
Citation: Venkatesh, J.; Pchelintsev,

A.N.; Karthikeyan, A.; Parastesh, F.;

Jafari, S. A Fractional-Order

Memristive Two-Neuron-Based

Hopfield Neuron Network:

Dynamical Analysis and Application

for Image Encryption. Mathematics

2023, 11, 4470. https://doi.org/

10.3390/math11214470

Academic Editors: Chunhua Wang

and Hairong Lin

Received: 18 September 2023

Revised: 14 October 2023

Accepted: 25 October 2023

Published: 28 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Fractional-Order Memristive Two-Neuron-Based Hopfield
Neuron Network: Dynamical Analysis and Application for
Image Encryption
Jayaraman Venkatesh 1 , Alexander N. Pchelintsev 2,* , Anitha Karthikeyan 3,4, Fatemeh Parastesh 5

and Sajad Jafari 6,7

1 Center for Artificial Intelligence, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India;
venkateshj@citchennai.net

2 Department of Higher Mathematics, Tambov State Technical University, Sovetskaya Str. 106,
392000 Tambov, Russia

3 Department of Electronics and Communication Engineering, Vemu Institute of Technology,
Chithoor 517112, Andhra Pradesh, India; mrs.anithakarthikeyan@gmail.com

4 Department of Electronics and Communications Engineering and University Centre for Research &
Development, Chandigarh University, Mohali 140413, Punjab, India

5 Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India;
f.prstsh@gmail.com

6 Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic),
Tehran 15916-34311, Iran; sajadjafari83@gmail.com

7 Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic),
Tehran 15916-34311, Iran

* Correspondence: pchelintsev.an@yandex.ru

Abstract: This paper presents a study on a memristive two-neuron-based Hopfield neural network
with fractional-order derivatives. The equilibrium points of the system are identified, and their
stability is analyzed. Bifurcation diagrams are obtained by varying the magnetic induction strength
and the fractional-order derivative, revealing significant changes in the system dynamics. It is
observed that lower fractional orders result in an extended bistability region. Also, chaos is only
observed for larger magnetic strengths and fractional orders. Additionally, the application of the
fractional-order model for image encryption is explored. The results demonstrate that the encryption
based on the fractional model is efficient with high key sensitivity. It leads to an encrypted image
with high entropy, neglectable correlation coefficient, and uniform distribution. Furthermore, the
encryption system shows resistance to differential attacks, cropping attacks, and noise pollution. The
Peak Signal-to-Noise Ratio (PSNR) calculations indicate that using a fractional derivative yields a
higher PSNR compared to an integer derivative.

Keywords: Hopfield neural network; fractional order; bifurcation; image encryption

MSC: 26A33; 92B20; 65P20; 34C28

1. Introduction

Recently, the field of neural networks has drawn growing interest due to their potential
applications in various domains, including pattern recognition, optimization, and asso-
ciative memory [1,2]. The Hopfield neural network (HNN) is a common and extensively
studied neural network model [3]. HNNs are recurrent artificial neural networks possess-
ing associative memory properties. They have been widely used for solving optimization
problems and pattern recognition [4–6]. The fundamental building block of a Hopfield
neural network is the neuron that processes and transmits the information. A large number
of HNNs with different numbers of neurons and various activation functions have been
proposed [7–10]. While most existing models are based on four and three neurons, a few
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recent studies have presented models based on only two neurons. The two-neuron models
provide advantages such as simplicity and reduced computational complexity, while the
three-neuron models have higher capacity and may result in improved pattern separa-
tion. The choice of the model depends on the specific problem being addressed and the
desired functionality.

The advancements in nanotechnology have resulted in the foundation of a new elec-
tronic component called the memristor [11]. Memristors are passive circuit elements with
memory-dependent resistance properties. Hence, they can be applied to emulating synaptic
connections between neurons [12]. Incorporating memristors in NNs can increase their
ability to process and store information, emulating biological functions [13,14]. Therefore,
their learning can be enhanced. As a result, in recent years, memristive neural networks
have been proposed as an alternative to the traditional neural network models [15–18].

