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Abstract: The paper establishes an analytical extension of two ratios of Lauricella–Saran hyper-
geometric functions FK with some parameter values to the corresponding branched continued
fractions in their domain of convergence. The PC method used here is based on the correspondence
between a formal triple power series and a branched continued fraction. As additional results,
analytical extensions of the Lauricella–Saran hypergeometric functions FK(a1, a2, 1, b2; a1, b2, c3; z)
and FK(a1, 1, b1, b2; a1, b2, c3; z) to the corresponding branched continued fractions were obtained. To
illustrate this, we provide some numerical experiments at the end.
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1. Introduction

Hypergeometric functions of one and several variables occur naturally in a variety
of applied mathematics, statistics and other decision sciences, chemistry and biology,
mathematical physics, and engineering sciences. Their investigation has a very long history
and a large bibliography (see, for example, [1–5]).

In 1893, G. Lauricella defined and studied four hypergeometric series FA, FB, FC, and
FD of three variables [6]. He also indicated the existence of ten other hypergeometric
functions of three variables FE, FF, . . . , FT , which were studied by Sh. Saran in 1954 [7].

Lauricella–Saran hypergeometric function FK is defined by triple power series

FK(a1, a2, b1, b2; c1, c2, c3; z) =
+∞

∑
p,q,r=0

(a1)p(a2)q+r(b1)p+r(b2)q

(c1)p(c2)q(c3)r

zp
1 zq

2zr
3

p!q!r!
, (1)

where a1, a2, b1, b2, c1, c2, and c3 are complex constants, c1, c2, c3 6∈ {0,−1,−2, . . .},
z = (z1, z2, z3) ∈ DFK ,

DFK = {z ∈ C3 : |zk| < 1, k = 1, 2, |z3| < (1− |z1|)(1− |z2|)};

(·)k is the Pochhammer symbol, defined as follows: (α)0 = 1, (α)k = α(α + 1)k−1, k ≥ 1.
Applications and recent studies of these functions can be found, for instance, in [8–11] (see
also [12–17]).
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In this paper, we study the analytic continuation of the Lauricella–Saran hyperge-
ometric function FK with some parameter values into a branched continued fraction of
the form

v0(z) +
3

∑
i1=1

ui(1)(z)

vi(1)(z) +
3

∑
i2=1

ui(2)(z)
vi(2)(z) + . . .

, (2)

where the v0(z) and the elements ui(k)(z) and vi(k)(z), i(k) ∈ I ,

I = {i(k) = (i1, i2, . . . , ik) : 1 ≤ ir ≤ 3, 1 ≤ r ≤ k, k ≥ 1},

are functions of three variables in the certain domain D, D ⊂ C3, (for more details on the
branched continued fractions, see, for example, [18]).

The problem of the analytical continuation of the ratio of the Lauricella hypergeometric
functions FD with some real parameters to its branched continued fraction expansion were
considered in [19,20]. In particular, it was proved in [19] that the expansion of the ratio is
its analytic continuation in the domain

KFD =

{
z ∈ C3 : |zk| < 1, Re(zk) <

1
2

, 1 ≤ k ≤ 3
}

.

In [21], it was established that the branched continued fraction expansion of the ratio of
the Lauricella–Saran hypergeometric functions FS with some real parameters is its analytic
continuation in the domain

KFS = {z ∈ C3 : |zk|+ Re(zk) < 1, 1 ≤ k ≤ 3}.

The paper is organized as follows. In Section 2, we give two methods for analytically
extending a hypergeometric function (or ratio of hypergeometric functions) to a branched
continued fraction in its domain of convergence. In Section 3, we derive two three-term
recurrence relations for Lauricella–Saran hypergeometric functions FK and construct the
formal branched continued fraction expansions for two ratios of Lauricella–Saran hyperge-
ometric functions FK. Here, it is also proved that the branched continued fraction, which
is an expansion of each ratio, uniformly converges to a holomorphic function of three
variables on every compact subset of some domain of C3, and that this function is an
analytic continuation of such a ratio in this domain.

2. Methods of Analytic Continuation

In the analytical theory of branched continued fractions, two methods are used to
prove that the branched continued fraction expansion is an analytic continuation of a
hypergeometric function (or ratio of hypergeometric functions) in some domain.

2.1. PC Method

The first method—let us call it the “PC method”—uses the so-called “principle of
correspondence” (see, [22,23]). Its application requires that the branched continued fraction
expansion corresponds at z = 0 to a hypergeometric function (or ratio of hypergeometric
functions) and that the sequence of its approximants converges uniformly on each compact
subset of some neighborhood of the origin (z = 0) to a function that is holomorphic in this
neighborhood. Then, it remains to consistently apply the well-known Weierstrass’ theorem
([24], p. 23) and the principle of analytic continuation ([25], p. 39).

Let us recall the necessary concepts.
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An expression of the form

fn(z) = v0(z) +
3

∑
i1=1

ui(1)(z)

vi(1)(z) +
3

∑
i2=1

ui(2)(z)
vi(2)(z) + . . . +

3

∑
in=1

ui(n)(z)
vi(n)(z)

is called an nth approximant of (2) ([18], pp. 15–16).
A branched continued fraction (2) is called convergent at the point z = z0, if at most

a finite number of its approximants do not make sense, and if the limit of its sequence
of approximants

lim
n→+∞

fn(z0)

exists and is finite (see, [26] and ([27], p. 16)).
A branched continued fraction (2) is called uniformly convergent on subset E of D if its

sequence { fn(z)} converges uniformly on E. If, moreover, this occurs for an arbitrary subset
E such that E ⊂ D (here, E is the closure of the subset E), then (2) converges uniformly on
each compact subset in D (see, [26] and ([27], p. 16)).

