Additionally, the reported MCC varied from 0.2 (patient 12) to 0.67 (patient 56).

The DSS provided interesting results in different metrics, such as accuracy, BA, BAW,
sensitivity, F1-score, and MCC. They were higher than 90% for the entire cohort for 3 classes,
but for 5 classes they decreased, obtaining results above 80%. Therefore, the system will be
more reliable and accurate when 3 classes are used according to some metrics.

It should be noted that the results for the 4 h prediction, both for the 3 and 5 class
scenarios, exhibited greater dispersion, which underscores the variability within the cohort;
nevertheless, they yielded satisfactory outcomes. The outcomes presented in this article
pertain to the entire cohort; however, it is an individualized model, and it is important to
acknowledge that some patients achieved better results than others. Therefore, the results
are presented in a median and interquartile range format. The prediction results were all
below 45 mg/dL for every time frame. Furthermore, a model is proposed for each hour
of the day, taking into account daytime, nighttime, and postprandial time frames, which
are of particular interest due to the impact of day-to-day variability. We predict not only
the mean but also the CV, as within a specific time range, the mean can remain the same
while the CV varies. This could pose significant risks in patients with type 1 diabetes.
Additionally, predictions have been made for extended prediction horizons (2 and 4 h),
which are often challenging to achieve good results. The authors anticipate that this model
should be updated and adjusted over time, considering the habits and characteristics of
individual patients.

5. Conclusions

In this study, we presented a methodology for multiple regression models based on
CoDa to predict glucose outcomes over long time horizons (2 h and 4 h). The model
has been created and validated using a substantial dataset of real patients. Good results
have been obtained from both the regression models and the proposed DSS, indicating the
reliability of the proposal. The novelty of this work lies in the long-term prediction at each
hour of the day for type 1 diabetes patients using a compositional approach.
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