Furthermore, studies have shown that the application of fractional-order derivatives
instead of integer-order ones can lead to more complex dynamics [19]. Fractional calcu-
lus provides a powerful mathematical framework for describing systems with memory
and long-range dependencies [20], considering that fractional-order derivatives can im-
prove the network’s ability to model and process complex patterns. In other words, more
accurate models can be obtained using fractional derivatives, describing the behaviors
precisely [21,22]. Subsequently, some studies have focused on analyzing HNNs using
fractional derivatives [23–25]. For example, Xu et al. [26] presented a new fractional-
order chaotic system based on a four-neuron-based HNN, and its rich dynamics was
demonstrated. Rajagopal et al. [27] investigated a memristive fractional-order HNN and
represented hyperchaotic attractors in fractional orders with hidden oscillations. The stabil-
ity and synchronization of fractional-order HNNs were analyzed in [28]. In this study, a
Mittag–Leffler stability criterion in the form of linear matrix inequalities was presented for
the fractional-order HNNs.

The inherent properties of chaotic systems, such as sensitivity to initial conditions,
unpredictability, and complex behavior, make them suitable for many applications, in-
cluding image encryption [29–31]. These complex dynamics can be useful in generating
pseudo-random numbers as encryption keys. These key streams are combined with the
original image with operations like XOR or bit-level permutations. Hence, the pixel values
are changed in a chaotic manner, recovering, which is difficult for unauthorized individuals
without knowledge of encryption keys. The researchers have introduced diverse methods
for image encryption based on chaotic systems [32–34]. In addition, many studies have
shown that using HNNs for image encryption ensures the confidentiality and integrity of
images [35,36].

In this paper, a memristive two-neuron HNN model is studied by considering fractional-
order derivatives. The dynamics of the model are investigated for different fractional orders
as a function of the magnetic induction strength. Bifurcation diagrams and attractors reveal
the significant impact of fractional order on the model dynamics. As a common application,
the model is used for image encryption. The performance of the encryption system and its
robustness to noise are explored. The results show the good performance of the encryption
method using the fractional-order model. In addition, the fractional-order model has
superiority to the integer-order model in noise robustness. The remainder of this paper is
organized as follows: Section 2 provides the introduction of the two-neuron-based HNN
and its fractional-order form. Section 3 discusses the simulation results in three subsections.
In the first subsection, the equilibrium points are found and stability analysis is carried out.
In the second subsection, the dynamics of the model are investigated in detail. Finally, in the
last subsection, the application of the model in the image encryption application is studied,
and several measures are computed to check its performance. At the end, Sections 4 and 5
provide a discussion on the results and conclude the paper.
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2. Fractional-Order Model

A two-neuron Hopfield neural network with electromagnetic induction was intro-
duced by Chen and Min [37] as follows:

.
x1 = −x1 + w11tanhx1+w21tanhx2+k(a− b|φ|)x1,
.

x2 = −x2 + w12tanhx1+w22tanhx2,
.
φ = x1 − φ,

(1)

where k shows the strength of magnetic induction, and the memductance function is
considered as (a− b|φ|). The matrix of synaptic weights is as follows:

W =

[
w11 w21
w12 w22

]
=

[
2 −1.2

1.2 2

]
(2)

We consider these equations with fractional-order derivatives as

Dqx1 = −x1 + w11tanhx1+w21tanhx2+k(a− b|φ|)x1,

Dqx2 = −x2 + w12tanhx1+w22tanhx2,′

Dqφ = x1 − φ,

(3)

where Dq denotes the Caputo fractional operator.
The Riemann–Liouville (RL) fractional integral operator of order q ≥ 0 of a function

f (t) is defined as

Iq f (t) =
1

Γ(q)

∫ t

0

f (τ)

(t− τ)1−q dτ, t > 0, q > 0 (4)

with Γ showing the well-known gamma function. The Caputo fractional differential
operator is as follows:

Dq f (t) = In−qDn f (t) =


1

Γ(n−q)

∫ t
0

f (n)(τ)
(t−τ)q+1−n dτ, i f n− 1 < q < n

dn f (t)
dtn , α = n ∈ N

(5)

To obtain the numerical solution of the fractional-order equations, the method de-
scribed in [38] is used.

3. Results

In this section, the equilibrium points of the model are found, and their stability is
analyzed. Next, the dynamics of the model are under consideration for different fractional
derivatives. Finally, the application of the fractional model for image encryption is shown.

