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Abstract: The stability of the vertical flow that occurs when gas displaces oil from a reservoir is
investigated. It is assumed that the oil and gas areas are separated by a layer saturated with water. This
method of oil displacement, called water-alternating-gas injection, improves the oil recovery process.
We consider the linear stability of two boundaries that are flat at the initial moment, separating,
respectively, the areas of gas and water, as well as water and oil. The instability of the interfaces
can result in gas and water fingers penetrating into the oil-saturated area and causing residual oil.
Two cases of perturbation evolution are considered. In the first case, only the gas–water interface is
perturbed at the initial moment, and in the second case, small perturbations of the same amplitude
are present on both surfaces. It is shown that the interaction of perturbations at interfaces depends on
the thickness of the water-saturated layer, perturbation wavelength, oil viscosity, pressure gradient
and formation thickness. Calculations show that perturbations at the oil–water boundary grow much
slower than perturbations at the gas–water boundary. It was found that, with other parameters
fixed, there is a critical (or threshold) value of the thickness of the water-saturated layer, above which
the development of perturbations at the gas–water boundary does not affect the development of
perturbations at the water–oil boundary.

Keywords: porous media; water–oil interface; gas–water interface; instability; fingering; water-
alternating-gas injection; displacement

MSC: 35Q35; 35B35

1. Introduction

Oil fields with a gas cap comprise a significant proportion of gas and oil fields [1]. Oil
production from such deposits has specific characteristics and differs from the development
of pure oil deposits [2]. A decrease in pressure in the oil-saturated region causes movement
of the gas–oil contact surface. It may be unstable and lead to gas breakdown in the
production well. As a result, residual oil is formed in the reservoir [3]. In addition, the
instability and breakdown of gas–oil and water–oil surfaces can lead to discontinuity and
fragmentation of the oil flow, which also causes the formation of residual oil in the field [4].

Displacing oil from the reservoir by gas is an effective method for increasing oil
recovery [5]. The process is more efficient if water displacement is injected first, then gas.
In this case, gas and oil are separated by a layer of water, and both the water–gas and
water–oil boundaries are unstable. Carbon dioxide is injected into depleted oil reservoirs
for storage purposes to reduce climatic impacts and improve oil recovery [6]. In this process,
gas is often injected into a porous medium filled with water and oil. Thus, studying the
evolution of the water–gas and water–oil interfaces and the mutual influence of these
processes is an important task.

Recently, analytical and numerical studies have been carried out on the instability of
the interface boundary during filtration in soils and rocks [7]. It was found that in many
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cases, important for applications, the transition to instability occurs for all values of the
wave number simultaneously or at infinitely large wave numbers [7]. The fastest-growing
mode of the unsteady flow is the mode corresponding to an infinitesimal linear size.
Finding the parameters of the fastest-growing perturbation is of interest for determining
the characteristic scale of the resulting finger-like structures, the decay of which leads to
volumes of liquid. In the classical work [8], the problem of the instability of the displacement
of a more viscous liquid by a less viscous one was considered. The transition to instability
occurred simultaneously at all wave numbers, which did not make it possible to establish
the characteristic size of the most unstable perturbation. In [9], the stability of the gas–
oil interface in a gas cap under a pressure drop in the oil-saturated region was studied.
A criterion for surface stability was found, showing that when the parameters change,
the transition to the unstable regime is also realized simultaneously at all wave numbers.

However, it was shown in [10] that anomalous short-wave instability does not occur if
the Brinkman equation is used instead of Darcy’s law. Using the normal mode method, it
was found that the growth rate of small perturbations of the liquid–gas surface tends to zero
with increasing wave number. An extensive review of experimental studies of three-phase
relative permeability is presented in [11]. The results of a pore-scale experimental survey
of a two-phase oil/brine flow through a miniature, water-wet fractured sandstone core
sample were presented in [12].

There are several approaches to studying the process of liquid displacement by gas.
In the piston model (continuum single-phase model) of displacement, it is assumed that
there is either gas, water, or oil at each point of the medium. In this case, it is assumed
that there is a boundary between different liquids, as well as between a liquid and a gas,
which, in a large-scale approximation, represents a moving surface. This model was used to
study the main features of the development of instability in many works (see, for example,
Ref. [13] and the review in [14]). The problem of the displacement of one incompressible
fluid by another in an inhomogeneous layered porous medium was also studied in [15].
In this case, it was assumed that the injected fluid completely displaces the previously
filling fluid, and there is a moving interface between them.

Using the three-phase continuum approach, three phases (water, oil and gas) are
expected to coexist at every point in the porous medium when viewed from a macroscopic
point of view (see, for example, Refs. [16,17] and a detailed review in [18]). General
analytical solutions for a three-phase immiscible flow in a one-dimensional porous medium
with concave relative permeability curves are presented in [19].

