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Abstract: Accurate estimation of the unknown probability density functions of critical variables,
such as wind speed—which plays a pivotal role in harnessing clean energy—is essential for various
scientific and practical applications. This research conducts a comprehensive comparative analysis of
seven distinct bandwidth calculation techniques across various normal distributions, using simulation
as the evaluation method in the context of Kernel Density Estimation (KDE). This analysis includes
the calculation of the optimal bandwidth and assessment of the performance of these methods with
respect to Mean Squared Error (MSE), bias, and the optimal bandwidth value. The findings reveal
that among the various bandwidth methods evaluated, the Bandwidth bandwidth-based Cross-
Validation (BCV), especially for small sample sizes, consistently provides the closest result to the
optimal bandwidth across most of the applied normal distributions. These results provide valuable
insights into the selection of optimal bandwidths for accurate and reliable density estimation in the
context of normal distributions. Another key aspect of this work is the extension of these methods to
wind speed data in a specific region. Monthly wind speed kernel density estimates obtained using all
seven bandwidth selection techniques show that Smoothed Cross-Validation (SCV) is suited for this
type of real-world data.

Keywords: bandwidth selection methods; kernel density estimation; normal mixture distribution;
wind speed; wind speed density

MSC: 62G07

1. Introduction

Driven by technological advancements and environmental repercussions from fossil
fuel consumption, wind energy has become an increasingly popular source of renewable
energy, especially since the latter half of the 20th century. This evolution has led to an
intensification of research on wind speed, which is a source of energy production [1–3].
With wind speed playing a pivotal role in energy production, accurately estimating its
Probability Density Function (PDF) has become imperative. While the Weibull distribution
was historically the method of choice for this purpose, “kernel density” estimators have
recently emerged as a preferred alternative due to their minimal assumptions [4,5].

The Probability Density Function (PDF), which allows for the description of all the
properties of the variable, forms the basis of statistical analysis. Knowing the probability
density function of a random variable allows one to obtain the location (µ) and scale
parameter

(
σ2) of that random variable and to answer all probability questions about

that random variable. For this reason, PDFs of variables are needed in many analyses.
Parametric and non-parametric methods are used in probability density estimations. While
parametric methods predicate on the assumption that a designated PDF is the definitive
one, non-parametric methods offer a refined estimation, enabling the random variable to
represent itself more authentically [6,7].
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The performance of kernel density estimators, however, is highly dependent on the
choice of “bandwidth”. For example, when small bandwidths are selected, the tails of
the scatter will have unrealistic roughness, while when large bandwidths are selected,
the tails of the scatter will be excessively flattened, thus losing important features of the
scatter. Although it is not possible to determine a single best selection method in bandwidth
selection, the population structure in which the data to be estimated for density is observed
has great importance [8].

Numerous researchers such as [6,9–12] have delved into bandwidth selection methods
in kernel density estimation. To provide a comprehensive overview, this discussion also
encompasses recent publications on the topic. Cao et al. [13] reviewed bandwidth selection
in density estimation, noting the limitations of Least Squares Cross-validation (LSCV).
They advocate for Direct Plug-In (DPI) and smoothed bootstrap-based methods as superior
alternatives for KDE applications on real data. The authors of [14,15] emphasized the
significance of exploratory data analysis and graphical representation in kernel density
estimates. Their main challenge is selecting the appropriate bandwidth for accurate density
depiction in KDE. Simulations revealed that the Sheather-Jones plug-in is optimal, especially
for sample sizes between 250 and 2000. For smaller datasets, Silverman’s Rule of Thumb
(SRT) is advised [14]. A more in-depth analysis by the same authors showed a similar
preference for the Sheather-Jones plug-in but with a tilt towards BCV or SRT for smaller
samples [15]. Practitioners applying KDE to their datasets can significantly benefit from
these insights. Another recent study spotlighted the effectiveness of adaptive kernel density
estimators with long-tail or multi-mode densities. The generalized LSCV has shown
superiority over traditional methods in simulations [16]. For optimal results in real-world
applications, an adaptive approach with this form of cross-validation is recommended.
Various bandwidth comparisons by authors [13–16] involved metrics like Mean Error
Squared (MSE), Integrated Mean Squared Error (MISE), and bias.

In the referenced study [17], the authors explored the influence of bandwidth selection
on equated scores in kernel equating. They highlighted the importance of bandwidth
choice, as it delineates kernel equating from conventional equating methods. The research
scrutinized four established bandwidth methods: penalty, double smoothing, likelihood
cross-validation, and SRT. These methods, traditionally compared only to the penalty
method, were assessed alongside two other techniques from density estimation literature:
leave-one-out cross-validation and penalized leave-one-out cross-validation. Through
simulation studies on varying test length, test-taker numbers, and score distributions, and
an empirical evaluation using college admissions data, the authors aimed to discern the
most effective bandwidth selection approach for kernel equating.

According to [18], various bandwidth selection methods were evaluated, and it was
found that the BCV method demonstrated consistent precision for specific normal mixture
densities. Recent research emphasized novel methods for selecting optimal bandwidths in
KDE without relying on a normal (Gaussian) distribution. New bandwidth rules based on
other distributions such as Logistic, Laplace, Student’s t, and Asymmetric Laplace have
been proposed. Additionally, a pseudo-rule-of-thumb bandwidth derived from data skew-
ness and kurtosis characteristics offers a straightforward implementation approach [19].

As the emphasis on harnessing wind energy intensifies, there has been a surge in
studies aiming for more precise predictions of wind speed distribution in recent years.

