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Abstract: Financial institutions utilize data for the intelligent assessment of personal credit. However,
the privacy of financial data is gradually increasing, and the training data of a single financial
institution may exhibit problems regarding low data volume and poor data quality. Herein, by fusing
federated learning with deep learning (FL-DL), we innovatively propose a dynamic communication
algorithm and an adaptive aggregation algorithm as means of effectively solving the following
problems, which are associated with personal credit evaluation: data privacy protection, distributed
computing, and distributed storage. The dynamic communication algorithm utilizes a combination
of fixed communication intervals and constrained variable intervals, which enables the federated
system to utilize multiple communication intervals in a single learning task; thus, the performance of
personal credit assessment models is enhanced. The adaptive aggregation algorithm proposes a novel
aggregation weight formula. This algorithm enables the aggregation weights to be automatically
updated, and it enhances the accuracy of individual credit assessment by exploiting the interplay
between global and local models, which entails placing an additional but small computational
burden on the powerful server side rather than on the resource-constrained client side. Finally,
with regard to both algorithms and the FL-DL model, experiments and analyses are conducted
using Lending Club financial company data; the results of the analysis indicate that both algorithms
outperform the algorithms that are being compared and that the FL-DL model outperforms the
advanced learning model.

Keywords: federated learning; deep learning; personal credit assessment; optimization

MSC: 68-11

1. Introduction

The development of internet finance has led to a dramatic increase in personal credit
data; however, the models that are derived from the training of most financial institutions,
which are based on only their own data sets, are overfit for practical applications, and
they cannot effectively identify defaulted loan information. Consequently, a substantial
increase in the default rate of various loan operations has occurred, and to a certain extent,
confusion has occurred in the financial market. Meanwhile, because credit financial data
exhibit somewhat high-dimensional and high-noise characteristics, financial institutions
began to continuously utilize novel learning methods; thus, they aimed to enhance the
accuracy of personal credit evaluation models.
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A large number of scholars have considered enhancing the accuracy of personal credit
assessment models. In 2014, Stjepan Oreski et al. [1] observed that the data analyzed by
current financial institutions are high-dimensional data, and they noted that the existence
of numerous irrelevant features may reduce the prediction accuracy of neural networks.
Stjepan Oreski et al. selected crucial data preprocessing features through genetic algorithms,
and they utilized neural network modeling. Their experimental results indicated that the
accuracy of credit evaluation models can be enhanced using feature selection techniques.
In 2018, Yashna Sayjadah et al. [2] compared the prediction accuracy of logistic regression,
decision tree, and random forest algorithms, and they considered credit data; the results
indicated that random forest exhibits a high accuracy rate. Linear statistical methods such
as logistic regression do not exhibit a good fit for the current complex, multidimensional,
and nonlinear financial credit data; traditional neural networks exhibit high requirements
for the dimensionality and amount of data, and random forests require a certain level
of data volume to obtain more desirable results. Due to the development of computing
device performance, the deep learning capability of convolutional neural networks has
been widely observed in recent years, and increasingly complex and expressive network
models, such as VGGNet [3], DenseNet [4], and MobileNet [5], have emerged. These
models are also utilized for personal credit evaluation; however, in regard to overall
quantity and data dimensionality, the data available to a single financial institution are
limited. Thus, the information learned from a limited data set is not accurate enough for a
large and complex real-world market. To address the problems of privacy leakage and a
lack of device performance, which is associated with learning tasks, the authors propose a
federated deep learning model.

Federated learning is a distributed setup that enables each client to collaboratively
train a federated global model while locally keeping the data. Thus, federated learning
exhibits private data protection, distributed computation, and distributed storage. In
regard to the research on federated learning systems, both communication and aggregation
represent crucial and relevant performance bottlenecks [6]. Deep learning, which is a
type of machine learning algorithm, is a technique through which machine learning can be
implemented, and typical algorithms include deep belief networks (DBN) [7], convolutional
neural networks (CNN), and recursive neural networks (RNN) [8]. Unlike traditional
machine learning algorithms that usually focus on pre-built “feature engineering”, deep
learning can automatically learn “feature engineering”, which is also referred to as “feature
detectors” [9]. By effectively combining federated learning and deep learning with the
advantages of nonlinear mapping and parallel processing, federated deep learning learns
the multidimensional complex features of financial loan data through its own network
structure, and it automatically adjusts the internal large number of connection weights
to accurately fit the data features. The self-organization, self-learning, superb memory,
and high fault tolerance capabilities that characterize federated deep learning are suitable
for processing the current multidimensional and highly noisy nonlinear data such as
credit data.

The subsequent research structure is as follows. First, by classifying major approaches
to personal credit evaluation, as well as their advantages and disadvantages, and back-
ground knowledge, key techniques, such as federated learning, incremental learning, and
deep learning are introduced. Subsequently, to solve the key problems associated with fed-
erated learning, a dynamic communication algorithm and adaptive aggregation algorithm
are proposed. Thus, the FL-DL model architecture is constructed, and the pseudo-code
description is provided. Subsequently, using relevant data obtained from financial institu-
tions, the constructed FL-DL model is analyzed, and by comparing four related models,
the accuracy of the FL-DL model is verified. Finally, through the conclusion of the analysis
of the FL-DL model, the next research direction is proposed.