Along with the continuum approximation, network models are used to study oil
displacement processes [20]. The network model allows us to take into account processes
occurring at the micro level. Thus, it is assumed that water, oil and gas flow in close but
different channels or are separated within each. For example, in [21], the process of the
displacement of oil from the reservoir by gas is considered. It is assumed that gas, water
and oil formally exist at every point in the medium at the macro level, but at the micro
level, they are located in separate, closely spaced pores. In [22], drainage displacements in a
three-phase flow under strongly wetting conditions are described by the pore-scale network
model. In [23], the oil and gas outflow process is also described using a three-dimensional
network model. Agreement between the calculated and experimental data was obtained.

It is important to note that there is a problem of sediment formation when water is
injected into the reservoir. Asphaltenes possess the ability to accumulate at the interface of
oil and water, leading to the formation of stable emulsions. An experimental investigation of
this phenomena is presented in [24]. Molecular dynamics simulations are developed in [24].
The effect of ions in water on asphaltene aggregation was studied in [25]. The influence of
water cut on the effectiveness of an asphaltene inhibitor was investigated in [26].

An interesting and promising approach is a combined multiphase lattice Boltzmann
color-gradient model for simulating the flow of immiscible two- and three-phase liquids
(see, for example, Ref. [6]). In [9], a single-phase continuum model was used to study the
development of gas–liquid interface instability in a porous medium. It is shown that at the
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initial stage of the development of a perturbation, the results obtained by the normal mode
method for linearized equations of a single-phase continuum model are consistent with the
solution of the nonlinear problem. At the same time, using the network model makes it
possible to obtain qualitative results that are consistent with the single-phase continuum
model results.

In this paper, a single-phase continuum model is used to describe the evolution of
gas–water and water–oil interface perturbations. The main novelty of this work is that
analytical solutions have been obtained that describe the main patterns of the mutual
influence of the development of disturbances at the water–gas and water–oil boundaries.

The paper is organized as follows: Section 2 contains the formulation of the problem
within the continuum model using Darcy’s law. The specific boundary conditions are
given. Next, the governing equations and the boundary conditions are made dimensionless.
In Section 3, a vertical flow solution is obtained for the stability study. The water–gas
and water–oil interfaces are initially assumed to be flat. Time-dependent pressure and
velocity profiles are obtained. In Section 4, a linear stability analysis of the basic solution
is presented. The governing equations and boundary conditions are linearized about
the basic solution. According to the classical procedure, the normal mode method is
used to study the behaviour of the perturbed interfaces. The problem of the evolution
of infinitesimal perturbations of gas–water and oil–water surfaces is solved in a linear
approximation, taking into account their mutual influence. Section 5 contains a discussion
of the results obtained. In the conclusion, the main results of the work are summarized.
Appendix A contains a derivation of approximate formulas for large and small values of
the dimensionless wave number.

2. Formulation of the Problem

We consider water and oil filtration in a horizontal layer of porous medium (Figure 1).
Region 0 is filled with gas. The pressure in this region is assumed to be constant and
equal to P∗a . Region 1 is filled with water with parameters µ∗1 and ρ∗1 of viscosity and
density, respectively. There exists a water–gas interface that separates the water from the
gas. A continuous pressure at this interface is prescribed. At the lower boundary, region
1 is in contact with layer 2, which is oil-saturated with the corresponding viscosity and
density parameters µ∗2 and ρ∗2 . The z∗-coordinates of the gas–water and water–oil interfaces
are described by the functions S∗1(x∗, t∗) and S∗2(x∗, t∗), respectively. Regions 0, 1 and 2
are located inside a relatively low-permeability porous medium layer. Region 3 contains a
highly permeable layer modelling a horizontal well or fracture with constant pressure, P∗L .

Figure 1. Scheme of the considered porous medium layer.
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The fluids are assumed to be incompressible, and the filtration flow is described by
Darcy’s equation [27]:

div ~v∗i = 0, ~v∗i = (v∗ix, v∗iz), (1a)

0 = −∇(P∗i + ρ∗i g∗z∗)−
µ∗i
k∗

~v∗i , i = 1, 2, (1b)

where ~v∗i is the filtration velocity, P∗i is the pressure, ρ∗i is the density, g∗ is the accelera-
tion due to gravity, µ∗i is the viscosity, k∗ is the permeability and the subscripts 1 and 2
correspond to the water and oil regions, respectively.

According to [27], we solve these equations subject to the boundary conditions of
constant pressure on the gas–water interface and on the lower boundary of region 2.
In addition, the flow fields in layers 1 and 2 (see Figure 1) are coupled by the requirements
of pressure continuity across the water–oil interface and no flow through this interface.
The pressure continuity condition neglects the effect of capillary pressure because the
general question of the stability or instability of the interfaces is independent of the inclusion
of this phenomenon [27].