Wind speeds on both a monthly and yearly basis are statistically represented using
the Weibull distribution. The assessment of the model’s accuracy is conducted through the
evaluation of the root mean square error [20]. A mixture kernel density model for wind
speed distribution estimation is being proposed by [21]. Another study presents a KDE
method, which is a nonparametric way to estimate the PDF of wind speed [22]. Monthly
wind speed data from three specific weather stations were analyzed by Citakoğlu and
Aydemir [23] using the Gray estimation method, covering the period from 2000 to 2017.
Four bandwidth selectors, namely Normal Scale (NS, DPI, BCV, and LSCV, are employed
in wind speed modeling for the KDE model, and they showed that KDE performs better
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than parametric methods [24]. The authors of [25] introduced a framework for short-
term wind speed probability density forecasting, utilizing Quantile Regression (QR) and
KDE. The authors of [26] presented and analyzed a flexible distribution referred to as
the Alpha logarithmic transformed Log-normal for wind speed data. They conducted an
analysis of real data using this newly proposed distribution. Additionally, they introduced
a new model known as the Normal-Weibull-Weibull model, which is identifiable, and
its cumulative distribution function is expressed as a composition of two foundational
functions. In another research study [27], an enhanced KDE method, termed ensemble
unbiased cross-validation-based KDE, was introduced to address the instability concerns
inherent to traditional unbiased cross-validation. Through the utilization of multiple data-
block unbiased cross-validations instead of a singular approach, a more stable bandwidth
estimation was achieved. Experiments on ten probability distributions validated its superior
stability and performance, which was further evidenced in an application using the United
Kingdom climate data for kernel regression.

Daily wind speed data at two different heights (10 m and 50 m) in four regions of
Iraq (Al-Rutba, Sinjar, Al-Qa’im, and Al-Bayji) have been analyzed using the Weibull
distribution function [28]. One of the recent studies, conducted by [29], has explored
the intricacies of wind speed distribution in various regions, emphasizing the temporal
variability of these distributions. Their findings reveal the significance of kernel function
shape and peak value in the accuracy of KDE. Specifically, their introduction of new kernel
functions and a unique point-to-point comparison method showcase the evolving methods
and techniques in this domain.

The authors [30] presented a novel kernel density estimator model employing an
unbiased cross-validation method for bandwidth selection was introduced. This model
was designed to estimate the probability densities of both wind speed and solar irradi-
ance. Its performance was compared against traditional parametric models and another
nonparametric KDE approach using several assessment metrics: the coefficient of deter-
mination, mean absolute error, root mean squared error, and the Kolmogorov–Smirnov
test. Significant improvements in accuracy and fit were demonstrated by the proposed
model when benchmarked against popular parametric distributions for wind speed and
solar irradiance.

In a study of wind energy in northern China’s desert steppe terrains (2018–2020),
the Weibull wind speed distribution proved most fitting. Key parameters in the Weibull
model, including the scale factor (c) and shape factor (k), varied with height, while surface
roughness (z0) fluctuated between 0.12 m to 0.15 m across different periods. These dynamic
changes are vital for accurate wind energy estimates in such terrains [31].

In [32], the authors proposed an alternative distribution, referred to as the Normal-
Weibull-Weibull model, which exhibits identifiability and offers a decent fit to the wind
speed data. This model’s cumulative distribution function can be expressed as a composi-
tion of two foundational functions.

The core objective of this study is to compare the performance of several commonly
used bandwidth selection methods that impact kernel density estimation across various
normal mixture distributions and to extend these bandwidth selection methods to wind
speed, which is real-world data:

• Through simulation study comparisons of seven bandwidth selectors, including NS,
SRT, DPI, Solve-The-Equation rules (STE), least LSCV, BCV, and SCV are examined.
The results show that, among the different bandwidth techniques assessed, the BCV
method—particularly for smaller sample sizes—consistently aligns closest with the
optimal bandwidth for a majority of the tested normal distributions.

• Wind speed data from Balıkesir, Kepsut region for the year 2022 were employed,
with monthly kernel density estimations being conducted using the seven bandwidth
selection methods. It was found that the SCV method is convenient for estimating
bandwidth for kernel density estimation in most cases with these real-world data.
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Collectively, the contribution of the study lies in its multifaceted approach, blending
detailed data analysis with theoretical rigor, providing both a unique application to wind
speed data and a broader understanding of bandwidth selection methodologies in the
context of kernel density estimation. While many comparisons of bandwidth selection
methods have been undertaken, these methods have been specifically applied to wind
speed data from the Balıkesir, Kepsut region for the year 2022 in this study. A bridge
between general kernel density estimation techniques and their application to wind speed
data, vital for renewable energy research, has been established. A detailed temporal view
of wind speed variations has been provided through a focus on monthly kernel density
estimations, offering unique insights not found in broader time-scale analyses. Even though
bandwidth selection methods have been compared before, the use of simulation studies
that consider different parameter choices and sample sizes ranging from small to large
adds another layer of validation, ensuring that findings are not only theoretically robust
but also practically applicable. A comprehensive perspective on bandwidth selection,
encompassing a wide range of past research, has been offered. As such, this study can
be recognized as a consolidated source of information on the topic, serving those seeking
an integrated understanding. It has been observed that the SCV method is particularly
suitable for estimating bandwidth in the specific dataset used. This nuanced insight may
not have been revealed in other contexts or datasets.

The rest of the article has been prepared as follows: the second section elaborates on
kernel density estimation and evaluation criteria, the third details the bandwidth methods,
the fourth presents a simulation study supported by R (version 4.2.2) for bandwidth
performance comparisons, the fifth applies the bandwidths to a real dataset, the sixth
provides results, and the seventh section draws conclusions of the findings.

2. Kernel Density Estimation

x1, x2, . . . , xn are independent and identically distributed samples from an unknown
density f . The goal is to estimate the shape of this unknown function f the kernel density.
Kernel density estimator of the unknown PDF is as follows:

∼
f n,h(x) =

1
n·h∑n

i=1K
(

x−Xi
h

)
=

1
n·h∑n

i=1K(t) =
1
n∑n

i=1Kh(x−Xi). (1)

where h is a smoothing parameter called the bandwidth with positive value (h > 0) and K(t)
is a kernel function that satisfies

∫ +∞
−∞ K(t)dt = 1,

∫
tK(t)dt = 0,

∫
u2K(u)du = µ2(K) > 0.

K(t) is generally non-negative, unimodal, and symmetrical about zero. This ensures that
∼
f n,h(x) is a PDF [33]. The kernel estimates obviously depend on the bandwidth h, which
controls the degree of smoothing applied to the data.