This study enhances the scenario that is characterized by the following problems:
susceptibility to adopting local optimal solutions, privacy leakage, and the insufficient
device performance that may characterize other personal credit assessment models. The
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FL-DL model can enhance the prediction accuracy and convergence speed of the model;
this enhancement entails adopting the distributed architecture of federated deep learning
for modeling, which solves the data silo problem of financial institutions and achieves
the goal of secure joint modeling by multiple financial institutions using local credit data
without disclosing data privacy.

2. Background Knowledge and Key Technologies

Federated deep learning, an emerging data mining algorithm, exhibits a wide range
of applications in the field of credit evaluation, and in regard to the limited-data scenario, it
is able to build models with excellent performance.

2.1. Main Assessment Methods for Personal Credit

The main methods for personal credit evaluation are statistical learning and machine
learning (Table 1), among which the method of assessing personal credit using mathematical
statistics cannot be effectively applied for high-dimensional sparse and noisy credit data,
as this method has poor mapping ability for nonlinear data. By contrast, machine language
exhibits a strong nonlinear mapping capability; thus, the requirements for data features
and ranges are reduced, and it can also be applied to sparse and noisy data. Therefore, this
study utilizes machine learning as the basic model for personal credit evaluation.

Table 1. Comparison of Personal Credit Evaluation Methods.

Methodology Advantages Disadvantages

LDA Reduce the subjectivity of manual Presence of parameter estimation
credit assessment discriminations sample selection bias

K-nn The overall idea is simple, and the ~Cannot avoid the problem of “di-
effect is powerful. Utilized to solve mensional disaster” occasioned by
regression problems high-dimensional data

LR The independent variables do not The requirement that the feature
need to conform to the normal distri- space is not very large, and it re-
bution between the samples without quires data without missing and
the same distribution between the wrong data
requirements

LP Linear processing with satisfactory ~ High subjectivity of indicator classi-

Bayesian network

accuracy evaluation

Strong interpretability of classifica-
tion results, handling both stereotyp-
ical and quantitative attributes

fication
Weak evaluation power when corre-
lation between attributes are high

CNN Suitable for high-dimensional, non- Susceptible to local minima; not de-

linear, noise-laden data terminable for the parameters of the
neural network

SVM Avoids non-linearity, “dimensional  Inefficient computation of large
disasters”, etc. amounts of data

DT No distribution requirement for sam-  Difficult to handle data with a wide
ple data; strong generalization ability =~ range of fluctuations

Aprioi Mineable correlations between at- Low computational efficiency
tributes

Fuzzy Can reflect the relative importance  There may be subjectivity in setting

of the evaluation indicators, mak-
ing the comprehensive evaluation re-
sults more scientific and reasonable

the weights, which makes the com-
prehensive evaluation results have
certain deviations

2.2. Federated Learning

Federated learning, a distributed setup proposed by McMahan et al. [10] in 2017,
enables clients to collaboratively train a federated global model; simultaneously, it enables
them to locally store data on their devices. Federated learning enables the decentralized
clients to collaboratively train a shared global model without sharing local data. Thus, the
goals of privacy preservation, distributed computing, and storage are achieved. Federated
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learning is divided into horizontal federated learning [11], vertical federated learning [12],
and federated migration learning [13].

Federated learning comprises a server side and multiple clients. Figure 1 indicates that
where the arrows connecting the server side to each client represent the communication
process, the blue arrow represents the scenario in which each client is sending a local model
to the server side, and the green arrow represents the server side broadcasting a global
model to each client. In the federated learning system, the server side is mainly responsible
for two tasks. First, it selects the clients at the beginning of training, and it broadcasts the
initial global model to each client; second, with regard to forming a new global model, it is
responsible for aggregating the received local models and for subsequently broadcasting
the new global model to each client during the subsequent training. The decentralized
clients are responsible for independently training the models broadcasted on the server
side using the privacy data and for retransmitting the trained model parameters to the
server side.

Server side

(Administrators)

IV: Model aggregatiom Il: Initial preparation

I: Selection of participants

Buiurel |eso ||

Participant 1 Participant 2 Participant 3 Participant N

Figure 1. Schematic diagram of the federated learning structure.

Multiple data transfers between the server side and each client are required; in fed-
erated learning, this phenomenon is known as communication. Typically, the clients that
constitute a federated learning system synchronously communicate with the server; each
client locally sends the trained model parameters to the server after a fixed number of
training rounds. Furthermore, the server generates a new global model, and it distributes it
to the clients for further training. It is commonly accepted that the cost of cross-device com-
munication is often much higher than the cost of communication within or between data
centers. Therefore, in regard to practically applying federated learning systems, because
communication represents a major performance bottleneck, it exhibits immense practical
importance.