The boundary condition at the gas–water interface (z∗ = S∗1(x∗, t∗)) is

P∗1 (x∗, S∗1(x∗, t∗), t∗) = P∗a . (2)

The pressure is equal to P∗L at the lower boundary of the region saturated with oil.
The corresponding boundary condition can be written as

P∗2 (x∗, 0, t∗) = P∗L . (3)

If the pressure and the normal component of velocity at the water–oil interface
(z∗ = S∗2(x∗, t∗)) are continuous, then we obtain

P∗1 (x∗, S∗2(x∗, t∗), t∗) = P∗2 (x∗, S∗2(x∗, t∗), t∗), (4)

(~v∗1(x∗, S∗2(x∗, t∗), t∗), ~N∗(x∗, S∗2(x∗, t∗), t∗)) = (~v∗2(x∗, S∗2(x∗, t∗), t∗), ~N∗(x∗, S∗2(x∗, t∗), t∗)), (5)

where

~N∗(x∗, S∗i (x∗, t∗), t∗) =

−
∂S∗i (x∗ ,t∗)

∂x∗√
1 +

(
∂S∗i (x∗ ,t∗)

∂x∗

)2
,

1√
1 +

(
∂S∗i (x∗ ,t∗)

∂x∗

)2

. (6)

The evolution of the interfaces between gas and water and water and oil is described
by the equations

∂

∂t∗
S∗1(x∗, t∗) = v∗1z − v∗1x

∂

∂x∗
S∗1(x∗, t∗), (7)

∂

∂t∗
S∗2(x∗, t∗) = v∗2z − v∗2x

∂

∂x∗
S∗2(x∗, t∗). (8)

Equations (7) and (8) will be used in the form

∂

∂t∗
S∗1(x∗, t∗) = (~v∗1(x∗, S∗1(x∗, t∗), t∗), ~n∗(x∗, S∗1(x∗, t∗), t∗)), (9)

∂

∂t∗
S∗2(x∗, t∗) = (~v∗1(x∗, S∗2(x∗, t∗), t∗), ~n∗(x∗, S∗2(x∗, t∗), t∗)), (10)
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where
~n∗(x∗, S∗i (x∗, t∗), t∗) =

{
−

∂S∗i (x∗, t∗)
∂x∗

, 1
}

. (11)

The governing equations and the boundary conditions are made dimensionless using
the following reference parameters

x = x∗
H∗0

, z = z∗
H∗0

, ~vi =
~v∗i
V∗0

, t = t∗V∗0
H∗0

, ki =
k∗
µ∗i

P∗0
V∗0 H∗0

, g = g∗ V∗0
2

H∗0
,

Pi =
P∗i
P∗0

, ρi = ρ∗i
V∗0

2

P∗0
,

(12)

where P∗0 is characteristic pressure, H∗0 is characteristic size and V∗0 is characteristic velocity.
The governing equations and the boundary conditions, using the normalised quanti-

ties (12), take the form

div~vi = 0, (13a)

0 = −∇(Pi + ρigz)− 1
ki
~vi, i = 1, 2, (13b)

P1(x, S1(x, t), t) = Pa, (14)

P2(x, 0, t) = PL, (15)

P1(x, S2(x, t), t) = P2(x, S2(x, t), t), (16)

(~v1(x, S2(x, t), t), ~N(x, S2(x, t), t)) = (~v2(x, S2(x, t), t), ~N(x, S2(x, t), t)), (17)

~N(x, Si(x, t), t) =

−
∂Si(x,t)

∂x√
1 +

(
∂Si(x,t)

∂x

)2
,

1√
1 +

(
∂Si(x,t)

∂x

)2

, (18)

∂

∂t
S1(x, t) = (~v1(x, S1(x, t), t),~n(x, S1(x, t), t)), (19)

∂

∂t
S2(x, t) = (~v1(x, S2(x, t), t),~n(x, S2(x, t), t)), (20)

~n(x, Si(x, t), t) =
{
−∂Si(x, t)

∂x
, 1

}
. (21)

3. Vertical Flow Solution

Let the boundaries between regions 0 and 1 and regions 1 and 2 be flat and perpendic-
ular to the axis z. In this case, the solution is independent of the horizontal variable x, so P1,
P2, v1 and v2 are all functions of z only, i.e., P1 = P1,b(z, t), P2 = P2,b(z, t), ~v1 = (0, V1,b(z, t)),
~v2 = (0, V2,b(z, t)), S1 = H1(t) and S2 = H2(t) (see Figure 1). The subscript b denotes the
basic vertical flow solution of Equations (13a) and (13b) with boundary conditions (14)–(17).
The equations governing the basic vertical flow will take the form

∂V1,b

∂z
= 0,

∂V2,b

∂z
= 0, (22)

0 = −
∂P1,b

∂z
− ρ1g− 1

k1
V1,b, 0 = −

∂P2,b

∂z
− ρ2g− 1

k2
V2,b. (23)
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The solutions of (22) for the velocity distribution subject to the boundary condition
in (17) are

V1,b(z, t) = V(t), V2,b(z, t) = V(t). (24)

Substituting velocities (24) into (23) yields

0 = −
∂P1,b

∂z
− ρ1g− 1

k1
V(t), 0 = −

∂P2,b

∂z
− ρ2g− 1

k2
V(t). (25)