The concept of correspondence at z = 0 (see, [28] and ([29], pp. 30–32)). Let L be a set
of all formal triple power series of the form

L(z) =
+∞

∑
p,q,r=0

dp,q,rzp
1 zq

2zr
3, (3)

where dp,q,r ∈ C, p ≥ 0, q ≥ 0, r ≥ 0, z ∈ C3. Let f (z) be a function of three variables
holomorphic in a neighborhood of the origin and let Λ : f (z) → Λ( f ) be a mapping
associate with f (z) its Taylor expansion in a neighborhood of the point 0.

A sequence { fn(z)} of the functions of three variables holomorphic at the origin is
said to correspond at z = 0 to a formal triple power series (3) if

lim
n→+∞

λ
(

L−Λ( fn)
)
= +∞,

where λ is defined to be: λ : L→ Z≥0 ∪ {+∞}; if L(z) ≡ 0, then λ(L) = +∞; if L(z) 6≡ 0
then λ(L) = k, where k is the smallest degree of homogeneous terms for which dp,q,r 6= 0,
that is, k = p + q + r.

A branched continued fraction (2) is said to correspond at z = 0 to a formal triple
power series (3) (or a function f (z) holomorphic at the origin) if its sequence { fn(z)}
corresponds to L(z) (or a formal triple power series Λ( f )).

Theorem 1 (Weierstrass’ Theorem). Let a sequence {gn(z)} of holomorphic functions in a
domain D, D ⊂ C3, converge to a function g(z) uniformly on each compact subset in D, then f (z)
is holomorphic in D, and for any p ≥ 0, q ≥ 0, r ≥ 0,

∂p+q+rgn(z)
∂zp

1 ∂zq
2∂zr

3
→ ∂p+q+rg(z)

∂zp
1 ∂zq

2∂zr
3

as n→ +∞

on each compact subset in D.

Theorem 2 (The Principle of Analytic Continuation). Let the functions g1(z) and g2(z) be
holomorphic in the domains D1, D1 ⊂ C3, and D2, D2 ⊂ C3, respectively, and let D1 ∩D2 be
the domain. Let, further, in a real neighborhood of the point z0 from D1 ∩D2 the functions g1(z)
and g2(z) coincide. Then these functions are an analytic continuation of one another, i.e., there is
a unique function g(z) that is holomorphic in D1 ∪D2 and coincides with g1(z) in D1 and with
g2(z) in D2.
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2.2. PF Method

The second method, let us call it the “PF method”, uses the so-called “property of fork”
(see, [21,30,31]). This method is used when the hypergeometric function (or the ratio of
hypergeometric functions) and the elements of the branched continued fraction expansion
are positive-valued functions in some domain D. If it holds, then its approximant satisfies
the “property of fork”: the sequence of even (odd) approximants increases (decreases)
and is no greater (no less) than any odd (even) approximant. If, in addition, the branched
continued fraction expansion converges, then it converges to the hypergeometric function
(or the ratio of hypergeometric functions) in D. Finally, for the same restrictions on the
parameters of the hypergeometric function, it remains to prove the convergence of the
branched continued fraction expansion in a wider domain than D and to apply Theorem 2.

3. Lauricella–Saran Hypergeometric Function FK(a1, a2, b1, b2; a1, b2, c3; z)

We set c1 = a1 and c2 = b2. Then, from (1), it follows

FK(a1, a2, b1, b2; a1, b2, c3; z) =
+∞

∑
p,q,r=0

(a2)q+r(b1)p+r

(c3)r

zp
1 zq

2zr
3

p!q!r!
. (4)

3.1. Recurrence Relations

Remark 1. In the process of constructing a branched continued fraction expansion of the ratio of
hypergeometric functions, recurrent relations (for instance, three-term and/or four-term) play an
important role. The problem is not only in the direct construction of such an expansion, but also in
obtaining a branched continued fraction of the simplest structure. This, in turn, can provide more
opportunities to investigate the convergence of the constructed expansion.

Let us prove the three-term recurrence relations for Lauricella–Saran hypergeometric
function (4).

Lemma 1. The following relations hold true:

FK(a1, a2, b1, b2; a1, b2, c3; z) = (1− z1)FK(a1, a2, b1 + 1, b2; a1, b2, c3 + 1; z)

− a2(c3 − b1)

c3(c3 + 1)
z3FK(a1, a2 + 1, b1 + 1, b2; a1, b2, c3 + 2; z), (5)

FK(a1, a2, b1, b2; a1, b2, c3; z) = (1− z2)FK(a1, a2 + 1, b1, b2; a1, b2, c3 + 1; z)

− b1(c3 − a2)

c3(c3 + 1)
z3FK(a1, a2 + 1, b1 + 1, b2; a1, b2, c3 + 2; z). (6)

Proof. We have

FK(a1, a2, b1, b2; a1, b2, c3; z)− FK(a1, a2, b1 + 1, b2; a1, b2, c3 + 1; z)

= ∑
p,q,r≥0

(a2)q+r(b1)p+r

(c3)r

zp
1 zq

2zr
3

p!q!r!
− ∑

p,q,r≥0

(a2)q+r(b1 + 1)p+r

(c3 + 1)r

zp
1 zq

2zr
3

p!q!r!