In addition, using an algorithm, the server side aggregates the received local models
of each decentralized training into a global model, which is the tool utilized to finally
evaluate the learning effectiveness of the system. Therefore, aggregation, which is closely
linked with communication, is another bottleneck affecting the performance of federated
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learning systems, and with respect to the federated learning field, it is a major research
topic. Most of the current state-of-the-art research aggregates each dispersed client model
by averaging the parameters; however, none of these studies can theoretically explain
why averaging is an effective approach. Therefore, research on designing more effective
aggregation algorithms is a crucial research direction for federated learning. The standard
federated learning model [14], which is depicted in Algorithm 1, provides the basis for the
current research.

Algorithm 1 Federated average algorithm.

Server side:

1: Initialize GMj

2: for epoch t in range (0, E) do

3:  for client k in range (1) do

4 M« ClientShare (k, GM;)
5. end for

6 GMyy1  Ny/NY_ M}

7: end for

ClientShare (k, GM) :

8: B < Assign Dy randomly by size B
9: for clientbatchb € § do
10: My +— GM — VL(Mk, b)
11: end for
12: return M,

Here, the federated average algorithm 7 represents the total number of clients in the
system, Dy represents the local training set of client k, Nj represents the size of the local
data set Dy of client k, N represents the size of the whole data set, My represents the local
model of client k, B represents the minimum batch size for local training, E represents the
total number of training iterations, and 7 represents the learning rate.

2.3. Incremental Learning

A satisfactory machine learning algorithm should be interpretable and generalizable.
When the amount of training data is immensely small, the model may not learn sufficiently,
and because its knowledge may become limited to a small population, generalizability can-
not be satisfied. Incremental learning is an approach that incrementally updates knowledge
without forgetting, and it can solve the problem of not being able to obtain all the data at
once, which characterizes realistic tasks. Thus, when subjected to multiple batches of small
data sets, it exhibits effective performance. In scientific research, it is common to obtain all
the training data at once and to train these data in batches; thus, a model can be obtained.
However, real-life tasks do not always exhibit once-and-for-all characteristics, and the data
pertaining to these tasks are often obtained progressively. Therefore, it is unrealistic to
wait until the right amount of data is collected before learning. Such an action negates the
original purpose of artificial intelligence: enhancing the convenience of human life.

Similar to other Al methods, incremental learning aims to simulate human thinking.
Imagine that when we have learned the knowledge point (1) “1 + 1 =2”, we do not need to
learn the knowledge point (2) “2 x (1 + 1) = ?”. We do not need to learn point (1) again
because it has been mastered before. This is the goal of incremental learning, which is
subject to the “catastrophic forgetting” dilemma (i.e., how to ensure that new knowledge
is learned without forgetting what has already been learned and without reusing the
data already learned). Figure 2 indicates that the common incremental learning methods
are divided into three categories [14]: fine-tuning, joint training, and feature extraction
methods.

Figure 2A indicates that for the original multitask learning model, the test data are
tested once on each old task. The fine-tuning method [15] initializes the parameters of
the new model to those of the old one, and when training the new model, it fine-tunes
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some of the parameters. This commonly utilized method is intermediate; it represents
the phase between feature extraction and joint training. Figure 2B indicates that when
a new task appears, the gray legend represents the fine-tuned part of the parameters
contained on the old model, and the yellow legend represents the fine-tuned new model.
The joint training method [16] is depicted in Figure 2C. Whenever a new task appears,
the aforementioned method feeds all the data from the old task and the new task into
the model for retraining, which also represents the centralized training concept. This is
apparently the most effective method; however, it is temporally and spatially expensive.The
feature extraction method [17] can bridge the old and new tasks by extracting some of
the features on the trained model of the old task and applying them to the new task for
training. Figure 2D indicates that when there is a new task, the white legend represents the
unchanged old model, and the yellow one represents the new model with some features
applied to the old model.

wwow OO — O oo
A
D_
Test Data G @ = @Dﬁﬂ<%: (New Mission)
B 0l

E]— (0ld Mission)

Test Data O_G—ODQD< issi
) [  (NewMission)

OGO
Test Data T .
D -

Figure 2. Common incremental learning methods.

(New Mission)

2.4. Deep Learning

Deep learning (DL) is a technique for implementing machine learning; however, unlike
traditional machine learning algorithms that focus on pre-built “feature engineering”, it is
able to automatically learn “feature engineering” [18]. The performance of a DL algorithm
model is proportional to the amount of trained data; the larger the amount of training data,
the stronger the model performance. However, an implicit condition exists: the algorithm
can model an infinite range of growth. Because the model size can be made as large as
possible, the model can accommodate more tensor space for data representation, which
is apparently unrealistic in terminal devices and edge devices with limited computation
and storage capacity. Therefore, research on DL acceleration algorithms is crucial. Figure 3
illustrates the basic approach of DL methods.
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Figure 3. Deep learning methods.

3. Federated Deep Learning Model Construction

To enhance the accuracy of the evaluation model, which is a function of federated
learning, this subsection proposes a dynamic communication algorithm and an adap-
tive aggregation algorithm. Subsequently, the federated deep learning model (FL-DL) is
constructed based on the two aforementioned algorithms.