MSE is a common criterion used to measure the accuracy or goodness of fit of a
statistical estimation or prediction, including KDE. In the context of KDE, MSE is used to
evaluate how well the estimated PDF matches the true underlying distribution. The MSE
of KDE can be written as follows:

MSE
(∼

f n,h(x)
)
= Var

(∼
f n,h(x)

)
+

(
E
(∼

f n,h(x)
)
− f (x)

)2
. (2)

Here, the expected value of the smoothed density function estimator (
∼
f n,h(x)) and

bias are as follows:

E(
∼
f n,h(x)) = f (x) +

1
2

h2 f ′′ (x)
∫

z2K(z)dz + o
(

h2
)

(3)

E(
∼
f n,h(x))− f (x) =

1
2

h2µ2(K) f ′′ (x) + o
(

h2
)

, (4)
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where µ2(K) =
∫

z2K(z)dz and the expression for the variance of
∼
f n,h(x) is:

Var
(∼

f n,h(x)
)
= (nh)−1

∫
K(z)2 f (x− hz)dz− n−1

(
E
(∼

f n,h(x)
))2

, (5)

= (nh)−1
∫

K(z)2( f (x) + o(1))dz− n−1( f (x) + o(1))2, (6)

= (nh)−1
∫

K(z)2dz f (x) + o
(
(nh)−1

)
(7)

For any integrable square function g, it is R(g) =
∫

g(x)2. This allows the variance to
be written as:

Var
(∼

f n,h(x)
)
= (nh)−1h2R(K) f (x) + o

(
(nh)−1

)
. (8)

where R(K) =
∫

K(x)2dx, µ2(K) =
∫

x2K(x)dx, R( f ′′ ) =
∫

f ′′ (x)2dx. For the standard nor-

mal kernel and univariate cases, it is R(K) = (2π1/2)
−1

, µ2(K) = 1, R( f ′′ ) = 3(8π1/2)
−1

.
Thus, MSE is expressed as follows:

MSE
(∼

f n,h(x)
)
= (nh)−1R(K) f (x) +

1
4

h4µ2(K)
2 f ′′ (x)2 + o

(
(nh)−1 + h4

)
(9)

However, MISE is preferred over MSE in KDE because it is better suited for assessing
the accuracy of PDF estimates across the entire data space. It considers the global behavior
of the estimator and incorporates the trade-off between bias and variance, making it a more
appropriate criterion for evaluating KDE performance, and it can be written as follows:

MISE
(∼

f n,h(·)
)
=
∫ +∞

−∞
E

((
(
∼
f n,h(x)− f (x)

)2
)

dx =
∫ +∞

−∞
MSE

(∼
f n,h(x)

)
dx (10)

=
∫ +∞

−∞
Var

(∼
f n,h(x)

)
d x +

∫ +∞

−∞
Bias2

(∼
f n,h(x)

)
dx (11)

MISE
(∼

f n,h(·)
)
= AMISE(

∼
f n,h(·)) + o

(
(nh)−1 + h4

)
(12)

where AMISE stands for Asymptotic MISE and AMISE are expressed as follows [33]:

AMISE
(∼

f n,h(·)
)
= (nh)−1R(K) +

1
4

h4µ2(K)
2R( f ′′ ) (13)

AMISE
(∼

f n,h(·)
)
= (nh)−1R(K) +

1
4

h4µ2(K)
2Ψ4 (14)

where Ψ4 =
∫ ∞
−∞ f (4)(x) f (x)dx or more general Ψr =

∫ +∞
−∞ f (r)(x) f (x)dx = E( f r(X)).

Hence, the optimum bandwidth value that minimizes the MISE or AMISE can be found:

hMISE ∼ hAMISE =

[
R(K)

nµ2(K)
2R( f ′′ )

]1/5

=

[
R(K)

nµ2(K)
2Ψ4

]1/5

. (15)

For the standard normal kernel and univariate cases, when R(K), µ2(K), R( f ′′ ) values
are substituted in Equation (13)

AMISE
(∼

f n,h(·)
)
=

5
4

(
µ2(K)

2R(K)4R( f ′′ )
)1/5

n−4/5 (16)

is obtained. This is the smallest possible AMISE for estimating f using the K kernel. Since
Equation (15) depends on the unknown density f (x), f (x) must be estimated first. There
are different bandwidth selection methods where f (x) is estimated in various ways.
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3. Bandwidth Selection Methods

The performance of the kernel density estimators of a PDF of a random variable largely
depends on the choice of bandwidth, also known as the smoothing parameter. In other
words, it is a value that controls the amount of bandwidth smoothing. Bandwidth can
be chosen subjectively in many cases. The subjective selection is made by comparing the
graphs of the PDFs, the estimation generated by applying different bandwidths to the
random variable. As a result of different bandwidth trials, the most appropriate bandwidth
is decided by looking at the appearance of the PDFs. However, such an approach will
not give good estimates while giving repeatable results. It is also a time-consuming and
error-prone method of trial and error. Another disadvantage is that there is often no
a priori knowledge of the data structure and no clue as to which bandwidth gives the
closest estimate of true density. The only situation in which subjective selection is useful is
when the researcher believes there is a certain construct about the position of the random
variable’s mode. Therefore, automatic selection is often required when determining the
bandwidth of kernel estimators [33].

Very large bandwidths are expected to yield extremely flattened density estimates
with little ‘randomness’. This causes the PDF to deviate from its true form and to make the
predictions biased. Small bandwidths, on the other hand, are expected to yield fluctuating
(curvy) density estimates with high randomness. In this case, the bias of the estimation
decreases, while the variance increases. These two situations prevent us from seeing the
properties of the distribution. For this reason, attention should be paid to the most accurate
selection of the bandwidth. Bandwidth selection methods fall into three classes.

The selections in the first class are based on finding the optimum bandwidth, start-
ing from a wide range and narrowing it down with a very simple and easy-to-calculate
mathematical formula. They are developed to cover a wide range of situations, but they do
not guarantee that the result is close enough to the optimum bandwidth. Such selections
provide a reasonable starting point for subjectively chosen bandwidths.