3.1. Stability Analysis

The equilibrium point X∗ =
(

x∗1 , x∗2 , φ∗
)

of the system can be found by the
following equations:

−x∗1 + w11tanhx∗1+w21tanhx∗2+ k (a− b|φ∗|)x∗1 = 0,

−x∗2 + w12tanhx∗1+w22tanhx∗2 = 0,

x∗1 − φ∗ = 0,

(6)

considering the defined parameters results in

x∗2 = atanh
(
−x1 + 2 ∗ tanh(x1) + k(1− 4|x1|)x1

1.2

)
, (7a)
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x∗1 = atanh
(

x∗2 − 2tanhx∗2
1.2

)
, (7b)

x∗1 = φ∗. (7c)

Since it is difficult to solve the roots directly, the graphic method is adopted. The two
first Equations (7a) and (7b) are plotted and shown in Figure 1a. Note that the solution
of the second equation is not dependent on k and is shown by blue color. The solution of
the first equation is shown by different colors for three k values as k = 0.8, 1.5, and 2. It
can be seen that the only intersection of two curves for any k value is x∗1 = 0 and x∗2 = 0.
Therefore, the system has one equilibrium point as X∗ = (0, 0, 0). To find the stability of the
equilibrium point, the Jacobian of system is needed, which, by substituting the equilibrium,
is as follows:

J =

1 + k −1.2 0
1.2 1 0
1 0 −1

. (8)
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Figure 1. (a) Solutions of Equations (7a) (red color) and (7b) (blue color) with the intersection (0,0).
The first equation is solved for k = 0.8, 1.5 and 2 and shown by different red tones. (b) The real part
of the eigenvalues λ2, λ3. (c) The imaginary part of the eigenvalues λ2, λ3. (d) The argument of the
eigenvalues λ2, λ3.

The characteristic equation of the Jacobian is as follows:

(λ + 1)
(

λ2 − (k + 2)λ + 2.44
)
= 0, (9)

leading to the eigenvalues λ1 = −1, λ2,3 =
k−√(k2+4k−5.76)

2 + 1. The equilibrium point of
a fractional-order system is stable if and only if |argλ| > qπ

2 , where arg(λ) is the principal
argument of λ. The argument of λ1 is π; therefore, the stability condition is met for this
eigenvalue for any k value.



Mathematics 2023, 11, 4470 5 of 17

The real and imaginary parts of the other two eigenvalues are shown in Figure 1b,c
according to k. In Figure 1d, |argλ2,3| is illustrated. For 1.125 < k < 2, the argument is
zero; hence, the condition does not hold. For 0.8 < k < 1.125, the condition is met only for
fractional orders q <

2|argλ|
π , which is very small. Hence, for 0.9 < q < 1, |argλ| < qπ

2, and
the equilibrium point is unstable. Overall, considering 0.9 < q < 1, the equilibrium point is
unstable for all k values.

3.2. Dynamical Analysis

The introduced integer model represents rich dynamics by varying the magnetic
induction strength (k). The bifurcation diagram of the integer-order model as a function of
k is shown in Figure 2a. It should be noted that for better representation, only the positive
peaks are shown in the bifurcations. The orange and blue colors correspond to two initial
conditions, (0.1, 0, 0) and (−0.1, 0, 0). It can be observed that the model has coexisting
attractors in special values of k. Next, we change the derivative order to fractional to
observe its effects on the bifurcations. The bifurcation diagrams corresponding to q = 0.98,
q = 0.96, and q = 0.94 are shown in parts b to d of Figure 2. Comparing parts a and b
shows that as the derivative order changes to q = 0.98, the first chaotic region is extended
to larger k values. Also, the three-piece chaotic parts are cut in half. Moreover, the periodic
region in 2.69 < k < 2.9 has vanished. When the fractional order changes to 0.96 and 0.94,
the first periodic and chaotic region is more extended, and the three-piece chaotic regions
are not observable anymore. It is also evident that the bistability occurs in a larger area as
the fractional order decreases.
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Figure 2. (a) Bifurcation diagrams of the system as a function of magnetic coupling strength k for
different derivative orders. (a) q = 1, (b) q = 0.98, (c) q = 0.96, (d) q = 0.94. The orange and blue
colors correspond to two initial conditions, (0.1, 0, 0) and (−0.1, 0, 0).