= ∑
p+q+r≥1

(a2)q+r(b1)p+r

(c3)r

zp
1 zq

2zr
3

p!q!r!
− ∑

p+q+r≥1

(a2)q+r(b1 + 1)p+r

(c3 + 1)r

zp
1 zq

2zr
3

p!q!r!

= ∑
q≥0, p+r≥1

(a2)q+r

(
(b1)p+r

(c3)r
−

(b1 + 1)p+r

(c3 + 1)r

)
zp

1 zq
2zr

3
p!q!r!
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= ∑
q≥0, p=0, r≥1

(a2)q+r
(b1 + 1)r−1

(c3 + 1)r−1

(
b1

c3
− b1 + r

c3 + r

)
zp

1 zq
2zr

3
p!q!r!

+ ∑
q≥0, p≥1, r=0

(a2)q+r(b1 − b1 − p)
zp

1 zq
2zr

3
p!q!r!

+ ∑
q≥0, p≥1, r≥1

(a2)q+r(b1 + 1)p+r−1

(c3 + 1)r−1

(
b1

c3
− b1 + p + r

c3 + r

)
zp

1 zq
2zr

3
p!q!r!

= − ∑
q≥0, p=0, r≥1

(c3 − b1)(a2)q+r(b1 + 1)p+r−1

c3(c3 + 1)(c3 + 2)r−1

zp
1 zq

2zr
3

p!q!(r− 1)!

− ∑
q≥0, p≥1, r=0

(a2)q+r(b1 + 1)p+r−1

(c3)r

zp
1 zq

2zr
3

(p− 1)!q!r!

− ∑
q≥0, p≥1, r≥1

(a2)q+r(b1 + 1)p+r−1(c3 − b1)

c3(c3 + 1)(c3 + 2)r−1

zp
1 zq

2zr
3

p!q!(r− 1)!

− ∑
q≥0, p≥1, r≥1

(a2)q+r(b1 + 1)p+r−1

(c3 + 1)r

zp
1 zq

2zr
3

(p− 1)!q!r!

= − a2(c3 − b1)

c3(c3 + 1)
z3 ∑

q≥0,p≥0,r≥1

(a2 + 1)q+r−1(b1 + 1)p+r−1

(c3 + 2)r−1

zp
1 zq

2zr−1
3

p!q!(r− 1)!

− z1 ∑
q≥0, p≥1, r≥0

(a2)q+r(b1 + 1)p+r−1

(c3 + 1)r

zp−1
1 zq

2zr
3

(p− 1)!q!r!
,

= − a2(c3 − b1)

c3(c3 + 1)
z3FK(a1, a2 + 1, b1 + 1, b2; a1, b2, c3 + 2; z)

− z1FK(a1, a2, b1 + 1, b2; a1, b2, c3 + 1; z),

from which follows the correctness of relation (5).
Similarly, we will prove the relation (6). By definition (4), we get

FK(a1, a2, b1, b2; a1, b2, c3; z)− FK(a1, a2 + 1, b1, b2; a1, b2, c3 + 1; z)

= ∑
p,q,r≥0

(a2)q+r(b1)p+r

(c3)r

zp
1 zq

2zr
3

p!q!r!
− ∑

p,q,r≥0

(a2 + 1)q+r(b1)p+r

(c3 + 1)r

zp
1 zq

2zr
3

p!q!r!

= ∑
p+q+r≥1

(a2)q+r(b1)p+r

(c3)r

zp
1 zq

2zr
3

p!q!r!
− ∑

p+q+r≥1

(a2 + 1)q+r(b1)p+r

(c3 + 1)r

zp
1 zq

2zr
3

p!q!r!

= ∑
p≥0, q+r≥1

(b1)p+r

(
(a2)q+r

(c3)r
−

(a2 + 1)q+r

(c3 + 1)r

)
zp

1 zq
2zr

3
p!q!r!

= ∑
p≥0, q=0, r≥1

(b1)p+r
(a2 + 1)r−1

(c3 + 1)r−1

(
a2

c3
− a2 + r

c3 + r

)
zp

1 zq
2zr

3
p!q!r!

+ ∑
p≥0, q≥1, r=0

(b1)p+r(a2 − a2 − q)
zp

1 zq
2zr

3
p!q!r!

+ ∑
p≥0, q≥1, r≥1

(b1)p+r(a2 + 1)q+r−1

(c3 + 1)r−1

(
a2

c3
− a2 + q + r

c3 + r

)
zp

1 zq
2zr

3
p!q!r!
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= − ∑
p≥0, q=0, r≥1

(c3 − a2)(b1)p+r(a2 + 1)q+r−1

c3(c3 + 1)(c3 + 2)r−1

zp
1 zq

2zr
3

p!q!(r− 1)!

− ∑
p≥0, q≥1, r=0

(b1)p+r(a2 + 1)q+r−1

(c3)r

zp
1 zq

2zr
3

p!(q− 1)!r!

− ∑
p≥0, q≥1, r≥1

(a2 + 1)q+r−1(b1)p+r(c3 − a2)

c3(c3 + 1)(c3 + 2)r−1

zp
1 zq

2zr
3

p!q!(r− 1)!