Second-class selections are selection processes that are based on a more precise mathe-
matical basis and require much more computational power to arrive at the actual function
underlying the dataset. Each of these selection types aims to make the MISE the smallest,
and they achieve this goal asymptotically. Therefore, it is said that the bandwidth selection
methods obtained by making the MISE the smallest are consistent [34]. These bandwidth
selection methods: least squares cross-validation, sometimes also called unbiased cross-
validation, are BCV and flattened cross-validation methods [33].

Third-class selections are methods based on substituting (addition) the estimates
of some unknown parameters that appear in the formulas for asymptotically optimal
bandwidth. These bandwidth selection methods are called substitution and equation
solving [8,35]. These selection methods will be briefly introduced.

3.1. Normal Scale Bandwidth Selection Method

When estimating the PDF f (x) of the data, the bandwidth that minimizes the MISE
asymptotically should be chosen. The NS bandwidth selection method is improved by
replacing the unknown PDF with a known distribution function.

Usually, the unknown f (x) is assumed to come from the normal distribution with
mean µ and variance σ2. With this assumption, the integral of the square of the second
derivative of f found in Equation (15) is as follows:∫ (

f
′′
(x)
)2

dx =
3

8
√

πσ5 ≈ 0.212σ−5 (17)

When the normal kernel function is used here, it becomes∫
K2(u)du =

1√
4π

and
∫

u2K(u)du. (18)
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Thus, the optimum bandwidth is obtained as

hopt = (4π)−1/10
(

3
8

)−1/5
π1/10σn−1/5 = 1.059σn−1/5 (19)

and this bandwidth is approximately

hopt = 1.06σn−1/5. (20)

Here, if σ̂ = s, sample standard deviation is substituted for σ, and the optimal
bandwidth is calculated as [6,33]:

hopt = 1.06σ̂n−1/5 (21)

It should be noted that the assumption that f (x) comes from a normal distribution
is contrary to the understanding of non-parametric density estimation. If it were known
that the random variable X had a normal distribution, density could have been estimated
much more easily and efficiently by simply estimating the sample mean µ and sample
variance σ2 and putting these estimates into the normal density formula. However, the
result obtained under the assumption of normality is a clear and applicable formula for
bandwidth selection. If the random variable X is normally distributed, choosing the NS
bandwidth gives the optimum bandwidth. The distribution of the random variable X is
usually unknown, and in such a case, it gives a near-optimal bandwidth if the distribution
of X is not significantly different from the normal distribution [8].

3.2. Silverman’s Rule of Thumb Bandwidth Selection Method

Equation (21) gives a near-optimal bandwidth if the distribution of X is not much
different from the normal distribution. Therefore, Equation (21) would be a practical band-
width that would yield good results for all unimodal and highly symmetrical distributions.
A robust estimator was used especially in datasets containing outlier observations. Again,
under the assumption of normal distribution, the standard deviation σ̂ is estimated from
the sample instead of σ and the sample interquartile range R, with the values of

A = min
(

σ̂,
R

1.34

)
(22)

and the optimal bandwidth [6,34],

hopt = 1.79Rn−1/5 or hopt = 0.9An−1/5 (23)

Since this method, first proposed by B.W. Silverman, is performed by replacing the un-
known function with a known distribution, it is called SRT bandwidth selection method [6].

3.3. Direct Plug in Bandwidth Selection Method

The DPI bandwidth selection method proposed by [12] has many desirable features
in terms of both theory and practice, especially in terms of fast convergence rate and
low sampling variability. DPI bandwidth selection method is also referred to as DPI.
These features make the substitution bandwidth selection method a first choice in practical
applications. This selection method is based on the AMISE criterion. Equation (24) is
based on placing an estimator in place of a single unknown Ψ4 value in the bandwidth
that minimizes the AMISE when Ψ4 is replaced by Ψ4(g4) kernel estimator in Equation (24)
obtained as follows:

ĥDPI =

[ ∫
K(u)2du

nµ2(K)
2Ψ4(g4)

]1/5

(24)
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This estimator cannot be used directly as it depends on the unknown value of g4.
The authors of [33] showed that g4 can be calculated using the AMISE optimal bandwidth
formula. gr express in the form:

gr,AMSE =

[
2K(r)(0)

−nµ2(K)Ψr+2(gr+2)

]1/(r+3)

. (25)

where AMSE stands for Asymptotic MSE.
If f is a normal density with variance σ2 then, for r, even,

Ψr =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2
. (26)

It is generally recommended that the bandwidth is selected in at least two stages. The
substitution bandwidth method, which estimates the bandwidth at all these stages, requires
very costly calculations [33].

3.4. Solve-the-Equation Rules Bandwidth Selection Method

In Equation (24), STE bandwidth selection method, which brings a different perspec-
tive to the substitution bandwidth selection method, there is an additional requirement for
the estimation of Ψ4 that the pilot bandwidth h has a function of γ, i.e.,

ĥDPI =

[ ∫
K(u)2du

nµ2(K)
2Ψ4(γ(h))

]1/5

(27)

γ(h) formula is as follows [8]:

γ(h) =

[
2K(4)(0)µ2(K)Ψ̂4(g4)

−Ψ̂6(g6)R(K)

]1/7

h5/7 (28)

3.5. Least Squares Cross Validation Bandwidth Selection Method

LSCV bandwidth selection method is one of the most frequently used methods in
bandwidth selection. It is a technique based on computer-intensive computations and
has no clear formulation. An initial assessment of h value is made by drawing a rough
histogram. Accordingly, in the next algorithm operation, the value that makes the MISE

function the smallest is selected under the h values in a range. Since
∼
f n,h,−i(x) excludes

an Xi value when estimating density, it is often referred to as the “one observation out”
density estimator. The reason why it is called cross-validation is that it makes inferences
about the other part by using one part of the sample. The starting point of this method is
Integrated Squared Error (ISE), which is an alternative distance measure between f (x) and
∼
f n,h(x) defined in Equation (29) [10]:

ISE
(∼

f n,h(x)
)

=
∫ (∼

f n,h(x)− f(x)
)2

dx,

=
∫ ∼

f n,h(x)
2
dx− 2

∫
f(x)

∼
f n,h(x)dx +

∫
f(x)2dx.