The solutions of (25) give the linear pressure profile:

P1,b = −(ρ1g +
1
k1

V(t))(z− H1(t)) + Pa, (26)

P2,b = −(ρ2g +
1
k2

V(t))z + PL. (27)

Thus, from the boundary condition in (16), we obtain

−(ρ1g +
1
k1

V(t))(H2(t)− H1(t)) + Pa = −(ρ2g +
1
k2

V(t))H2(t) + PL. (28)

Hence, the expression follows

V(t) = − k1k2(g(ρ2 − ρ1)H2(t) + gρ1H1(t) + Pa − PL)

(k1 − k2)H2(t) + H1(t)k2
. (29)

The solutions of (23) for P1,b and P2,b subject to the pressure boundary conditions in
(14)–(16) are

P1,b(z, t) = (g(k1ρ1−k2ρ2)H1(t)+(gρ2z−Pa)k2−k1(gρ1z−Pa))H2(t)+k2(H1(t)PL−z(PL−Pa))
(k1−k2)H2(t)+H1(t)k2

, (30)

P2,b(z, t) = ((−gρ1z+PL)k1+k2(gρ2z−PL))H2(t)+(gzk1ρ1−k2(gρ2z−PL))H1(t)−zk1(PL−Pa)
(k1−k2)H2(t)+H1(t)k2

, (31)

and the z-coordinates of the interfaces H1(t) and H2(t) satisfy the equations{
d H1(t)

d t = V(t),
d H2(t)

d t = V(t).
(32)

It follows from (32) that

H1(t)− H2(t) = H1(0)− H2(0). (33)

We introduce the notation

L = H1(t)− H2(t), (34)

where L is independent of t.
The solution of (32) for the function t(H2) is

t(H2) =
(−CaCcL + Cb) ln (H2Ca+Cb)

(H2(0)Ca+Cb)

C2
a

− H2 − H2(0)
Ca

, (35)

where
Ca = ρ2gk2, (36)

Cb = Lgρ1k2 + ∆Pk2, (37)
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Cc =
k2

k1
, (38)

∆P = Pa − PL. (39)

We can find the function H2(t) from (35). The function H1(t) is defined as

H1(t) = H2(t) + L. (40)

At g = 0, the expression (35) has a simpler form

t(H2)g=0 =
(2k2L + k1(H2 + H2(0)))(H2(0)− H2)

2 ∆Pk1k2
. (41)

4. Evolution of Infinitesimal Perturbations of Vertical Flow

We now consider the stability of the solution (29)–(31) to infinitesimal perturbations
derived in the previous section. An infinitesimal perturbation is applied to the basic flow
to examine the stability of the interfaces. The aim is to linearise the governing equations
and boundary conditions about the basic solution (29)–(31) and to study the behaviour of
the perturbed interfaces. The velocity and pressure fields both in the water and oil regions
and the interface positions are expanded in the following manner:

S1(x, t) = H1(t) + s1(x, t), (42)

S2(x, t) = H2(t) + s2(x, t), (43)

P1(x, z, t) = P1,b(z, t) + p1(x, z, t), (44)

P2(x, z, t) = P2,b(z, t) + p2(x, z, t), (45)

v1z(x, z, t) = V(t) + ν1(x, z, t), (46)

v2z(x, z, t) = V(t) + ν2(x, z, t), (47)

v1x(x, z, t) = u1(x, z, t), (48)

v2x(x, z, t) = u2(x, z, t), (49)

where s1(x, t), s2(x, t), p1(x, z, t), p2(x, z, t), u1(x, z, t), ν1(x, z, t), u2(x, z, t) and ν2(x, z, t)
are small perturbations of the positions of the gas–water and water–oil interfaces, the
pressure, and the horizontal and vertical components of the filtration velocity in the regions
filled with water and oil, respectively.

Let us obtain the basic equations of the problem in a linearized form. We substitute
the expressions (42)–(49) into the system of Equations (13):

∂(Pi,b(z, t) + pi(x, z, t))
∂z

= −V(t) + νi(x, z, t)
ki

− ρig, (50)

∂(Pi,b(z, t) + pi(x, z, t))
∂x

= −ui(x, z, t)
ki

, (51)

∂

∂x
ui(x, z, t) +

∂

∂z
(V(t) + νi(x, z, t)) = 0, i = 1, 2. (52)
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The boundary conditions are

P1,b(H1(t) + s1(x, t), t) + p1(x, H1(t) + s1(x, t), t) = Pa, (53)

P2,b(0, t) + p2(x, 0, t) = PL, (54)

P1,b(H2(t) + s2(x, t), t) + p1(x, H2(t) + s2(x, t), t)
= P2,b(H2(t) + s2(x, t), t) + p2(x, H2(t) + s2(x, t), t).