− ∑
p≥0, q≥1, r≥1

(a2)q+r−1(b1)p+r

(c3 + 1)r

zp
1 zq

2zr
3

p!(q− 1)!r!
.

= − b1(c3 − a2)

c3(c3 + 1)
z3 ∑

p≥0, q≥0, r≥1

(a2 + 1)q+r−1(b1 + 1)p+r−1

(c3 + 2)r−1

zp
1 zq

2zr−1
3

p!q!(r− 1)!

− z2 ∑
p≥0, q≥1, r≥0

(a2 + 1)q+r−1(b1)p+r

(c3 + 1)r

zp
1 zq−1

2 zr
3

p!(q− 1)!r!

= − b1(c3 − a2)

c3(c3 + 1)
z3FK(a1, a2 + 1, b1 + 1, b2; a1, b2, c3 + 2; z)

− z2FK(a1, a2 + 1, b1, b2; a1, b2, c3 + 1; z),

which had to be proved.

3.2. Expansions

We set

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z) =

FK(a1, a2, b1, b2; a1, b2, c3; z)
FK(a1, a2, b1 + 1, b2; a1, b2, c3 + 1; z)

, (7)

R(2)
K (a1, a2, b1, b2; a1, b2, c3; z) =

FK(a1, a2, b1, b2; a1, b2, c3; z)
FK(a1, a2 + 1, b1, b2; a1, b2, c3 + 1; z)

. (8)

The following theorem is true.

Theorem 3. A ratio (7) has a formal branched continued fraction of the form

1− z1 −
d1z3

1− z2 −
d2z3

1− z1 −
d3z3

1− z2 −
d4z3

1− . . .

, (9)

where, for all k ≥ 1,

d2k−1 =
(a2 + k− 1)(c3 + k− 1− b1)

(c3 + 2k− 2)(c3 + 2k− 1)
, d2k =

(b1 + k)(c3 + k− a2)

(c3 + 2k− 1)(c3 + 2k)
. (10)

Proof. Dividing (5) and (6) by

FK(a1, a2, b1 + 1, b2; a1, b2, c3 + 1; z) and FK(a1, a2 + 1, b1, b2; a1, b2, c3 + 1; z),
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respectively, we obtain

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z) = 1− z1 −

a2(c3 − b1)

c3(c3 + 1)
z3

R(2)
K (a1, a2, b1 + 1, b2; a1, b2, c3 + 1; z)

, (11)

R(2)
K (a1, a2, b1, b2; a1, b2, c3; z) = 1− z2 −

b1(c3 − a2)

c3(c3 + 1)
z3

R(1)
K (a1, a2 + 1, b1, b2; a1, b2, c3 + 1; z)

. (12)

In fact, in (11), we have Step 1.1 of constructing a branched continued fraction. At
Step 1.2, replacing b1, c3 by b1 + 1 and c3 + 1, respectively, in (12), we get

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z)

= 1− z1 −

a2(c3 − b1)

c3(c3 + 1)
z3

1− z2 −

(b1 + 1)(c3 + 1− a2)

(c3 + 1)(c3 + 2)
z3

R(1)
K (a1, a2 + 1, b1 + 1, b2; a1, b2, c3 + 2; z)

. (13)

Let us continue the next construction of the branched continued fraction in the same
way as in steps 1.1–1.2. It is clear that the following relation holds, for all k ≥ 1,

R(1)
K (a1, a2 + k− 1, b1 + k− 1, b2; a1, b2, c3 + 2k− 2; z)

= 1− z1 −

(a2 + k− 1)(c3 + k− 1− b1)

(c3 + 2k− 2)(c3 + 2k− 1)
z3

1− z2 −

(b1 + k)(c3 + k− a2)

(c3 + 2k− 1)(c3 + 2k)
z3

R(1)
K (a1, a2 + k, b1 + k, b2; a1, b2, c3 + 2k; z)

. (14)

At Steps 2.1–2.2, substituting (14) when k = 2 in (13), we obtain

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z)

= 1− z1 −

a2(c3 − b1)

c3(c3 + 1)
z3

1− z2 −

(b1 + 1)(c3 + 1− a2)

(c3 + 1)(c3 + 2)
z3

1− z1 −

(a2 + 1)(c3 + 1− b1)

(c3 + 2)(c3 + 3)
z3

1− z2 −

(b1 + 2)(c3 + 2− a2)

(c3 + 3)(c3 + 4)
z3

R(1)
K (a1, a2 + 2, b1 + 2, b2; a1, b2, c3 + 4; z)

.
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Next, by (14) after the Steps n.1–n.2, we have

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z) = 1− z1

−

a2(c3 − b1)

c3(c3 + 1)
z3

1− z2 −

(b1 + 1)(c3 + 1− a2)

(c3 + 1)(c3 + 2)
z3

1− . . .
−z1 −

(a2 + n− 1)(c3 + n− 1− b1)

(c3 + 2n− 2)(c3 + 2n− 1)
z3

1− z2 −

(b1 + n)(c3 + n− a2)

(c3 + 2n− 1)(c3 + 2n)
z3

R(1)
K (a1, a2 + n, b1 + n, b2; a1, b2, c3 + 2n; z)

.