(29)

The goal is to choose a value of h that will make the ISE as small as possible. However,
it does not depend on Equation (29) h. Therefore, the expected value of the ISE is taken,

MISE
(∼

f n,h(x)
)
= E

(∫ ∼
f n,h(x)

2
dx
)
− 2
(

E
(∫ ∼

f n,h(x)f(x)dx
))

+
∫

f(x)2dx (30)
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and in this equation, the term
∫

f (x)2dx does not depend on h and does not affect the
choice of h and optimality. Therefore, it can be neglected and

MISE
∼
f n,h(x)−

∫
f(x)2dx = E

∫ ∼
f n,h(x)

2
dx− 2

(
E
(∫ ∼

f n,h(x)f(x)dx
))

(31)

obtained.
The right-hand side of Equation (31) cannot be known since it depends on f (x).

However, it can be shown to be an unbiased LSCV estimator for this:

LSCV =
1
n∑n

i=1

∫ ∼
f n,h,−i(x)(x)

2dx− 2n−1∑n
i=1

∼
f n,h,−i(x)(xi). (32)

Here,
∼
f n,h,−i(x) = (n− 1)−1∑n

j 6=i Kh(x−Xj). (33)

The h value that minimizes the LSCV value is chosen as the bandwidth. The authors
of [33,36] proved that the LSCV bandwidth selector is easier to calculate in Equation (34):

LSCV =
∫ ∼

f n,h(x)dx− 2n−1∑n
i=1

∼
f n,h,−i(xi). (34)

Although the LSCV method is frequently used, the large sample variability is a
disadvantage. For this reason, due to high variability, the LSCV method, which results in
incomplete smoothing in the density estimation, performs poorly at almost all estimated
densities compared to other bandwidth selectors [7,10,37].

3.6. Bias Cross Validation Bandwidth Selection Method

To improve the sample variability of the LSCV bandwidth selection method, the
authors of [11] proposed the BCV bandwidth selection method. The difference between
this method and LSCV is that it is based on AMISE given in Equations (12) and (13) instead
of ISE.

In the BCV bandwidth selection method, the unknown R( f ′′ ) is replaced by an estima-

tor R(
∼
f
′′
). This produces a biased estimate [11]:

BCV = (nh)−1R(K) +
1
4

h4µ2(K)
2R(
∼
f
′′
). (35)

It reduces the amount of sample variability that causes many of the problems men-
tioned in BCV, LSCV, and other bandwidths. Also, its asymptotic variance is considerably
lower than that of LSCV. However, this decrease in variance causes an increase in bias [34].
Simulation studies conducted by authors [13,37,38] demonstrated that the performance of
BCV is superior to that of LSCV.

3.7. Smoothed Cross Validation Bandwidth Selection Method

The SCV bandwidth selection method is similar to substitution bandwidth selection
in that the MISE uses a kernel estimator with g pilot bandwidth to estimate the Integrated
Squared Bias (ISB) component. Therefore, the methods have similar theoretical properties.
The difference is that SCV is based on the integral of the square of the bias rather than
the asymptotic approach. Therefore, it has the feature of being less dependent on the
asymptotic approximation. The SCV objective function is obtained by replacing f (x) with
a pilot estimator:

∼
f n,g(x) =

1
n∑n

i=1 Lg(x−Xi). (36)
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Here, Lg(x)’s are kernel functions obtained with g’s of different bandwidths. Also,
SCV containing the asymptotic integrated variance (nh)−1R(K) is estimated with

SCV(h) =
1

nh
R(K) + ISB(h) (37)

with ISB is estimated:

ISB(h) = n−2∑n
i=1 ∑n

j=1

(
Kh ∗

∼
f n,g(x)−

(∼
f n,g(x)

))2
dx (38)

hSCV is the largest minimum of SCV(h) [33].

4. Simulation Study

In this study, eight different normal and normal mixture distributions are considered
(Table 1 and Figure S1). These densities are standard normal (Gaussian), skewed unimodal,
kurtotic unimodal, outlier, bimodal, separated bimodal, skewed bimodal, and trimodal
distribution.

Table 1. Mixture of normal densities parameter [39].

Model No. Densities w1N
(
µ1σ2

1
)
+· · ·+wkN

(
µkσ2

k
)

1 Standard Normal (Gaussian) N (0, 1)
2 Skewed Unimodal 1

5 N(0, 1) + 1
5 N
(

1
2 , ( 2

3 )
2
)
+ 3

5 N
(

13
12 , ( 5

9 )
2
)

3 Kurtotic Unimodal 2
3 N(0, 1) + 1

3 N
(

0, ( 1
10 )

2)
4 Outlier 1

10 N(0, 1) + 9
10 N

(
0, ( 1

10 )
2)

5 Bimodal 1
2 N
(
−1, ( 2

3 )
2
)
+ 1

2 N
(

1, ( 2
3 )

2
)

6 Separated Bimodal 1
2 N
(
− 3

2 , ( 1
2 )

2)
+ 1

2 N
(

3
2 , ( 1

2 )
2)

7 Skewed Bimodal 3
4 N(0, 1) + 1

4 N
(

3
2 , ( 1

3 )
2)

8 Trimodal 9
20 N

(
− 6

5 , ( 3
5 )

2
)
+ 9

20 N
(

6
5 , ( 3

5 )
2
)
+ 1

10 N
(

0, ( 1
4 )

2)

The simulation study has been performed with 1000 repetitions for 7 different band-
width methods (NS, SRT, DPI, STE, LSCV, BCV, and SCV) and 8 different normal distribu-
tions given in Table 1 for different sample sizes (5, 10, 25, 50, 100, and 200). The average
bandwidth, Standard Deviation (SD), MSE, bias and Relative Efficiency (RE) (h/hMISE)
values have been calculated with 1000 replication. At the same time, for each distribution
and each sample, bandwidth value has also been calculated using MISE, which is known as
the most common optimal criterion for bandwidth selection, and seven bandwidth values
have been compared with it. The bandwidth value obtained by the bandwidth selection
method, which has been determined as the best method according to MSE and Bias values
among the seven bandwidth methods, is also the closest to the bandwidth value obtained
with MISE. Based on the simulation results, selected bandwidth methods are presented
in Table 2 with respect to the smallest MSE, bias, and bandwidth selection methods. All
results of the simulation study are given in the appendix Tables S1–S8.