The bifurcation diagram as a function of q is shown in Figure 3 for k = 1.2, 1.4, 1.6, 1.8,
and 2. Note that only the result for the initial condition (0.1, 0, 0) is illustrated. The
variation of q is considered in the range [0.9 1], below which the dynamics remain periodic.
It can be observed that for k = 1.2 and 1.4, the dynamics are only periodic and do not
change by varying q. For larger k values, the chaotic dynamics emerge for large fractional
orders. Furthermore, for larger k, the chaotic region is extended.
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Figure 3. Bifurcation diagram of the model as a function of q for k = 1.2, 1.4, 1.6, 1.8, and 2.

The bifurcation diagrams show that for a fixed k, varying the fractional order can
result in significant changes in dynamics. For example, the attractors of the system for
k = 2.1 and different fractional orders are shown in Figure 4. The integer-order model
has a coexistence of period-3 attractors (Figure 4a) which are symmetric. By changing
the derivative order to q = 0.98, the dynamics change to chaotic and are also symmetric
(Figure 4b). For this fractional order, the same attractor attracts both initial conditions.
Decreasing the fractional order to q = 0.96 leads to a symmetric pair of chaotic attractors
(Figure 4c). Finally, for q = 0.94, two symmetric period-2 attractors emerge (Figure 4d). The
time series corresponding to the attractors shown in Figure 4 are demonstrated in Figure 5.
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The other important point is that the basins of attraction are changed when the
fractional order varies. Figure 6 represents the basin of attraction of two chaotic attractors.
The value of the magnetic strength is set to k = 1.5, 1.8 , 2.1, and 2.5 in parts (a) to (d) for
q = 1, 0.98, 0.96, and 0.94, respectively. The basin of attraction changes remarkably as the
fractional order changes. Moreover, for q = 0.96 and q = 0.94, the basins of two attractors
are inverse of q = 0.98 and q = 1.
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3.3. Application in Image Encryption

To represent the applicability of the fractional model, we use it for the image encryption
application. A variety of encryption algorithms have been proposed in recent years [39–41].
Here, the encryption method presented in [42,43] is used. In this method, firstly, special
initial conditions and parameters are selected to produce chaotic dynamics. Here, the initial
condition (0.1, 0, 0) is used. The system is solved, and the time series are obtained. To
solve the fractional system, the numerical method presented in [38] is used with a total
run time of 500 with time step 0.01. Next, the float values of the time series are converted
to 32-bit binary values, where 3 bits correspond to the integer part, and the other 29 bits
correspond to the fraction part. To generate the random numbers, the 20 least significant
bits are used and put in a vector. By using the randomly generated numbers from x1 and
φ variables, the rows and columns of the image are shuffled. Then, the shuffled image is
XORed with the XORed random vectors obtained from x1 and x2 variables. Finally, the
results are changed to decimal, and the encrypted image is obtained. The flowchart of the
image encryption algorithm is given in Figure 7. For the decryption, the inverse encryption
steps are applied.
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To represent the power of the fractional-order system in image encryption, q = 0.98
and k = 2 are used. The encryption is applied to two images. The original images are
shown in Figure 8a,d. The encrypted images are shown in Figure 8b,d, and the decrypted
images are represented in Figure 8c,f. It can be observed that the fractional system has
enough complexity for image encryption.

3.3.1. Randomness Test

To test the randomness of a pseudo-random sequence, the NIST suite test can be used.
This test results in Pvalues, which should be higher than 0.01 for passing the test. The result
of this test for the random sequence generated by our algorithm is presented in Table 1. It
can be observed that the proposed random sequence has successfully passed all of the tests.
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Table 1. Results of the NIST SP 800-22 randomness test.

Test pvalues Result
Frequency 0.73 Pass
BlockFrequency 0.91 Pass
CumulativeSums 0.73 Pass
Runs 0.35 Pass
LongestRun 0.73 Pass
Rank 0.73 Pass
FFT 0.21 Pass
NonOverlappingTemplate 0.91 Pass
OverlappingTemplate 0.12 Pass
ApproximateEntropy 0.12 Pass
Serial1 0.35 Pass
Serial2 0.122 Pass
LinearComplexity 0.53 Pass
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decrypted images.

3.3.2. Key Sensitivity Analysis

One of the important factors in the evaluation of encryption is the sensitivity of the
system’s keys. To find the key sensitivity, the ciphertext image is decrypted by making
a small change to the encrypted key. When the sensitivity is high, it is not possible to
recognize the original image. To compare the decrypted image after key variation and the
original image, the Mean Squared Error (MSE) is computed:

MSE =
1

M××N ∑M
i=1 ∑N

j=1

(
dij − d′ij

)2
, (10)

where M and N represent the length and width of the image, and dij and d′ij refer to the
original and the decrypted images, respectively.