Finally, as n→ +∞, we obtain the formal expansion of (7) into branched continued
fraction (9).

The following theorem can be proved in much the same way as Theorem 3.

Theorem 4. A ratio (8) has a formal branched continued fraction of the form

1− z2 −
h1z3

1− z1 −
h2z3

1− z2 −
h3z3

1− z1 −
h4z3

1− . . .

, (15)

where, for all k ≥ 1,

h2k−1 =
(b1 + k− 1)(c3 + k− 1− a2)

(c3 + 2k− 2)(c3 + 2k− 1)
, h2k =

(a2 + k)(c3 + k− b1)

(c3 + 2k− 1)(c3 + 2k)
. (16)

3.3. Analytic Continuation

We will apply the PC method to prove that expansion (9) is an analytic continuation
of ratio (7) in some domain.

The following corollary follows directly from Theorem 1 [26].

Corollary 1. Let g0,0,k, k ≥ 1, be real numbers such that, for all k ≥ 1,

0 < g0,0,k ≤ 1.

Then, the branched continued fraction,

1− z1,0,0 −
g0,0,1z0,0,1

1− (1− g0,0,1)z0,1,1 −
g0,0,2(1− g0,0,1)z0,0,2

1− (1− g0,0,2)z1,0,2 −
g0,0,3(1− g0,0,2)z0,0,3

1− . . .

,

converges if, for all k ≥ 0,

|z1,0,2k| ≤
1
2

, |z0,1,2k+1| ≤
1
2

, |z0,0,k+1| ≤
1
2

.

From the proof of Lemma 4.41 [32], we have following corollary.
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Corollary 2. If x ≥ c > 0 and v2 ≤ 4u + 4, where u, v ∈ R, then

min
−∞<y<+∞

Re
(

u + iv
x + iy

)
= −
√

u2 + v2 − u
2x

.

Moreover, the following theorem clearly follows from Theorem 2.17 [18] (see also ([27],
Theorem 24.2)).

Theorem 5. Let a sequence of holomorphic functions {gn(z)} on the domain D, D ⊂ C3, is
uniform bounded on every compact subset of D. If, moreover, the sequence {gn(z)} converges at
each point of the set E, E ⊂ D, which is the real neighborhood of the point z0 in D, then its converges
uniformly on every compact subset of D to a holomorphic function in D.

We will prove the following theorem.

Theorem 6. Let a2, b1, and c3 be constants such that, for all k ≥ 1,

0 < dk ≤ r, (17)

where dk, k ≥ 1, are defined by (10), r is a positive number. Then:

(A) The branched continued fraction (9) converges uniformly on every compact subset of

Hr,r∗ =
⋃

−π/2<α<π/2

Hr,r∗ ,α, (18)

where 0 < r∗ < 1 and

Hr,r∗ ,α

=

{
z ∈ C3 :

|zk|+ Re(zke−2iα)

2(1− r∗) cos2 α
< 1, k = 1, 2,

|z3|+ Re(z3e−2iα)

r∗ cos2 α
<

1
2r

}
, (19)

to a holomorphic function f (z) in Hr,r∗ ;
(B) The function f (z) is an analytic continuation of (7) in the domain (18).

Proof. We set, for n ≥ 1,

G(n)
n (z) = 1 (20)

and, for n ≥ 1 and 1 ≤ k ≤ n,

G(2n)
2k−1(z) = 1− z2 −

d2kz3

1− z1 −
d2k+1z3

1− . . .−z1 −
d2n−1z3

1− z2 − d2nz3

,

G(2n)
2k (z) = 1− z1 −

d2k+1z3

1− z2 −
d2k+2z3

1− . . .−z1 −
d2n−1z3

1− z2 − d2nz3

,

G(2n+1)
2k−1 (z) = 1− z2 −

d2kz3

1− z1 −
d2k+1z3

1− . . .−z2 −
d2nz3

1− z1 − d2n+1z3

,
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G(2n+1)
2k (z) = 1− z1 −

d2k+1z3

1− z2 −
d2k+2z3

1− . . .−z2 −
d2nz3

1− z1 − d2n+1z3

,

which gives us, for n ≥ 1 and 1 ≤ k ≤ n,

G(2n)
2k−1(z) = 1− z2 −

d2kz3

G(2n)
2k (z)

, G(2n)
2k (z) = 1− z1 −

d2k+1z3

G(2n)
2k+1(z)

, (21)

and

G(2n+1)
2k−1 (z) = 1− z2 −

d2kz3

G(2n+1)
2k (z)

, G(2n+1)
2k (z) = 1− z1 −

d2k+1z3

G(2n+1)
2k+1 (z)

. (22)

Thus, we write the nth approximants of (9) in the form

fn(z) = 1− z1 −
d1z3

G(n)
1 (z)

. (23)

Let n be an arbitrary natural number, let α be an arbitrary real from (−π/2, π/2), and
let z be an arbitrary fixed point from (19). Then, the following inequalities are held, for all
1 ≤ k ≤ n,

Re(G(2n)
2k−1(z)e

−iα) >
r∗ cos α

2
> 0 (24)

and

Re(G(2n+1)
2k−1 (z)e−iα) >

r∗ cos α

2
> 0. (25)

Let us prove that (24) is true. In view of (20), it is obvious that (24) holds for k = n.
Assuming, by the induction, that (24) holds for k = p + 1, p + 1 ≤ n, from (21) one obtains,
for k = p,

G(2n)
2p−1(z)e

−iα = e−iα − z2e−2iα

e−iα −
d2pz3e−2iα

G(2n)
2p (z)e−iα

and

G(2n)
2p (z)e−iα = e−iα − z1e−2iα

e−iα −
d2p+1z3e−2iα

G(2n)
2p+1(z)e

−iα
.