(55)

The system of equations for perturbations has the form
∂pi(x,z,t)

∂z = − νi(x,z,t)
ki

,
∂pi(x,z,t)

∂x = − ui(x,z,t)
ki

,
∂

∂x ui(x, z, t) + ∂
∂z νi(x, z, t) = 0,

(56)

and the boundary conditions expressed as:

s1(x, t)
∂

∂z
P1,b(z, t)|z=H1(t) + p1(x, H1(t), t) = 0, (57)

p2(x, 0, t) = 0, (58)

s2(x, t) ∂
∂z P1,b(z, t)|z=H2(t) + p1(x, H2(t), t)

= s2(x, t) ∂
∂z P2,b(z, t)|z=H2(t) + p2(x, H2(t), t),

(59)

ν1(x, H2(t), t) = ν2(x, H2(t), t), (60)

∂

∂t
s1(x, t) = ν1(x, H1(t), t), (61)

∂

∂t
s2(x, t) = ν1(x, H2(t), t). (62)

We assume that the solutions for pi(x, z, t), ui(x, z, t), νi(x, z, t) and si(x, z, t) have
the form

pi(x, z, t) = Πi(z) f (t) exp (iKx), (63)

ui(x, z, t) = Ui(z) f (t) exp (iKx), (64)

νi(x, z, t) = Vi(z) f (t) exp (iKx), (65)

s1(x, t) = C5 f (t) exp (iKx), (66)

s2(x, t) = C6 f (t) exp (iKx). (67)

Substituting (63)–(65) into (56) yields
∂Πi(z)

∂z = −Vi(z)
ki

,

iKΠi(z) = −Ui(z)
ki

,

0 = iKUi(z) +
∂Vi(z)

∂z .

(68)
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The solutions of (68) have the form

Π1(z) = C3e−Kz + C4eKz,
Π2(z) = C1e−Kz + C2eKz,

U1(z) = −iKk1(C3e−Kz + C4eKz),
U2(z) = −iKk2(C1e−Kz + C2eKz),
V1(z) = −Kk1(C3e−Kz − C4eKz),
V2(z) = −Kk2(C1e−Kz − C2eKz).

(69)

When solution (69) is substituted into (57)–(62), we obtain a system of linear algebraic
equations concerning the variables Ci (i = 1, . . . 6).

C3e−KH1(t) + C4eKH1(t) + (k1ρ1−k2ρ2)gH2(t)+k2∆P
(k1−k2)H2(t)+k2 H1(t)

C5 = 0,
C1 + C2 = 0,

(eKH2(t) − e−KH2(t))C1 + e−KH2(t)C3 + eKH2(t)C4

+−g(k1ρ1−k2ρ2)H1(t)−∆P(k1−k2)
(k1−k2) H2(t)+k2 H1(t)

C6 = 0,

k1(C3e−KH2(t) − C4eKH2(t))− k2(C1e−KH2(t) − C2eKH2(t)) = 0,
k1K(C4eKH1(t) − C3e−KH1(t)) + λ(t)C5 = 0,

k2K(eKH2(t) − e−KH2(t))C1 + λ(t)C6 = 0,

(70)

where

λ(t) =
f ′(t)
f (t)

. (71)

The system of Equations (70) has a non-trivial solution if the determinant of the
coefficient matrix is equal to zero.

Solving the resulting quadratic equation, we find:

λ1,2(t) =
−b±

√
b2 − 4ac

2a
, (72)

where

a = 2K((k1 + k2) sinh (K(L + H2(t))) + (k2 − k1) sinh (K(L− H2(t)))), (73)

b =
2k1K2(B1 cosh (K(L− H2(t))) + B2 cosh (K(L + H2(t))))

(k1 − k2)H2(t) + (L + H2(t))k2
, (74)

c = −B3 2(sinh (K(L− H2(t))) + sinh (K(L + H2(t)))), (75)

B1 = −((k1 − k2)H2(t) + (L + H2(t))k2)(k1ρ1 − k2ρ2)g, (76)

B2 = g(k1 + k2)(k1ρ1 − k2ρ2)H2(t)− (g(k1ρ1 − k2ρ2)(L + H2(t)) + 2k1∆P)k2, (77)

B3 =
k2

1K3g(L + H2(t))(k1ρ1 − k2ρ2)

((k1 − k2)H2(t) + k2(L + H2(t)))2 (78)

−
k2

1K3∆P(k1 − k2)((k1ρ1 − k2ρ2)gH2(t)− k2∆P)
((k1 − k2)H2(t) + k2(L + H2(t)))2 .