Mathematics 2023, 11, 4470 10 of 17

As mentioned, the initial condition (0.1, 0, 0) and the parameters q = 0.98 and k = 2
were chosen as the keys of encryption. In the first test, we change the initial condition to
(0.100001, 0, 0) and perform the decryption. In Figure 9, the decrypted images with the
correct key are shown in the left column. The middle column shows the decrypted images
with the incorrect initial key. It can be observed that the original image is not obtained. The
MSE for the onion image is 5345.45 and for the cameraman image is 7661.16.
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Figure 9. Result of decryption with the wrong key. The encryption keys are k = 2 and q = 0.98 and
(x0, y0, z0) = (0.1, 0, 0). (a,d) decrypted images with the correct key, (b,e) the decrypted images with
(x0, y0, z0) = (0.100001, 0, 0), (c,f) the decrypted images with k = 1.99.

Next, we test the effect of change in the parameters. To this aim, the correct key
parameter k = 2 is changed to k = 1.99. The decrypted image with the incorrect parameter
key is shown in the right column of Figure 9. It is evident that the decryption has been
performed incorrectly. The MSE for the onion and cameraman images is 5430.03 and
7871.31, respectively.

3.3.3. Statistical Analysis

To investigate the encryption’s performance, firstly, the images’ histograms are ob-
tained and are shown in Figure 10. The histograms of the original images are illustrated in
Figure 10a,c, which show distributed colors. The histograms of the encrypted images are
shown in Figure 10b,d, which show uniform distributions. Therefore, the fractional system
is suitable for encryption. In the next step, the correlation of the color depth of two adjacent
pixels is obtained. The correlations of the original images are illustrated in Figure 11a,c,
showing a strong correlation between adjacent pixels. The correlations of the encrypted
images are shown in Figure 11b,d. It is observed that the correlation of the original images
disappears in the encrypted images.
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Another commonly used measure is the information entropy. The information entropy
represents the randomness of information. The Shannon entropy can be obtained as follows:

H(s) =
N−1

∑
0

P(si)log
(

1
P(si)

)
(11)

where N is the total number of pixels, and P(si) is the occurrence probability of each
grayscale in the image. For larger entropy, the uncertainty is higher. The entropies of the
original onion and cameraman images are 7.3325 and 7.0097, respectively. The entropies
of the encrypted images are 7.9973 and 7.9972, respectively, which show an increment in
the entropies.

3.3.4. Differential Analysis

The differential attack refers to detecting the effect of small changes in a pixel of the
plain image on the ciphertext image. The Number of Pixels Change Rate (NPCR) and the
Unified Average Changing Intensity (UACI) are two measures for testing the differential
attack. These measures are calculated as follows:

NPCR = 1
M×N

M
∑

i=1

N
∑

j=1

∣∣sign xij
∣∣× 100%

UACI = 1
M×N

M
∑

i=1

N
∑

j=1

|xij|
255 × 100%

(12)

where xij = c1(i, j) − c2(i, j), and c1 and c2 are the encrypted images before and after
changing one pixel, respectively. The NPCR and the UACI computed for the encrypted
onion image are 0.9963 and 0.3028, and for the cameraman image are 0.9962 and 0.3127,
respectively. Hence, the encryption system has strong plaintext sensitivity and can resist
differential attacks.

3.3.5. Robustness Analysis
Cropping Attack

A possible occurrence during the transmission is the loss of information. To test the
robustness of the encryption system to the information loss, the cropping attack test is
performed. To this aim, a part of the encrypted image is cropped, filled with 0 instead,
and then decrypted. Figure 12 shows the decryption results of cropped onion images. In
parts (a) to (c), 1/64, 1/16, and 1/4 of the image are cropped, respectively. The MSE of the
original and decrypted images is 129.89, 533.77, and 2159.08 in parts (a) to (c), respectively.
Therefore, the decryption is robust to small information loss. For larger information loss,
although the original image is detected, the MSE increases.