Then, using (17), (19), Corollary 2 , and the induction hypothesis, we have

Re(G(2n)
2p (z)e−iα) ≥ cos α− |z1e−2iα|+ Re(z1e−2iα)

2 Re(e−iα)
−

d2p+1(|z3e−2iα|+ Re(z3e−2iα))

2 Re(G(2n)
2p+1(z)e

−iα)

> cos α− (1− r∗) cos α− r∗ cos α

2

=
r∗ cos α

2
> 0
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and

Re(G(2n)
2p−1(z)e

−iα) ≥ cos α− |z2e−2iα|+ Re(z2e−2iα)

2 Re(e−iα)
−

d2p(|z3e−2iα|+ Re(z3e−2iα))

2 Re(G(2n)
2p (z)e−iα)

> cos α− (1− r∗) cos α− r∗ cos α

2

=
r∗ cos α

2
> 0.

In the same way, we obtain the inequalities (25).
Thus, for all n ≥ 1 and z ∈ Hr,r∗ ,α,

G(n)
1 (z) 6= 0.

This means that the sequence { fn(z)} is a sequence of holomorphic functions in (19),
and, therefore, in domain Hr,r∗ due to the arbitrariness α.

Let K be an arbitrary compact subset of Hr,r∗ . Then, there exists an open triple-disk

Hl = {z ∈ C3 : |zk| < l, k = 1, 2.3}, l > 0,

such that K ⊂ Hl . Now, cover K by domains of the form

Hr,r∗ ,l,α = Hr,r∗ ,α
⋂

Hl

and choose from this cover a finite subcover,

Hr,r∗ ,l,α1 , Hr,r∗ ,l,α2 , . . . , Hr,r∗ ,l,αk
.

Using (23)–(25), for any n ≥ 1, p ∈ {1, 2, . . . , k} and z ∈ Hr,r∗ ,l,αp , we have

| fn(z)| ≤ 1 + |z1|+
d1|z3|

Re(G(n)
1 (z)e−iαp)

< 1 + l +
2rl

cos αp

= C(Hr,r∗ ,l,αp).

Setting
C(K) = max

1≤p≤k
C(Hr,r∗ ,l,αp),

for any n ≥ 1 and z ∈ K, we obtain

| fn(z)| ≤ C(K).

This means that the sequence { fn(z)} is uniformly bounded on every compact subset
of the domain Hr,r∗ .

It is clear that, for each real l∗ such that

0 < l∗ < min
{

1
4

,
1
8r

}
,

the domain

Hl∗ =
{

z ∈ R3 : −l∗ < zk < 0, 1 ≤ k ≤ 3
}

is contained in Hr,r∗ , in particular, Hl∗/2 ⊂ Hr,r∗ .
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Taking into account (17), it is easy to show that, for any z ∈ Hl∗ , Hl∗ ⊂ Hr,r∗ , the
following inequalities hold, for all k ≥ 1,

|zk| <
1
4

k = 1, 2, |dkz3| <
1
8

.

This means that the elements of branched continued fraction (9) satisfy the conditions
of Corollary 1, with g0,0,k = 1/2 for all k ≥ 1. By this corollary the branched continued
fraction (9) converges in Hl∗ , Hl∗ ⊂ Hr,r∗ . It follows from Theorem 5 that the convergence is
uniform on compact subsets of Hr,r∗ to a holomorphic function f (z) in Hr,r∗ . This proves (A).

Now, we prove (B). Setting, for n ≥ 1,

F(2n)
2n (z) = R(1)

K (a1, a2 + n, b1 + n, b2; a1, b2, c3 + 2n; z),

F(2n+1)
2n+1 (z) = R(2)

K (a1, a2 + n, b1 + n + 1, b2; a1, b2, c3 + 2n + 1; z),

and, for n ≥ 1 and 1 ≤ k ≤ n,

F(2n)
2k−1(z) = 1− z2 −

d2kz3

1− z1 −
d2k+1z3

1− . . .−z1 −
d2n−1z3

1− z2 −
d2nz3

F(2n)
i(2n)(z)

,

F(2n)
2k (z) = 1− z1 −

d2k+1z3

1− z2 −
d2k+2z3

1− . . .−z1 −
d2n−1z3

1− z2 −
d2nz3

F(2n)
i(2n)(z)

,

F(2n+1)
2k−1 (z) = 1− z2 −

d2kz3

1− z1 −
d2k+1z3

1− . . .−z2 −
d2nz3

1− z1 −
d2n+1z3

F(2n+1)
i(2n+1)(z)

,

F(2n+1)
2k (z) = 1− z1 −

d2k+1z3

1− z2 −
d2k+2z3

1− . . .−z2 −
d2nz3

1− z1 −
d2n+1z3

F(2n+1)
i(2n+1)(z)

,

we have, for n ≥ 1 and 1 ≤ k ≤ n,

F(2n)
2k−1(z) = 1− z2 −

d2kz3

F(2n)
2k (z)