Approximate expressions for Fjk = λj(t)/k1 at K � 1 and K � 1 are obtained
in Appendix A.
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Next, we consider the filtration flow without gravity since, as shown in [7], the pres-
ence of gravity does not affect the fundamental features of the instability development in
the considered problem. We put g = 0 in (72)–(78) and obtain:

a = 2K((k1 + k2) sinh (K(L + H2(t))) + (k2 − k1) sinh (K(L− H2(t)))), (79)

b =
−4k2

1k2∆PK2 cosh (K(L + H2(t)))
(k1 − k2)H2(t) + (L + H2(t))k2

, (80)

c = −
2k2

1K3∆P(k1 − k2)k2∆P(sinh (K(L− H2(t))) + sinh (K(L + H2(t))))
((k1 − k2)H2(t) + k2(L + H2(t)))2 . (81)

From the expressions (66) and (67), it follows that the ratio of coefficients C6/C5 is
equal to the ratio of perturbation amplitudes at the water–oil and water–gas boundaries.
We introduce the variables A1r = C6/C5 at λ = λ1 and A2r = C6/C5 at λ = λ2. From the
system of Equations (70), we find

A1r =
−4eKL cosh (K) sinh (KL)A + 2e−KL+K cosh (K)B

4kr sinh (K)eKL A + C
, (82)

A2r =
−4eKL cosh (K) sinh (KL)A− 2e−KL+K cosh (K)B

4kr sinh (K)eKL A + C
, (83)

where

A = ((−2kr + 2)e(4L+2)K + (2(kr + 1)2 − 6)e2K(1+L) + (2kr − 2)e2K(2+L)+

e4K(1+L) + (kr − 1)2e4KL + (2kr − 2)e2KL + (kr − 1)2e4K + 1 + (−2kr + 2)e2K)
1
2 ,

B = 2 e3KL(3kr sinh (K)− (kr − 1) sinh (2KL− K) + sinh (2KL + K)),
C = 2 e2KL+K(2(kr − 1)2 sinh (KL− 2K)+

(6− 2(kr + 1)2) sinh (KL) + 2 sinh (KL + 2K)).

(84)

We consider the case when, at the initial moment, there are perturbations of the
gas–water interfaces and water–oil interface in the form of

s1(x, 0) = A0,g cos (Kx), (85)

s2(x, 0) = A0,w cos (Kx). (86)

Under such initial conditions, the solution has the form

s1(x, t) = (A1,geλ1t + A2,geλ2t) cos (Kx), (87)

s2(x, t) = (A1,weλ1t + A2,weλ2t) cos (Kx), (88)

where the coefficients A1,g, A2,g, A1,w and A2,w are connected by the relations

A1,g + A2,g = A0,g, (89)

A1,w + A2,w = A0,w, , (90)

A1,w = A1r A1,g, (91)

A2,w = A2r A2,g. (92)
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From Equations (89)–(92), we find

A1,g = −
A0,g A2r − A0,w

A1r − A2r
, (93)

A2,g =
A0,g A1r − A0,w

A1r − A2r
, (94)

A1,w = −
A1r(A2r A0,g − A0,w)

A1r − A2r
, (95)

A2,w =
A2r(A1r A0,g − A0,w)

A1r − A2r
. (96)

By replacing the relations (93)–(96) in the solution of (87) and (88), we obtain

s1(x, t) =
−(A0,g A2r − A0,w)eλ2t + (A0,g A1r − A0,w)eλ1t

A1r − A2r
cos (Kx), (97)

s2(x, t) =
−A1r(A2r A0,g − A0,w)eλ2t + A2r(A1r A0,g − A0,w)eλ1t

A1r − A2r
cos (Kx). (98)

Approximate expressions for A1r and A2r at K � 1 and K � 1 are obtained in
Appendix A.

The linearized equations (61) and (62) are found under the assumption that∣∣∣∣∂s1(x, t)
∂x

∣∣∣∣� 1, (99)

∣∣∣∣∂s2(x, t)
∂x

∣∣∣∣� 1. (100)

Then, if the functions s1(x, t) and s2(x, t) are of the form (66) and (67), then the
following conditions must be true

|KC5 f (t)| � 1, (101)

|KC6 f (t)| � 1. (102)

Because |C5 f (t)| and |C6 f (t)| are perturbation amplitudes, it follows from the above
inequalities that a linear analysis is only applicable when the perturbation amplitude of the
interface is much smaller than the wavelength of the perturbation.

5. Discussion of Results

The formation of gas or water fingers in the oil-occupied region is associated with
the instability of the gas–water or water–oil boundaries. We will consider the evolution
of these boundaries in two cases. In the first case, we will assume that perturbations exist
only on the gas–water surface at the initial moment. In the second case, we will assume
that there are perturbations on both surfaces at the initial moment, and these perturbations
have equal amplitudes.

Let us put

H∗0 = H∗2 (0), P∗0 = P∗a − P∗L , V∗0 =
k∗

µ∗2
P∗0 /H∗0 ; (103)

then, k2 = 1 and k1 = k2 kr, where the superscript ∗ denotes the dimensional quantities
and kr = k1/k2.
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According to [28], oil’s viscosity can vary from 0.0001 Pa·s to 0.8 Pa·s, while the
viscosity of water is 0.001 Pa·s. Thus, the value of kr varies from 0.1 to 800.

Substituting H2(0) = 1, H2(tmax) = 0, P0 = ∆P = 1, k2 = 1 and k1 = kr into (41), we
obtain that

tmax =
kr + 2L

2kr
, (104)

where tmax is the time for oil to be completely displaced by water from the reservoir if both
interfaces remain flat.