As can be seen from Table 2 and supplementary files Tables S1–S8, BCV is the most
popular bandwidth selection method. LSCV, STE, and SCV follow BCV. Random data with
1000 replicates were generated with the “rnorm.mixt” function in the “ks” package, which
is included in the R package program (version 4.2.2) and used in kernel smoothing for the
data [40].

According to the simulation results, boxplots of the bandwidths obtained with
1000 repetitions for each distribution and each sample size are shown in Figures 1–8.

Now seven bandwidth methods will be compared through boxplot and optimal
bandwidth value:
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• In Model 1, all estimated bandwidths for small sample size remained below the optimal
bandwidth. It is seen that as the sample size increases, the value obtained by the BCV
method approaches the optimal bandwidth. In contrast, the bandwidth estimated by
the SRT method remains below the optimal bandwidth for each simulated sample size.
It may cause under smoothing problems if used in KDE (Figure 1).

• In Model 2, for small sample sizes (n = 5, 10), BCV and SCV occur close to the optimal
bandwidth; as the sample size increases, the SCV method is observed to be the closest
to the optimal bandwidth (Figure 2).

• In Model 3, for a small sample size, the bandwidths estimated by NS, SRT, DPI, STE,
and LSCV methods give results close to the optimal bandwidth; as the sample size
increases, the bandwidth value estimated by LSCV becomes the closest estimate to the
optimal bandwidth (Figure 3).

• In Model 4, for small sample size, the bandwidth estimates estimated by BCV, LSCV,
and SCV methods give results close to the optimal bandwidth; as the sample size in-
creases, the bandwidth value estimated by LSCV overlaps with the optimal bandwidth
value (Figure 4).

• In Model 5, for a small sample size, the bandwidth estimated by the BCV method
captures the closest value to the optimal bandwidth; as the sample size increases,
the bandwidth values estimated by SRT, DPI, STE, LSCV, and SCV overlap with the
optimal bandwidth value (Figure 5).

• In Model 6, in all cases, the bandwidth estimate by the LSCV method captures the
optimal bandwidth value, with the STE bandwidth method following the LSCV
bandwidth method (Figure 6).

• In Model 7, for a small sample size, although the bandwidth estimate closest to the
optimal bandwidth is BCV, as the sample size increases, the bandwidth value estimated
by LSCV approaches the optimal bandwidth value (Figure 7).

• In Model 8, for a small sample size, although BCV is the bandwidth estimate closest
to the optimal bandwidth, as the sample size increases, the bandwidths estimated by
SCV get closer to the optimal bandwidth value (Figure 8).

Mathematics 2023, 11, 4478 12 of 22 
 

 

 
Figure 1. Box plots display the distribution of 1000 bandwidth estimates obtained from the simula-
tion study for the Gaussian distribution. The horizontal line represents the optimal bandwidth 
value. 

 
Figure 2. Box plots display the distribution of 1000 bandwidth estimates obtained from the simula-
tion study for the skewed unimodal distribution. The horizontal line represents the optimal band-
width value. 
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Figure 5. Box plots display the distribution of 1000 bandwidth estimates obtained from the simulation
study for the bimodal normal mixture distribution. The horizontal line represents the optimal
bandwidth value.
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Figure 7. Box plots display the distribution of 1000 bandwidth estimates obtained from the simula-
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Figure 7. Box plots display the distribution of 1000 bandwidth estimates obtained from the simulation
study for the skewed bimodal normal mixture distribution. The horizontal line represents the optimal
bandwidth value.
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Table 2. Selected bandwidth methods after the simulation results.

Model: N(0,1) Model: 1
5 N(0,1)+ 1

5 N
(

1
2 ,( 2

3 )
2
)

+ 3
5 N
(

13
12 ,( 5

9 )
2
)

n hMISE B.M. * h ** SD *** Bias MSE RE hMISE B.M. * h ** SD *** Bias MSE RE

5 0.903 BCV 0.768 0.288 −0.135 0.101 0.850 0.898 BCV 0.793 0.313 −0.105 0.109 0.883
10 0.758 BCV 0.696 0.166 −0.062 0.031 0.918 0.743 BCV 0.733 0.185 −0.009 0.034 0.987
25 0.609 BCV 0.596 0.085 −0.014 0.007 0.979 0.584 SCV 0.550 0.117 −0.035 0.015 0.942
50 0.520 BCV 0.517 0.052 −0.003 0.003 0.994 0.492 SCV 0.476 0.080 −0.016 0.007 0.967

100 0.445 BCV 0.449 0.034 0.003 0.001 1.009 0.417 SCV 0.410 0.054 −0.006 0.003 0.983
200 0.383 BCV 0.391 0.022 0.008 0.001 1.021 0.355 SCV 0.367 0.037 0.002 0.001 1.034

Model: 2
3 N(0,1)+ 1

3 N
(

0,( 1
10 )

2
)

Model: 1
10 N(0,1)+ 9

10 N
(

0,( 1
10 )

2
)

n hMISE B.M. * h ** SD *** Bias MSE RE hMISE B.M. * h ** SD *** Bias MSE RE

5 0.374 NS 0.335 0.248 −0.038 0.063 0.896 0.804 BCV 0.718 0.292 −0.086 0.093 0.893
10 0.198 STE 0.249 0.173 0.051 0.033 1.258 0.654 BCV 0.655 0.167 0.001 0.028 1.002
25 0.124 STE 0.186 0.105 0.062 0.015 1.500 0.483 SCV 0.491 0.114 0.008 0.013 1.017
50 0.097 LSCV 0.116 0.059 0.020 0.004 1.196 0.351 STE 0.350 0.108 −0.001 0.012 0.997