, F(2n)
2k (z) = 1− z1 −

d2k+1z3

F(2n)
2k+1(z)

, (26)

and

F(2n+1)
2k−1 (z) = 1− z2 −

d2kz3

F(2n+1)
2k (z)

, F(2n+1)
2k (z) = 1− z1 −

d2k+1z3

F(2n+1)
2k+1 (z)

. (27)
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Hence, and from the proof of Theorem 3, it follows that for each n ≥ 1,

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z) = 1− z1 −

d1z3

1− z2 −
d2z3

1− . . . −z1 −
d2n−1z3

1− z2 −
d2nz3

F(2n)
2n (z)

= 1− z1 −
d1z3

F(2n)
1 (z)

and

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z) = 1− z1 −

d1z3

1− z2 −
d2z3

1− . . . −z2 −
d2nz3

1− z1 −
d2n+1z3

F(2n+1)
2n+1 (z)

= 1− z1 −
d1z3

F(2n+1)
1 (z)

.

Since F(n)
k (0) = 1 and G(n)

k (0) = 1 for any 1 ≤ k ≤ n, n ≥ 1, then there exist Λ(1/F(n)
k )

and Λ(1/G(n)
k ), i.e., the 1/F(n)

k and 1/G(n)
k have Taylor expansions in a neighborhood of

the origin. It is clear that F(n)
k (z) 6≡ 0 and G(n)

k (z) 6≡ 0 for all indices. Applying the method
suggested in ([18], p. 28) and (20)–(22), (26), and (27), for each n ≥ 1 one obtains

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z)− f2n−1(z)

=
d1z3

F(2n)
1 (z)G(2n−1)

1 (z)
. . .

d2n−1z3

F(2n)
2n−1(z)G

(2n−1)
2n−1 (z)

(
−z2 −

d2nz3

F(2n)
2n (z)

)

and

R(1)
K (a1, a2, b1, b2; a1, b2, c3; z)− f2n(z)

=
d1z3

F(2n+1)
1 (z)G(2n)

1 (z)
. . .

d2nz3

F(2n+1)
2n (z)G(2n)

2n (z)

−z1 −
d2n+1z3

F(2n+1)
2n+1 (z)

.

Hence, in a neighborhood of origin for any n ≥ 1, we have

Λ(R(1)
K )−Λ( fn) = ∑

p+q+r≥n
p≥0, q≥0, r≥0

d(n)p,q,rzp
1 zq

2zr
3,

where d(n)p,q,r, p ≥ 0, q ≥ 0, r ≥ 0, p + q + r ≥ n, are some coefficients. It follows that

λ(Λ(R1)−Λ( fn)) = n + 1

tends monotonically to +∞ as n→ +∞.
Thus, the branched continued fraction (9) corresponds at z = 0 to a formal triple

power series Λ(R(1)
K ).
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Let ∆ be the neighborhood of the origin which contained (18), and in which

Λ(R1) =
+∞

∑
p,q,r=0

dp,q,rzp
1 zq

2zr
3. (28)

From part (A), it follows that the sequence { fn(z)} converges uniformly on each com-
pact subset of the domain ∆ to function f (z), which is holomorphic in ∆. Then, according
to Theorem 1 for arbitrary k + l, k ≥ 0, l ≥ 0, we have

∂p+q+r fn(z)
∂zp

1 ∂zq
2∂zr

3
→ ∂p+q+r f (z)

∂zp
1 ∂zq

2∂zr
3

as n→ +∞

on each compact subset of the domain ∆. And now, according to the above proven, the ex-
pansion of each approximant fn(z), n ≥ 1, into formal triple power series and series (28)
agree for all homogeneous terms up to and including degree (n− 1). Then, for arbitrary
p + q + r, p ≥ 0, q ≥ 0, r ≥ 0, we obtain

lim
n→+∞

(
∂p+q+r fn

∂zp
1 ∂zq

2∂zr
3
(0)

)
=

∂p+q+r f
∂zp

1 ∂zq
2∂zr

3
(0) = p!q!r!dp,q,r.

Hence,

f (z) =
+∞

∑
p,q,r=0

1
p!q!r!

(
∂p+q+r f

∂zp
1 ∂zq

2∂zr
3
(0)

)
zp

1 zq
2zr

3 =
+∞

∑
p,q,r=0

αp,q,rzp
1 zq

2zr
3

for all z ∈ ∆.
Finally, Theorem 2 follows part (B).

Setting b1 = 0 and replacing c3 by c3 − 1 in Theorem 6, we have the following result.

Corollary 3. Let a2 and c3 be constants such that, for all k ≥ 1,

0 <
(a2 + k− 1)(c3 + k− 2)
(c3 + 2k− 3)(c3 + 2k− 2)

≤ r, 0 <
k(c3 + k− 1− a2)

(c3 + 2k− 2)(c3 + 2k− 1)
≤ r,

where r is a positive number. Then:

(A) The branched continued fraction

1

1− z1 −
d1z3

1− z2 −
d2z3

1− z1 −
d3z3

1− z2 −
d4z3

1− . . .

, (29)

where, for all k ≥ 1,

d2k−1 =
(a2 + k− 1)(c3 + k− 2)
(c3 + 2k− 3)(c3 + 2k− 2)

, d2k =
k(c3 + k− 1− a2)

(c3 + 2k− 2)(c3 + 2k− 1)
,

converges uniformly on every compact subset of the domain (18) to a function f (z) holomorphic
in Hr,r∗ ;

(B) The function f (z) is an analytic continuation of FK(a1, a2, 1, b2; a1, b2, c3; z) in Hr,r∗ .