To investigate the effect of gas–water surface perturbation growth on the evolution of
the water–oil surface, we consider the case when there is a perturbation of the gas–water
interface at the initial moment and the water–oil interface is flat, i.e., A0,w = 0.

We denote the amplitude of the water–oil surface perturbation as Aw and the gas–
water perturbation as Ag; then, we obtain from (97) and (98) at A0,w = 0:

Ag =
A0,g(A1reλ2t − A2reλ1t)

A1r − A2r
, (105)

Aw =
A0,g A1r A2r(eλ2t − eλ1t)

A1r − A2r
. (106)

The amplitude of the water–gas surface perturbation, A∗, at time t∗ = cttmax is

A∗ =
A0,g A1r A2r(eλ2t∗ − eλ1t∗)

A1r − A2r
, (107)

where 0 < ct < 1.
The value of A∗/A0,g depends on the problem parameters ct, L, kr and wave num-

ber, K.
In Figure 2, the dependence of A∗/A0,g on K at different values of L and kr is presented.

It is seen that at fixed values of kr and ct, there exists such a value of L∗ that the value of
A∗/A0,g grows unlimitedly with increasing K at L < L∗ and tends to zero at L > L∗. Note
that L∗ depends weakly on kr since it changes less than twice when kr changes by a factor
of 100.

(a) kr = 0.1 (b) kr = 2 (c) kr = 10

Figure 2. A∗/A0,g vs. K at different water-saturated layer thicknesses, L, and ct = 0.1.
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To find approximate explicit expression for L∗ at K � 1, we use the approximate
expressions for λ1, λ2, A1r and A2r obtained in Appendix A. From

s1(x, t) ∼ e−KLe
Kkr t
L+kr cos(K x), (108)

at t = t∗, and taking into account the relation (104), we obtain

s1(x, t∗) ∼ e−
K(2 L2+2(kr−ct)L−ct kr)

2 L+2 kr cos(K x). (109)

It follows from the formula (109) that A∗/A0,g does not increase with K → ∞ if

2 L2 + 2(kr − ct)L− ct kr > 0. (110)

The inequality (110) is satisfied at

L > L∗ =
ct − kr +

√
ct2 + kr

2

2
. (111)

From (111), we obtain that if ct = 0.1, then L∗ = 0.071 at kr = 0.1, L∗ = 0.051 at kr = 2
and L∗ = 0.050 at kr = 10. These threshold values of L∗ are consistent with the results
presented in Figure 2.

Thus, over time t∗, the development of short-wave perturbations at the gas–water
boundary does not significantly affect the evolution of the water–oil boundary if the
thickness of the water layer exceeds L∗. The velocity perturbations, which are caused
by the gas–water boundary instability, decay with a decreasing z coordinate according
to the law eKz in accordance with (69). At the initial moments of time, these velocity
perturbations are so small at z = 1 (at the water–oil surface) that during the time t∗, the
amplitude Aw increases only up to a value of the order of A0,g. Note that the amplitude of
the perturbations of the water–gas surface at time t∗ increases by more than two orders of
magnitude for short-wave perturbations with wave number K > 100, as shown in Figure 3.

(a) kr = 0.1 (b) kr = 2 (c) kr = 10

Figure 3. Ag(t∗)/A0,g vs. K at different thicknesses of the water-bearing region layer L and ct = 0.1.

For kr > 1, the viscosity of water is less than that of oil, so the water–oil contact surface
is unstable if oil is displaced by water. However, at L > L∗, instability development occurs
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at each boundary independently. The growth of perturbations at the gas–water boundary
occurs with a characteristic time of 1/λ1, and the growth of perturbations at the water–oil
boundary occurs with a characteristic time of 1/λ2. Since λ1 > λ2, the water–oil boundary
perturbations grow slower if the initial perturbation amplitude A0,w is comparable to A0,g.

Appendix A shows that the expressions for λ1 and λ2 at K � max(1, L) can be
written as

λ1 = K
kr

L + kr
, (112)

λ2 = K
kr(kr − 1)

(L + kr)(1 + kr)
. (113)

From the relations (112) and (113), we have

λ2

λ1
=

kr − 1
kr + 1

. (114)

If the perturbation amplitudes are equal at the initial moment, i.e., A0,g = A0,w, and the
perturbations develop independently, then at K � max(1, L),

Ag

Aw
∼ e(λ1−λ2) t = e

2 Kkr
(L+kr)(kr+1) . (115)

Substituting t = t∗ into the expression (115), we obtain that

Ag

Aw
∼ e

4 Kkr ct L
(kr+1)(kr+2 L) . (116)

Figure 4 shows the ratio of amplitudes Ag/Aw at time t∗, calculated from the Formula (116),
for large values of K.

Figure 4. Ag/Aw vs. K at t = t∗, ct = 0.1 and L = 0.1.