Noise Attack

Robustness to noise is of great importance in encryption methods. To evaluate the
robustness to noise of the encryption method using the fractional-order model, the salt-
and-pepper noise is added to the encrypted image, and then it is decrypted. The decrypted
images of the encrypted images with different intensities are shown in Figure 13. It can be
seen that the original image can be basically recovered.
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Finally, we compare the performance of the fractional-order and integer-order models
for image encryption. To this aim, we apply the model with different k values for image
encryption, and then a salt-and-pepper noise with intensity 0.1 is added to the encrypted
image. The Peak Signal-to-Noise Ratio (PSNR) of the decrypted image to the original image
is computed. The derivative order is considered to be q = 1, 0.98, 0.96, and 0.94. For
each q, the range of k is chosen according to the bifurcation diagram, in which the system
represents monostable chaotic dynamics. Figure 14 shows the PSNR as a function of k for
different derivative orders. It was attained that for the integer-order model, the best PSNR
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is equal to 18.77, corresponding to k = 1.812. For q = 0.98, the best PSNR is obtained by
k = 2.199 as 18.81. For q = 0.96 and q = 0.94, the higher PSNR are 18.78 and 18.79 by
setting k = 2.597 and k = 2.817, respectively. Therefore, the fractional-order systems can
result in higher PSNR than the integer-order system.
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4. Discussion

In this study, we investigated the behavior of a memristive two-neuron-based Hop-
field neural network utilizing fractional-order derivatives. Involving fractional derivatives
makes the chaotic models more complex than the integer-order model. This complex-
ity makes it difficult to derive analytical solutions and requires advanced mathematical
techniques for modeling and analysis. Our analysis delved into the equilibrium points
of the system and examined their stability, offering valuable insights into the network’s
dynamics. By constructing various bifurcation diagrams, we shed light on how changes in
both magnetic induction strength and fractional order significantly influence the network’s
behavior. Notably, we observed that lower fractional orders expand the region of bistability,
while chaotic behavior is only observed for higher magnetic strengths and fractional orders.

Moreover, our research explored the practical application of the fractional-order model
for image encryption. The results provided compelling evidence for the efficacy of this
model in encrypting images. The randomness of the random sequence was tested by the
NIST test. Several measures were calculated, and it was shown that the system has a high
sensitivity to the key variation and is also robust to information loss. Additionally, we
assessed its robustness against noise by introducing salt-and-pepper noise to the encrypted
images, and our calculations demonstrated that employing fractional derivatives results
in a better Peak Signal-to-Noise Ratio (PSNR) compared to integer derivatives, indicating
improved resistance to noise. The encryption results obtained in this paper can be compared
to some recent studies given in Table 2. Compared to the other studies, our results are
acceptable and better in some cases. Therefore, using the fractional-order HNN in a simple
encryption system can provide a good performance.
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Table 2. Comparison of the obtained encryption results with some recent studies.

CC
(Horizontal)

CC
(Vertical) Entropy NPCR UACI

Proposed 0.0002 −0.0007 7.9971 99.66 28.64

Ref. [44] −0.0023 0.0028 7.9976 99.62 33.28

Ref. [45] 0.0062 0.0073 7.9965 99.60 28.34

Ref. [46] 0.0005 0.0025 7.9993 99.60 32.48

Ref. [47] −0.0139 0.0177 7.9993 99.58 33.43

Ref. [48] −0.0004 −0.0004 7.9993 99.60 33.45

Ref. [49] 0.0058 −0.0024 7.9975 99.60 33.45

Ref. [50] 0.0015 −0.0021 7.9975 99.60 33.45

Ref. [51] −0.0006 0.0008 7.9995 99.60 33.46

Ref. [52] 0.0002 −0.0004 7.9985 99.63 33.03

5. Conclusions

In summary, this study significantly contributes to our understanding of memristive
two-neuron-based Hopfield neural networks employing fractional-order derivatives. It
underscores the potential applications of fractional derivative systems, particularly in
the context of image encryption. Our findings emphasize the importance of incorporat-
ing fractional-order derivatives into neural network models, as they exert a substantial
influence on system dynamics and performance.

We acknowledge certain limitations in this study, which are pivotal in contextualiz-
ing our findings. Our research predominantly focuses on a specific neural network type
employing fractional-order derivatives, limiting the generalizability of our results to other
neural network architectures. Additionally, our study assumes a simplified model for the
neural network, potentially overlooking the complexity inherent in real-world neural net-
works. To address these limitations, future work should include the analysis of real-world
data to validate the practicality and effectiveness of our findings in real-world scenarios.
Assessing its performance across a range of applications, including pattern recognition,
optimization, and control systems, is also recommended to validate its practical utility.
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