The following theorem can be proved in much the same way as Theorem 6 using
Theorems 1, 2, and 5 and Corollaries 1 and 2.
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Theorem 7. Let a2, b1, and c3 be constants such that, for all k ≥ 1,

0 < hk ≤ r,

where hk, k ≥ 1, are defined by (16), r is a positive number. Then:

(A) The branched continued fraction (15) converges uniformly on every compact subset of the
domain (18) to a function f (z) holomorphic in Hr,r∗ ;

(B) The function f (z) is an analytic continuation of (8) in the domain (18).

Corollary 4. Let b1, and c3 be constants such that, for all k ≥ 1,

0 <
(b1 + k− 1)(c3 + k− 2)
(c3 + 2k− 3)(c3 + 2k− 2)

≤ r, 0 <
k(c3 + k− 1− b1)

(c3 + 2k− 2)(c3 + 2k− 1)
≤ r,

where r is a positive number. Then:

(A) The branched continued fraction

1

1− z2 −
d1z3

1− z1 −
d2z3

1− z2 −
d3z3

1− z1 −
d4z3

1− . . .

, (30)

where, for all k ≥ 1,

d2k−1 =
(b1 + k− 1)(c3 + k− 2)
(c3 + 2k− 3)(c3 + 2k− 2)

, d2k =
k(c3 + k− 1− b1)

(c3 + 2k− 2)(c3 + 2k− 1)
,

converges uniformly on every compact subset of the domain (18) to a holomorphic function
f (z) in Hr,r∗ ;

(B) The function f (z) is an analytic continuation of FK(a1, 1, b1, b2; a1, b2, c3; z) in Hr,r∗ .

Remark 2. Theorems 6 and 7, as and Corollaries 3 and 4, establish the convergence criteria for
the constructed branched continued fraction expansions for real parameter values of the Lauricella–
Saran hypergeometric function (4). The method used for this also allows us to obtain the convergence
criteria for complex parameter values, sacrificing the domain for variable z3.

Remark 3. Estimates of the rate of convergence for the branched continued fractions (9), (15), (29),
and (30) can be established in the same way as in [33].

4. Numerical Experiments

By Corollary 3, we have

ln
(

1 +
z3

(1 + z1)(1 + z2)

)
= z3 FK(a1, 1, 1, b2; a1, b2, 2;−z1,−z2,−z3)

=
z3

1 + z1 +
d1z3

1 + z2 +
d2z3

1 + z1 +
d3z3

1 + z2 +
d4z3

1 + . . .

, (31)
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where, for k ≥ 1,

d2k−1 =
k

2(2k− 1)
, d2k =

k
2(2k + 1)

.

The branched continued fraction in (31) converges and represents a single-valued
branch of the function, (

1 +
z3

(1 + z1)(1 + z2)

)
, (32)

in the domain

Hr∗ =

{
z ∈ C3 : | arg(zk + 1− r∗)| < π, k = 1, 2,

∣∣∣∣arg
(

z3 +
r∗

2

)∣∣∣∣ < π

}
, 0 < r∗ < 1.

The numerical illustration of triple power series

ln
(

1 +
z3

(1 + z1)(1 + z2)

)
= z3 FK(a1, 1, 1, b2; a1, b2, 2;−z1,−z2,−z3)

= z3 − z1z3 − z2z3 − z2
3 + . . . , (33)

and the branched continued fraction (31) is given in Table 1.

Table 1. Relative error of 5th partial sum and 5th approximant for (32).

z (32) (33) (31)

(0.1, 0.1,−0.4) −0.40134 2.96× 10−1 1.00× 10−1

(0.4, 0.4,−0.4) −0.22826 4.92× 10−1 4.00× 10−1

(0.5, 0.5, 0.5) 0.20067 8.22× 10−1 5.00× 10−1

(0.9, 0.9, 0.9) 0.22259 2.22× 101 9.00× 10−1

(0.1, 0.1, 10) 2.22619 9.10× 103 1.89× 10−1

(−0.01,−0.01, 10) 2.41619 7.54× 103 9.03× 10−2

(0.1, 0.1, 50) 3.74531 1.66× 107 9.32× 10−1

(−0.9,−0.9, 9) 6.80351 3.32× 102 7.14× 10−1

Calculations were performed using Wolfram Mathematica software 13.1.0.0 for Linux.

5. Conclusions

In this paper, we constructed two formal branched continued fraction expansions for
Lauricella–Saran hypergeometric function ratios defined by (7) and (8). Our method is
based on the classical method of constructing a Gaussian continued fraction [34], which can
be applied to other Lauricella–Saran functions. To prove the convergence of expansions to
ratios, we used the PC method, which is described in Section 2.1. These branched continued
fractions are fascinating in their forms and have good approximate properties (in particular,
compared with triple power series under certain conditions, they have wider convergence
domains and are endowed with the property of numerical stability). They can bring new
insights into the study of the hypergeometric functions of several variables. Their potential
wide domain convergence and estimates of the rate of convergence are an interesting
direction worth exploring in the future. Along this path, ideas implemented in [35–39] can
be used.
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