3.1. Dynamic Communication Algorithm Design

It is difficult to predict and utilize a suitable communication interval before training,
and an inappropriate communication interval can adversely affect model performance [19];
therefore, a dynamic communication interval is considered. With respect to the federated
learning system, we utilize a fixed communication interval in the first half-cycle of the
training. Therefore, the system follows a fixed communication scheme. Subsequently, it
utilizes a variable communication interval in the second half cycle. Larger communication
intervals can lead to a decrease in task accuracy [20]; to address this problem, the dynamic
communication algorithm adds a constraint to the variable communication interval. Thus,
it prevents the communication interval from becoming immensely large. By using the
constrained variable communication interval, the federated learning system follows the
dynamic communication scheme in the second half cycle of training. This combination
(i.e., making the federated learning system utilize a fixed communication scheme in the
first half-cycle of training and a dynamic communication scheme in the second half-cycle)
constitutes the dynamic communication algorithm proposed herein.

Let the total number of system training wheels be E, the fixed communication interval
be f, the set of training wheels be set; = {t € N*|1 < t < E}, the set of communication
occurring wheels be set,, and the set of communication intervals be set;,;;. The dynamic
communication algorithm is described as follows:

Step 1: Divide set ; into three subsets of training wheels based on the fixed commu-
nication interval f and the midpoint | E/2] of the total training period. Because f is not
necessarily divisible by E in practical applications, the three divided subsets are as follows:
setn = [1, |1, E/2f |*f), setiz = [|[E/2f)*f, | E/f)*f], and setys = [[E/f]*f, E].

Step 2: Construct the communication interval set set;,;; based on the three training
wheel subsets.

For set;;, for each t € sety, and for t/f = 0, an f is added to set;,;. It is apparent that
by this operation, the algorithm adds a total number of | E/2f | fs to set;y,; at t € set;;.

For sety, for each t € sety, and for ¢t/ f = 0, the algorithm randomly selects an integer
in the interval (t*f — f,t*f] of length f; thus, it replaces the original communication-
generating wheel t* f and adds it to set,. After each addition of the randomly selected
communication-generating wheel to set t,, the algorithm computes the difference between
the value of the last element in set ¢, that is not 0 and the value of its predecessor element,
and it adds the computed difference to set;,;. Let the value of the predecessor element
pertaining to the first element in set, be 0. By restricting the selection of the alternative



Mathematics 2023, 11, 4499

8 of 18

communication-generating wheels to the left side of the replaced original communication-
generating wheel (i.e., the t* f-th wheel) to a left-open-right-closed position of length f, the
interval between the two alternative communication-generating wheels (i.e., the variable
communication interval) is made to be no more than (2f — 1) and no less than 1; thus, a
constraint is added to the variable communication interval to prevent it from varying con-
siderably and from occasioning the degradation of the model performance. As per Figure 4,
let the fixed communication interval be 6. Figure 4A depicts the communication generation
wheels of rounds 6 and 12 when the fixed communication interval is utilized, Figure 4B
indicates the minimum interval case when the variable communication interval is utilized,
and Figure 4C indicates the maximum interval case when the variable communication
interval is utilized.

epoch epoch
6 12
A
epoch epoch epoch epoch

6 12 6 12

Figure 4. Schematic diagram pertaining to some possible scenarios of two adjacent communication-
generating wheels at a fixed communication interval (6). (A) represents communication-
generating wheels “6” and “12” at a fixed communication interval, (B) represents communication-
generating wheels “6” and “7” at a minimum variable communication interval, and (C) represents
communication-generating wheels “1” and “12” at a maximum variable communication interval.

For set;3, it is apparent that if f is divisible by E, then it will not exist. If f is not
divisible by E, for any t € set3, the federated learning system that follows the fixed com-
munication scheme is not communicating. Therefore, to accurately compare the dynamic
communication algorithm proposed herein with the federated learning algorithm that
follows the original fixed communication scheme, the dynamic communication algorithm
does not treat set;3.

Step 3: Apply the constructed set;,; to the server side. The server side takes one
element from set;,; and broadcasts it sequentially and without putting it back each time it
broadcasts global model parameters to the clients. Subsequently, each client sets the value
of the broadcasted element to the number of local training rounds, and the local private
data set is utilized to train the global model.

Using the three aforementioned steps, the federated learning system that applies the
dynamic communication algorithm will follow a fixed communication scheme during the
first half-cycle of training, and it will follow a dynamic communication scheme during the
second half-cycle of training. The dynamic scheme can optimally combine the two schemes;
thus, an enhanced model performance is obtained. This combined approach is the dynamic
communication approach (Algorithm 2).

In the scenario in which the total number of training rounds is E and the fixed commu-
nication interval is f, the dynamic communication algorithm first initializes the “midpoint”
round | E/2f |*f, the set of communication occurring rounds set,, the set of communication
intervals set;,;;, and the two self-increasing variables i and j. Subsequently, set, and set;,; are
calculated as per the preceding three steps and the corresponding three scenarios contained
in Algorithm 2. Finally, set;,;; is output.
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Algorithm 2 Dynamic communication algorithm