100 0.079 LSCV 0.081 0.026 0.003 0.001 1.025 0.218 LSCV 0.259 0.123 0.041 0.017 1.188
200 0.065 LSCV 0.065 0.015 0.000 0.000 1.000 0.146 LSCV 0.182 0.092 0.036 0.010 1.247

Model: 1
2 N
(
−1,( 2

3 )
2
)

+ 1
2 N
(

1,( 2
3 )

2
)

Model: 1
2 N
(
− 3

2 ,( 1
2 )

2
)

+ 1
2 N
(

3
2 ,( 1

2 )
2
)

n hMISE B.M. * h ** SD *** Bias MSE RE hMISE B.M. * h ** SD *** Bias MSE RE

5 1.149 BCV 0.945 0.279 −0.204 0.120 0.822 0.586 STE 0.465 0.255 −0.120 0.080 0.794
10 0.899 BCV 0.858 0.153 −0.041 0.025 0.954 0.469 STE 0.477 0.128 0.008 0.016 1.017
25 0.603 SCV 0.606 0.125 0.003 0.016 1.005 0.366 LSCV 0.384 0.113 0.018 0.013 1.049
50 0.472 LSCV 0.474 0.153 0.002 0.023 1.004 0.308 LSCV 0.312 0.082 0.004 0.007 1.013

100 0.385 STE 0.388 0.073 0.002 0.005 1.008 0.262 LSCV 0.261 0.060 −0.001 0.004 0.996
200 0.322 STE 0.328 0.047 0.007 0.002 1.019 0.224 LSCV 0.223 0.046 −0.001 0.002 0.996

Model: 3
4 N(0,1)+ 1

4 N
(

3
2 ,( 1

3 )
2
)

Model: 9
20 N

(
− 6

5 ,( 3
5 )

2
)

+ 9
20 N

(
6
5 ,( 3

5 )
2
)

+ 1
10 N

(
0,( 1

4 )
2
)

n hMISE B.M. * h ** SD *** Bias MSE RE hMISE B.M. * h ** SD *** Bias MSE RE

5 1.017 BCV 0.850 0.284 −0.167 0.108 0.836 0.926 BCV 0.766 0.251 −0.161 0.089 0.827
10 0.817 BCV 0.771 0.164 −0.046 0.029 0.944 0.778 BCV 0.694 0.146 −0.084 0.028 0.892
25 0.555 SCV 0.565 0.116 0.011 0.014 1.018 0.617 BCV 0.580 0.071 −0.036 0.006 0.940
50 0.408 STE 0.415 0.099 0.007 0.010 1.017 0.512 BCV 0.505 0.043 −0.007 0.002 0.986

100 0.318 LSCV 0.333 0.109 0.015 0.012 1.047 0.415 NS 0.406 0.028 −0.009 0.001 0.978
200 0.258 LSCV 0.266 0.081 0.009 0.007 1.031 0.328 STE 0.328 0.046 −0.000 0.002 1.000

* Bandwidth selection methods, ** Average bandwidth values, *** Standard Deviation.
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Furthermore, density plots of the kernel density estimates, based on the simulation
results for each distribution, sample size, and bandwidth method, are provided in the
supplementary files as Figures S2–S9. We can summarize the results from these figures
as follows:

• In Figure S2, for small sample sizes, NS, SRT, DPI, and STE exhibit under smoothing;
while as the sample size increases, all bandwidths tend to over smooth.

• In Figure S3, for small sample sizes, SRT, DPI, and STE exhibit under smoothing; while
as the sample size increases, all bandwidths tend to over smooth.

• In Figure S4, for small sample sizes, SRT and STE exhibit under smoothing. As the
sample size increases, DPI and LCSV also tend to under smooth.

• In Figure S5, for small sample sizes, NS, SRT, DPI, and STE exhibit under smoothing.
• In Figure S6, for small sample sizes, SRT, DPI, and STE exhibit under smoothing; while

as the sample size increases, all bandwidths tend to over smooth.
• In Figure S7, for small sample sizes, SRT and DPI exhibit under smoothing; while as

the sample size increases, all bandwidths tend to over smooth.
• In Figure S8, as the sample size increases, all bandwidths tend to over smooth.
• In Figure S9, for small sample sizes, NS, SRT, DPI, and STE exhibit under smoothing;

while as the sample size increases, all bandwidths tend to over smooth.

5. Application of Real Data

In this section, the considered bandwidth selectors in the previous section are applied
to a real dataset. Using the daily average values of the 2022 wind speed (meter/s) in the
Kepsut district of the Balıkesir province, it is intended to estimate the monthly wind speed
distribution with the KDE method. During this analysis, wind speed data consisting of the
2022 daily average wind speed records in Balıkesir-Kestup, measured and recorded by the
Turkish State Meteorological Service, have been used [41].

Firstly, in order to visualize the data structure, boxplots were created for each of the
12 months (Figure 9). The bandwidths that can be used for KDE of monthly wind speed
distributions based on the simulation results can now be interpreted: January, February,
May, and December look to have skewed distribution. In this case, the SCV method is
preferred for estimating bandwidth for these months. On the other hand, April, September,
and October are close to normal distribution, so the BCV method is preferred for estimating
bandwidth for these months. June and July’s distribution looks to have a skewed bimodal
normal mixture. In that case again, the SCV may be a better solution to estimate the
bandwidth. If the March and August distribution is accepted as bimodal, again, the most
suitable bandwidth selection method will be the SCV.
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The wind speed dataset for the Kepsut Balıkesir region in 2022 was divided into
monthly segments. For each month, seven distinct Kernel Density Estimates (KDEs) were
computed using seven distinct bandwidth calculation methods. The resulting bandwidth
estimates and KDE plots are presented in Figure 9 and Table 3 respectively.

Table 3. Estimates of bandwidths by various methods for monthly wind speed data.