Figure 4 shows that in the considered case, if the initial perturbation amplitudes of
both surfaces are equal, the short-wave perturbations at the water–gas boundary grow
faster than at the water–oil boundary.
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6. Conclusions

In oil field development, the displacement of oil by gas leads to the formation of gas
fingers and areas with residual oil in the reservoir. If there is a layer of water between
the gas and oil, gas fingers form in the area occupied by water and form areas with slow-
moving water rather than oil. In most cases, oil’s viscosity is more than water’s, so the
water–oil boundary is also unstable. The short-wavelength instability of this boundary
leads to the formation of water fingers in the region occupied by oil. Using the normal
mode method, relations describing the growth of gas–water and water–oil surface pertur-
bations are obtained. These relations describe the evolution of perturbations in the linear
approximation, depending on the wavelength of the perturbation and the parameters of
the main flow. The study shows that there is a threshold value of water layer thickness,
L∗. Suppose the thickness of the water layer is greater than the threshold value. In that
case, the development of perturbations at the water–gas boundary has no effect on the
development of perturbations for a time comparable to the characteristic time of the oil
displacement process. An expression for calculating the threshold value of L∗ at given
values of oil viscosity, pressure drop and thickness of the low-permeable layer of porous
medium containing oil is obtained. It is shown that short-wave perturbations at the water–
oil boundary grow much slower than perturbations at the water–gas boundary at the linear
stage of perturbation evolution.

It follows from the results that the presence of a water layer between oil and gas
significantly reduces the growth of short-wave perturbations (“fingers”) in the oil-occupied
region. Thus, the water layer may allow the amount of residual oil to be reduced, which is
a big problem for effective production.

The study was performed for small perturbations under the assumption that the
wavelength of the perturbation remains much larger than the amplitude. The evolution of
perturbations at the nonlinear stage is planned to be investigated in the future using the
continuum and network models previously described by the authors in [9].
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Appendix A

From the solution (72) at K � 1, i.e., long waves, we obtain an approximate expression
for Fjk ( j being the solution number):

F1k =
k2

r
(L + kr)2 +

(k3
r + (L3 − 3L2 + 3L)k2

r + 3kr(2L2 − L3) + 3L3)K2

3(L + kr)3 , (A1)

F2k =
L(kr − 1)

L + kr
K2, (A2)

where kr = k1/k2.
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(a) L = 0.1, kr = 2 (b) L = 0.1, kr = 10

(c) L = 1, kr = 2 (d) L = 1, kr = 10

Figure A1. Convergence of the obtained asymptotics of the function F1k at small K � 1.

(a) L = 0.1, kr = 2 (b) L = 0.1, kr = 10

(c) L = 1, kr = 2 (d) L = 1, kr = 10

Figure A2. Convergence of the obtained asymptotics of the function F2k at small K.

Figure A1a–d shows that if L < 1, the expression (A1) approximates (72) well at
K < 0.5. There is also agreement between the results obtained by the relation (72) and the
approximate formula (A2) (see Figure A2).
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For short-wave perturbations at K � 1, from the relation (72), we find

F1k = K
kr

L + kr
, (A3)

F2k = K
kr(kr − 1)

(L + kr)(1 + kr)
. (A4)

Figures A3a,b and A4a,b show that for short-wave perturbations, the approximate
relations (A3) and (A4) allow us to perform the calculations with good accuracy at K > 20.

(a) L = 0.1, kr = 2 (b) L = 1, kr = 2

Figure A3. Verification of approximation of the function F1k at large K.

(a) L = 0.1, kr = 2 (b) L = 1, kr = 2

Figure A4. Verification of approximation of the function F2k at large K.

(a) L = 0.1 (b) L = 1

Figure A5. Comparison of approximate and precise solution for small K for A1r.
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(a) L = 0.1 (b) L = 1

Figure A6. Comparison of approximate and precise solution for small K for A2r.

The relation (82) at K � 1 can be replaced by the approximate expression

A1r = 1− ((2− L)kr + 2L)LK2

2kr
, (A5)

and at K � 1, by the expression
A1r = e−KL. (A6)

For the second solution, in the same notations, the relation is as follows:

A2r =
−4eKL cosh (K) sinh (KL)A− 2e−KL+K cosh (K)B

4kr sinh (K)eKL A + C
, (A7)

which at K � 1 can be replaced by

A2r = −
1

kr − 1

(
1 +

((2− L)kr + 2L)LK2

2kr

)
, (A8)

and for short-wave perturbations

A2r = −eKL. (A9)

Figures A5a,b and A6a,b illustrate the applicability of the expressions (A5)–(A9)
for small values of the wave number, K. A comparison of the exact and approximate
expressions obtained for large K is performed in Figures A7a,b and A8a,b.

(a) L = 0.1 (b) L = 1

Figure A7. Comparison of approximate and precise solution for large K for A1r.



Mathematics 2023, 11, 4476 19 of 20

(a) L = 0.1 (b) L = 1

Figure A8. Comparison of approximate and precise solution for large K for A2r.
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