1: Input: total number of training rounds of System E, fixed communication interval f
2: Initialize the “midpoint” round | E/2f |* f for division, set.[1] = 0 for the set of com-
munication occurring rounds, set;,; for the set of communication intervals, and self-
incrementing variablesi = land j = 1
3: for t in range (1, E) do:
4 if1 <t<|E/2f|*fand t/f ==0:
setintli++] = f
5: elif t == |E/2f |*f + 2 : # “randint(a, b]” means to choose a random integer in the
interval (a,b)
sete[+ + j| = randint(|E/2|*t]
setint[i + +] = sete[i] —sete[i —1] +1
6: elift > |E/2f|*f+2and t/f == 0:
sete[+ + j| = randint(t — f,t]
seti[itT] = set,[j] — sete[j — 1] + 1
7. Output: set;,;

3.2. Adaptive Aggregation Algorithm Design

Because it has been demonstrated that averaging the weights of the model parameters
as per the size of the data set is not the most efficient aggregation method [21], herein, the
algorithm that constructs a new aggregation weight formula and automatically updates
the aggregation weights is referred to as the adaptive aggregation algorithm. The basic
principle of this algorithm is as follows: the automatic updating of aggregation weights is
achieved by making the aggregation weights back-propagate and optimize according to
the loss of the global model before each use.

First, based on the formula provided by the standard aggregation algorithm Fe-
dAvg [22] (i.e., row 6 of Algorithm 1), a novel aggregation weight formula is proposed:

n Nk
GMfk;W[k}.W-Mk 1)
where GM denotes the global model, n denotes the number of clients, N denotes the size
of the local data set Dy of client k, N denotes the size of the whole data set, M denotes the
local model of client k, and W|[k] denotes the aggregation weights proposed for use in M;.
The weight W|[k] will be initialized as follows:
accy, - accy
A YT A ?
where accf denotes the task accuracy of My at the current communication round e. Thus,
the adaptive aggregation algorithm extends the impact of the better-performing local model
on the global model.

Subsequently, because the feedback mechanism of artificial neural networks enables
self-learning [23], a small two-layer neural network, NeuNet (Figure 5), is utilized; thus,
the aggregation weights can optimize themselves.

This study considers the manner in which the optimization goal can be set. Because the
optimization goal of NeuNet is aligned with the optimization goal of the entire federated
learning system, which entails reducing task loss, this study achieves NeuNet self-learning.
Therefore, the output layer of NeuNet should be connected to the server side, and this
connection is utilized to pass a loss value SysLoss from the server side to the output layer
of NeuNet in one direction; thus, SysLoss can be utilized as the loss applied by NeuNet for
back propagation. This passed loss value is the average loss of the global model at the end
of the last communication (i.e., the average loss of each local model tested on the test set
before each local model was trained locally with the global model). This method exhibits
the following advantage: it is not necessary to collect the privacy data of each client on the
server side to test the global loss, and the method does not add immense computational
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effort to each client [24]. In summary, the adaptive aggregation algorithm utilizes W[n| as
the input to NeuNet and SysLoss as the back-propagation loss; subsequently, the new Wk|
for client k after automatic optimization is:

dSyLoss
OW k]

where Equation (3) represents the weight update formula of the neural network and 7
denotes the learning rate of NeuNet.

WIk] < WIk] =7 ®)

Clientside4d ) = o= o= = @ = =@ = @ @ =« o = = = = = Client side1

Dynamic Communication

o

9

2

12

2

o

N A
@

=

K Server side ==
ClientsideN | = = = = = &= s == =s=====@==<«- Client side3

Figure 5. Schematic diagram of FL-DL model.

Thus, the adaptive aggregation algorithm complementarily applies the influence of
the global model to the local model while expanding the influence of the partial local model
on the global model through Equation (2).

The pseudo-code description of the algorithm is depicted in Algorithm 3. The inputs
to the adaptive aggregation algorithm are the task accuracy set SET4cc for each local
model, the parameter set SET), for each local model, and the task loss rate set SET] o4 for
the global model. First, the algorithm initializes a two-layer neural network model and
the global average loss variable. Subsequently, the global average loss is calculated as per
the preceding algorithm description, and the calculated loss is utilized as a feedback for
the neural network to automatically update the aggregation weights. Finally, a new global
model GM calculated from the new aggregation weights is output.

Algorithm 3 Adaptive aggregation algorithm.

1: Inputs: task accuracy set SET ¢ for each local model, parameter set SET) for each
local model, and global model task loss set SET; ogs.
2: Initialize a two-layer neural network model NeuNet with global model average loss

SysLoss = 0
3: for kin range (1, |SETy| + 1) do:
acck*acck
4: W[k] ACCy-accy

= _JsET,
):,[:1 Ml accy-accy

5: SySLOSS + = SET10ss [k]
SysLos

6: SysLoss = SETy|
7: Set SysLoss as the feedback loss of the neural network NeuNet to obtain the automati-
cally optimized W[|SETy|]
) _ «I|SETuM] Ni
8: GM =Yy, "M WIk] - Ff - M
9: Output: GM
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3.3. FL-DL Model Design

Based on the dynamic communication algorithm and adaptive aggregation algorithm,
this study proposes a new federated learning model (FL-DL), whose framework is depicted
in Figure 5.