Months NS SRT DPI STE LCSV BCV SCV

January 0.591 0.697 0.457 0.297 0.110 1.049 0.614
February 0.830 0.978 0.682 0.598 0.679 1.050 0.687

March 0.723 0.851 0.692 0.625 0.806 0.914 0.707
April 0.710 0.836 0.691 0.615 0.701 0.911 0.717
May 0.591 0.697 0.487 0.398 0.438 0.752 0.491
June 0.642 0.756 0.527 0.409 0.433 0.813 0.524
July 0.361 0.425 0.411 0.388 0.457 0.457 0.428

August 0.685 0.806 0.633 0.554 0.685 0.866 0.642
September 0.642 0.756 0.512 0.457 0.538 0.876 0.532

October 0.541 0.637 0.687 0.698 0.802 0.803 0.791
November 0.518 0.610 0.587 0.560 0.656 0.655 0.613
December 0.507 0.597 0.369 0.221 0.184 0.862 0.453

Another striking point is that while some bandwidths (mostly BCV) shown in pink in
Table 3 cause over smoothing compared to the others; some of the bandwidths shown in
blue (most STE) may cause under smoothing. Clearly, one can see that when h is too small
(the magenta curve) in January and December (Table 3; Figure 10), there are many wiggly
structures on the density curve. This is a signature of under smoothing. On the other hand,
according to the results obtained in the application, the BCV bandwidth selection method
generally caused over smoothing in the month variables, giving higher bandwidth results
compared to the other six methods. The STE bandwidth selection method created under
smoothing in the month variables, giving generally smaller bandwidth results compared to
the other six methods (Table 3; Figure 10).
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6. Results

In this study, optimum bandwidths used in the KDEs obtained for different sam-
ple sizes taken from normal mixing densities with simulation application, and seven
bandwidth selection methods were compared using MSE and Bias of these bandwidth
selection methods.

According to the simulation results:

• Bandwidths obtained by the NS selection method give the closest results to the optimal
bandwidth at low sample size at kurtotic unimodal density and at high sample size at
trimodal density.

• The SRT bandwidth selection method does not approach optimal bandwidth at any of
the normal mixing densities.

• The DPI bandwidth selection method does not approach optimal bandwidth at any of
the normal mixing densities.

• The STE bandwidth selection method gives the closest result to the optimum bandwidth
for kurtotic unimodal and separated bimodal density functions at a low sample size.

• The LSCV bandwidth selection method gives the closest result to the optimum band-
width for large sample sizes in kurtotic unimodal, outlier, separated bimodal and
skewed bimodal density functions.

• The BCV bandwidth selection method at all sample sizes at standard normal density;
outlier, skewed bimodal, and trimodal density gives the closest result to optimal
bandwidth at a small sample size.

• The SCV bandwidth selection method gives the closest result to the optimal bandwidth
for all other sample sizes except for a small sample size at skewed unimodal density.

With real data application, seven bandwidth selection methods were compared by
obtaining the kernel density estimates of the Kepsut, Balıkesir region variables.

According to the actual data application results:

• The BCV bandwidth selection methods have oversmoothed, resulting in high band-
width in most of the months.

• STE and some of the LSCV bandwidth selection methods have incomplete smoothing,
resulting in small bandwidth in some variables.

Although significant improvements have been made recently in bandwidth selectors
in many simulation studies examined, these selectors do not perform satisfactorily in all
cases. That is, although it is not possible to determine a single best bandwidth selector for
all PDFs, the shape and structure of the density to be estimated also have a great influence
on the bandwidth selection methods. Therefore, estimates for various bandwidths must
be obtained.

7. Conclusions

Throughout this paper, we have presented a detailed study that makes a substantial
contribution to the field by offering a comprehensive analysis of bandwidth selection
methodologies in the ubiquitous context of kernel density estimation. We have applied
a multifaceted approach that combines rigorous data analysis and theoretical principles.
While prior research has compared bandwidth selection methods, our study not only
specifically provides clear guidelines for practitioners but also crucially applies these
methods to wind speed data from the Balıkesir, Kepsut region for the year 2022.

Our work bridges the gap between general kernel density estimation techniques and
their practical application to wind speed data, which is essential for renewable energy
research. By focusing on monthly kernel density estimations, we provide a detailed
temporal view of wind speed variations that offers unique insights compared to broader
time-scale analyses. Additionally, our use of simulation studies with various parameter
choices and sample sizes ranging from small to large ensures the theoretical robustness and
practical applicability of our findings.
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In particular, our research reveals the suitability of the SCV method for estimating
bandwidth in our specific dataset. This nuanced insight may not have been apparent
in other contexts or with different datasets, underscoring the relevance and timeliness
of our work. In conclusion, our study serves as a consolidated source of information
on bandwidth selection, offering an integrated understanding for those in the field of
renewable energy research.

Future work:

• Geographical viability and terrain analysis: To validate the robustness of the SCV
method, future research should extend its investigation across diverse geographi-
cal regions and terrain types, considering variations in wind speed data originat-
ing from different climatic conditions. Such an approach will help in comprehen-
sively assessing the method’s applicability and ensuring its adaptability across varied
environmental contexts.

• Adaptive algorithms and time-series analysis: Leveraging advancements in machine
learning and artificial intelligence, a promising avenue for research involves the de-
velopment of adaptive algorithms capable of dynamically selecting the most suitable
bandwidth method based on real-time wind speed data. Additionally, a more detailed
time-series analysis should be pursued to uncover diurnal, weekly, and seasonal pat-
terns in wind speed data, further evaluating the performance of bandwidth selectors
on these shorter time scales.

• Hybrid bandwidth selection approaches and comparative analysis: Building on the
identification of the SCV method as optimal, future investigations can delve into refin-
ing its implementation or combining it with other bandwidth methods to create hybrid
approaches. These approaches may integrate techniques such as weighted averages,
adaptive selection, iterative refinement, data segmentation, bootstrap combination,
or a machine learning approach to enhance precision. Furthermore, ongoing studies
should continually compare established methods with any emerging contenders to
ensure that the most accurate wind speed distribution predictions are achieved in the
ever-evolving landscape of technological and mathematical advancements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11214478/s1, Figure S1 displays plots of normal mixture
densities listed in Table 1, while the comprehensive simulation results are provided in Tables S1–S8.
Furthermore, Figures S2–S9 displays plots of kernel density estimates based on the simulation results
for each distribution, sample size, and bandwidth method.
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