FL-DL is based on the architecture of a typical federated learning system, which
comprises a server side and multiple clients. Herein, the same model is utilized for the
global model on the server side and for the local model on each client (i.e., both models
utilize AlexNet)[25]. It can be observed from the server-side module depicted in Figure 5
that both algorithms proposed herein are applied on the server side, which exhibits the
advantage of placing the additional but small computation on the server side instead of on
the client side, where computational resources are strained. The pseudo-code description
of the model is depicted in Algorithm 4.

Algorithm 4 FL-DL algorithm.

Server side:
1: lf ==1
2: Initialize GM
Interval < Dynamic communication algorithm (E, f)
else:
Receive the My transmitted by each client to build SET), accy to build SET4cc ,
and lOSSk to build SETLOSS
6: G M «— Adaptive aggregation (SETacc, SETm, SET10ss)
7: Broadcast the global model GMy or GM and Interval[i 4+ +] to each client
Client k:
8: Initialize Mk < GM , e < Interval
9: Test the local test set on the global model and obtain the global model loss loss?
10: Train the local training set on the global model for e rounds and test it to obtain the

accuracy loss) of the local model M

11: Communicate with the server side to transmit lossg, acck“, Mk+ €

Here, t represents the training round the system is in; GM represents the global model;
Interval represents the set of communication intervals; E represents the total number
of training rounds; f represents the fixed communication interval; i represents the self-
incrementing variable initialized to zero; My represents the local model; Dy represents the
local training set of client k; and T} represents the local test set of client k.

The description of the working steps of FL-DL can be summarized as follows:

Step 1: the server side broadcasts a global model to each client, along with a communi-
cation interval int generated by a dynamic communication algorithm;

Step 2: The client first tests the global model on a local test set to obtain the loss of the
global model; subsequently, they train the local training set in rounds on the global model,
and they test it with the local test set to obtain the local model as well as the task accuracy
of the local model;

Step 3: Each client reports the trained local model parameters, the global model loss,
and the local task accuracy to the server side;

Step 4: The server side aggregates the local model parameters into a new global model
as per the adaptive aggregation algorithm, and it returns to Step 1.

The aforementioned four steps are repeated from round 1, and the new global model
is utilized in the next iteration until the number of iterations is E/ f.

4. Analyzing the Validity and Superiority of the New Model

It is assumed that all participants are honest and that the communication process is
ideal, secure, and confidential. This study compares dynamic communication algorithms
with typical fixed communication algorithms, and it compares the adaptive aggregation
algorithm with the popular FedAvg and FedProx algorithms [26]. It compares the FedDAS
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model comprising the two proposed algorithms with three advanced federated learning
models, namely FedAvg, FedProx, and centralized training. In addition, to ensure the
accuracy of the comparison results, among all the compared algorithms or models, the
learning models utilize the modern CNN architecture MobileNet.

4.1. Data Set

The data set utilized herein is the credit data set of Lending Club. Lending Club was
the first financial company registered with the Securities and Exchange Commission (SEC)
to operate a lending business, and it is domiciled in San Francisco. The company lending
club offers various types of loans to its customers. When the company receives a loan
application, it must decide whether to approve the loan based on the information provided
by the applicant. The data set contains information about past loan applicants and whether
they have “defaulted” on their loans. Thus, the lender can determine whether a person
is likely to default, and different actions can be taken in response to different predictions,
such as rejecting the loan application, reducing the loan amount, or lending at a higher
interest rate.

The collection of credit data has a person responsible for organizing and maintaining
the main aspects, include the following;:

1.  Marital status: Banks prefer customers who are married and in a good relationship
with their spouses, as they will have more stability than singles. A bank’s simulated
review system shows that, all other things being equal, a married person can receive a
whole level of credit enhancement over an unmarried person.

2. Technical titles: Borrowers with titles, such as engineers of various grades, economists,
accountants, good teachers, etc., are more favored by banks and tend to receive a
credit boost.

3. Job: Industry practitioners with higher stability can also receive extra points. For
example, civil servants, teachers, doctors and employees of some enterprises with
good benefits, fashion industry workers, and media people will also be rated on the
upper side due to their strong spending power.

4. Economic ability: People who provide detailed proof of personal income, stable
income, and a long-term outlook for income growth will receive a higher rating.

5. Personal housing: Having personal housing also shows that an individual has a
certain economic foundation and can receive extra points.

6.  Education: There is no change in the credit ratings for high school and undergraduate
education, but higher and lower education will affect the score; however, the difference
will not be too great.

4.2. Verification of Algorithm Validity
4.2.1. Dynamic Communication Algorithm Validation

Because both FedAvg and FedProx utilize the fixed communication algorithm, we
compared the dynamic communication algorithm with the typical fixed communication
algorithm. Figure 6a and Table 2 depict the results of the comparison experiments, where
“Fixed” denotes the FL system that exhibits a fixed communication algorithm and “Dynamic”
denotes the FL system that exhibits a dynamic communication algorithm with the same total
number of communications. Figure 6a indicates that increasing the communication interval
is not robust against learning situations, which coheres with the findings of previous
studies. Furthermore, because it is difficult to determine the number of communication
intervals suitable for a particular task before training, FL systems that employ a dynamic
communication approach can utilize a variety of different communication intervals for a
single task; thus, model performance is enhanced. The results depicted in Figure 6a and
Table 2 indicate that when setting the communication intervals to 4, 5, 6, and 7, respectively,
the model performance of the dynamic communication group outperforms that of the fixed
communication, which proves the effectiveness of the dynamic communication algorithm.



Mathematics 2023, 11, 4499 13 of 18

0.70 = —3
0.700 0.69 = -
I 2 068 =T
0.695 g o e
= 0.690 _—R 5 067 =
5 — \ Wi § 0.66 —~ /./
5 0.685 < 065 z
g LY / iRyve i //4
< 0.680 \ / & oo 7
0] . <
= 0.675 \ / 062 4_’#‘/
SRS ¥ 50 100 150 200
4 5 6 7
. Total epoch
Communication interval —@— Averaging p
i Prox
Fixed
Wei-Agg

—@&@— Randon Dyn-Agg

(a) (b)
Figure 6. Comparison of experimental results. (a) Different communication algorithms. (b) Different
aggregation algorithms.

Table 2. Comparison of algorithm performance.

Hyperparameters Algorithm FedAvg Dynamic FedProx Wei-Agg Self-Agg
4 67.34 68.29 - - -
C ication interval 5 67.83 68.38 - - -
ommunication interva 6 65.35 68.30 ] ] ]
7 67.49 68.46 - - -
5 60.61 - 61.53 60.76 61.97
. . . 10 65.36 - 65.49 65.36 65.66
Number of iterations (x number of clients) 15 66.63 ) 66.53 66.64 66.90
20 67.73 - 68.16 67.67 68.49

4.2.2. Validation of the Effectiveness of the Adaptive Aggregation Algorithm

In this section, we experimentally evaluated the performance of the aggregation
algorithm. Because FedAvg and FedProx utilize different aggregation algorithms, the
adaptive aggregation algorithm was compared with Fed Avg and FedProx. Figure 6b and
Table 2 depict the results of the comparison experiments, where “Averaging” represents
the FL system using Fed Avg, “Prox” represents the system using the FedProx algorithm,
and “Wei-Agg” represents the system using the FedProx algorithm. “Wei-Agg” represents
the system using only weighted aggregation, and “Self-Agg” represents the system using
the dynamic aggregation algorithm. From Figure 6b and Table 2, it can be observed that
the performance of the weighted-only aggregation algorithm is slightly better than that
of FedAvg and similar to that of FedProx. The dynamic aggregation algorithm is more
flexible and efficient than other aggregation algorithms, which proves the effectiveness of
the algorithm.

4.3. Validation of FL-DL Model Superiority

Herein, the designed model is applied to a credit evaluation task. To simulate multiple
application scenarios, this study divided the deep learning training set into subsets of
multiple sizes, and it utilized data augmentation methods for each subset. The training
set was first divided into n copies (to simulate a distributed setup); subsequently, the
original undivided training set was data-augmented, and, finally, based on the subset size
requested by the client, the lender decided whether to randomly extract some data from
the augmented training set to supplement the subset. Using the deep learning test set,
researchers tested the learning effect of the trained global model. For different models, their
credit evaluation classification accuracies on the test set were recorded as a criterion for
comparison [27].
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4.3.1. FL-DL Model Accuracy Analysis

Figure 7 indicates that the FL-DL neural network model potentially exhibits higher
prediction accuracy, and it can be observed that with regard to the recall rate index, the
FL-DL model is apparently effective; whether all default events can be accurately detected
is a crucial index that directly relates to the amount of money lost in the credit business. It
can be observed that the accuracy rate of the FL-DL model is slightly lower than that of
the FedProx model; however, for the overall index Fl1-score, the enhanced FL-DL model is
somewhat superior to other enhanced traditional methods.
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Figure 7. Model accuracy analysis diagram.

It can be observed that the area under the AUC curve of the FL-DL model is larger
(Figure 8), which indicates that the FL-DL model exhibits a better predictive ability than
other enhanced models. Therefore, the FL-DL model exhibits a superior classification effect.

N
10 _ —— X —— FedAvg
/ —— O — FedProx
0.90 —— A —— CenTvalized
0.88 . —— — FedDL
Q
- A
©
& 0.86 2 <
2 oum 7 —
B x
8 0.82 =
“CJ 0.8 '/
=}
= os /
0.4 /
0.2 y/
0.1 0.2 0.4 0.6 0.8 1.0 )

Faise Positive Rate
Figure 8. Model classification effect.

4.3.2. FL-DL Model Training Scale Analysis

With respect to training set size, we conducted comparative experiments on several
federated learning models. Most scholars acknowledge that the models perform better
when more training data are utilized. To simulate this scenario, the study first divided
the entire CIFAR-10 training data set into n parts, where n denotes the number of clients.
Subsequently, this experiment performed data augmentation on the original training
set, and it decided whether to randomly select some of the augmented training set to
expand the training subset based on the client’s demand for the training set size. Using
this augmentation strategy, the authors divided the training set into sub-training sets
containing 5000, 8000, 10,000, and 20,000 images each. Figure 9a and Table 2 indicate that
the centrally trained models clearly outperform the other models when the data set size
is 5000 and that the performance gap between models gradually decreases as the data
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set size increases. Although the enhancement method utilized herein cannot sufficiently
compensate for the diversity of the data, these experimental results can still demonstrate
that FL-DL outperforms FedAvg and FedProx, and the proposed model achieves task
accuracy that is comparable to that of centralized training.
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Figure 9. Comparison of experimental results graphs. (a) Different data set sizes. (b) Different
numbers of iterations. (c) Different numbers of clients.
4.3.3. Analyzing the Effect of FL-DL Model Iterations
The impact of training iterations on model performance is not negligible; therefore,
this study conducted further experiments to test the impact of the number of iterations
on the learning effect. The results depicted in Figure 9b and Table 3 indicate that for
the credit risk assessment task, FL-DL exhibits a higher accuracy level than Fed Avg and
FedProx with the same number of iterations, and it achieves a similar performance to that
of centralized training.
Table 3. Comparative experimental data of different models.
Hyperparameters Algorithm FedAvg FedProx Centralized FL-DL
5 65.48 65.92 66.68 70.38
. 8 73.97 73.05 75.14 74.95
data set size (> 1000) 10 76.95 7836 78.97 77.93
20 77.63 78.62 79.46 79.60
5 72.28 73.05 74.05 75.17
. . . 10 73.62 74.58 75.56 75.46
Number of iterations (xnumber of clients) 15 74.46 75 54 76.44 76.81
20 76.42 77.50 78.67 78.32
4 62.07 63.26 64.70 66.27
Number of clients 6 69.58 70.62 71.60 71.16
8 72.65 73.67 74.84 74.95
10 76.11 77.40 79.36 77.93

4.3.4. Analyzing the Number of Clients Pertaining to the FL-DL Model

Finally, the number of clients was compared for several models. Researchers generally
believe that the performance of a model becomes optimized as the amount of training data
and the number of iterations increases. However, when a new client joins an FL system
that has been working for some time, the client may not be able to adapt to the global
model in a short period of time, which may lead to a decrease in the task accuracy of the
global model, even though the size of the training data set and the number of iterations
are increasing. To simulate this scenario, we first let 3 clients join the FL system, and we
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added 2, 3, and 2 clients to the system after every 200 iterations, respectively. The results
depicted in Figure 9c and Table 3 indicate that for the credit risk assessment task, FL-DL
exhibits higher accuracy than FedAvg and FedProx when processing new participants, and
the performance of the model is similar to that obtained using centralized training.

5. Summary and Discussion

With respect to the personal credit risk assessment task, the FL-DL model achieves
higher test accuracy than FedAvg and FedProx, and its performance is similar to that of
centralized training; thus, the prediction accuracy and convergence speed of the model
is enhanced. With the FL-DL model for personal credit assessment model optimization,
federated learning enables decentralized clients to collaboratively train a shared global
model without sharing local data; thus, the goals of privacy protection and distributed
computation and storage are achieved. However, because the augmentation methods
utilized for data processing herein cannot sufficiently compensate for the diversity of the
data, the performance pertaining to centralized training does not immensely exceed that of
other algorithms, and subsequent studies should analyze this phenomenon.

The main innovations of this paper can be summarized as follows:

First, a dynamic communication algorithm is proposed, which allows the federated
learning system to use multiple communication intervals in a single learning task in order
to improve model performance;

Second, an adaptive aggregation algorithm is proposed, which exploits the interaction
between global and local models in order to improve task accuracy;

Third, a dynamic aggregation algorithm is proposed, where the algorithm aligns
neurons at the element level. The models are aggregated at the element level, which
improves the task accuracy.

In regard to research and applications pertaining to the field of federated deep learning,
the main issues and challenges can be classified into the following five points. First, there is
the problem pertaining to cross-device FL settings (i.e., the problem of data silos); second,
there is the problem pertaining to enhancing the efficiency and effectiveness of federated
learning; third, there is the problem pertaining to attacks and defenses (e.g., adversar-
ial attacks); fourth, there is the technical problem pertaining to achieving strict privacy
protection; and fifth, there is the problem pertaining to designing fair and unbiased models.

As can be seen, the research carried out in this paper starts from studying both
communication and compression. In the future, in terms of communication, this research
will be dedicated to designing a more efficient way to prevent catastrophic forgetting than
the work carried out in this paper. Additionally, in terms of aggregation, this research is
dedicated to designing an algorithm to aggregate neurons at the element level that is more
lightweight than the work conducted in this paper. In addition, in terms of other important
issues and challenges of federated learning, this research will study and dig deeper to find
and practice points that can be explored to better improve the performance of federated
learning models. Likewise, this paper will continue to keep an eye on the latest ideas of
researchers and eagerly hope that all their hard work will be put into practice soon for the
advancement of science.
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Abbreviations

The following abbreviations are used in this manuscript:

FL-DL  Federated deep learning

DBN Deep belief network

CNN Convolutional neural network
RNN Recursive neural network

FL Federated learning

DL Deep learning

LDA Linear discriminant analysis method
K-nn K-nearest neighbors

LR Logistic regression

LP Linear planning

SVM Support vector machine

DT Decision tree

SEC Securities and Exchange Commission
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