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Abstract: An M/M/1 fluid queue with various vacations is studied in the context of a multi-phase
random environment. When the system is in operation (i = 1, 2, . . ., n), it behaves according to the
M/M/1 fluid queue model. However, in any other situation, the system is on vacation, so this leads
it to transition into the vacation phase (i = 0). This transition occurs only when there is no data in the
system. If the system returns from a vacation and finds it still empty of jobs, it will initiate a new
vacation and continue in this pattern until jobs become available in the system, at which point it
resumes working. When the vacation phase ends, the probability of the system transitioning to the
operational phase is denoted as qi(i = 1, 2, . . ., n). Subsequently, we derive the stationary probability
and analyze the buffer content in relation to the modified Bessel function of the first kind. We utilize
the generating function approach and the Laplace–Stieltjes transform to achieve this, enabling us
to accomplish our objectives. We provide numerical results to elucidate the overall behavior of the
system under consideration.

Keywords: vacation; fluid single server queue; generating functions; buffer content; random
environment

MSC: 60K20; 68M20; 90B22

1. Introduction

Recently, there has been a noticeable surge in interest in the study behavior of queueing
systems, especially in the context of fluid queueing systems. This heightened interest is
attributed to the fact that these systems have relevance in numerous everyday applications.
They find applications in various domains such as production engineering, traffic manage-
ment for high-speed networks, modern telecommunications, data distribution networks,
and manufacturing systems, among many others.

Due to the existence of a significant number of systems exhibiting fluid queueing
system behavior, a multitude of researchers have embarked on the quest to explain the
behavior of these systems and develop methods to manage them. A fluid queue, which
operates as an input–output process, involves a continuous flow of fluid entering and
leaving a buffer, which functions as a storage device, at varying rates controlled by an
external stochastic environment. The rates of fluid that enters and exits from the buffer
are determined by this environment. Fluid queues serve as a suitable mathematical tool
for modeling a wide range of systems, including packet video and voice systems with or
without background data, traffic shaping, computer networks encompassing call admission
control and TCP modeling, as well as production and inventory systems, among others.
For additional information, readers may refer to sources such as [1–7].

The tremendous revolution in the development of communication networks, produc-
tion systems, and other systems has given rise to the emergence and dissemination of
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various concepts that have accompanied this progress, such as vacations and catastrophes.
One clear example of this trend is the increase in the number of people going on vacation.
As a result of these innovations, there has been a surge of interest in researching the behav-
ior of fluid queueing systems, with the aim of integrating novel concepts (such as disasters
and vacations) and understanding how these factors influence the behavior of these sys-
tems. This research enables us to better comprehend and design various applications in our
daily lives that are related to queueing systems. Previous work on fluid queueing models
can be categorized into two groups to provide readers with a clearer understanding of the
topic. The first category explores the traditional fluid queueing systems, while the second
category focuses on the fluid queueing systems that incorporate vacations. In the context
of our article, we will concentrate on studies related to the fluid vacation queue. In [8], the
authors described a fluid system adjusted by the M/M/1/N queue with vacations. They
derived the Laplace transform for the stationary buffer content. The same authors who
contributed to [8] also investigated the stationary behavior of a fluid model in [9]. This
model was executed using the M/M/1 queue and included single exponential vacations.
The buffer content distribution was determined by solving a straightforward quadratic
equation. In [10], a tandem fluid model controlled by the M/M/1 vacation queue was
examined. By finding the minimally positive solution to an essential quadratic equation,
they characterized the stationary distribution of the buffer content based on the Laplace
transformation. In [11], the authors explored a fluid model controlled by the M/G/1 queue
with multiple exponential vacations. The formula for the mean buffer content was pro-
vided using the Laplace transform approach. The authors in [12] considered a fluid queue
controlled by the M/M/1 queue, including working vacations and vacation interruptions.
They acquired the stationary distribution of the queue length and determined the average
stationary buffer content and the stationary probability of having an empty buffer. In [13],
the fluid model controlled by the M/M/c queue in conjunction with the working vacation
queue was investigated. The authors used the Laplace transform to determine the station-
ary distribution of the queue length, as well as the probabilities of the mean and empty
buffer content. In [14], the stationary buffer content distribution for an M/M/1-based fluid
queue with repeated exponential vacations was obtained using the probability generating
function approach in relation to a modified form of the Bessel function of the first type.
This distribution accounts for multiple vacations. The authors in [15] examined a fluid
model controlled by the M/PH/1 queue with numerous exponential vacations. Their work
was based on the matrix analytical approach and Laplace transformation. The authors
successfully derived the steady-state distribution Laplace transform of the buffer content,
along with the stationary probability of having an empty buffer. In [16], a discussion on
fluid queue stationary analysis was presented, focusing on the M/M/1 queueing model
subjected to Bernoulli schedule-controlled vacations and vacation interruptions. The au-
thors utilized the matrix geometric approach in the Laplacian domain to formulate an
explicit equation for the stationary probabilities of the buffer content. In [17], the equilib-
rium conditions for customer queues within the M/M/1 queue with vacation interruptions
and working vacations was explored. The authors discussed equilibrium strategies for
customers and the stationary behavior of customers. The authors of [18] introduced a fluid
queueing model in their work, controlled by the M/M/1/N queue affected by working
vacations. They achieved this by creating an explicit equation for buffer content distribution
using the Laplace transform and generating function approaches, based on the modified
Bessel function of the first type. In [19], the authors illustrated a fluid queue controlled
by a multi-server queue featuring working vacations and vacation interruptions. Using
the matrix geometric structure of the Laplace transform, they calculated the steady-state
distribution of fluid buffer queue mean. In [20], a fluid model was investigated which
was formulated with an M/M/1 queue subjected to working. The authors expressed the
buffer content distribution based on a modified Bessel function of the first type, utilizing
continuous fraction and generating function approaches. Impatience was also incorporated
as a component in this system in reference [20], as discussed in their subsequent work
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in [21], since they presented a formula for the buffer content distribution based on the
modified Bessel function of the first type, derived using the same approaches as presented
in [22]. The authors in [23] delved into a fluid model directed by an M/M/1 queue with
working vacations and unfavorable customer policies. They determined the average fluid
quantity in the buffer and the probability of the buffer being empty for this fluid queue
using the Laplace transform approach. The authors in [24] suggested that a fluid model
performed with a queue length procedure of a working vacation queue, along with the PH
service distribution, could be utilized. The authors in [25] referred to a fluid model that
included a working vacation approach, where the working vacation period and the busy
period alternated throughout the model. In addition, they discussed equilibrium methods
in both fully observable and almost observable cases, considering individual profit and
societal benefits measured in units of time. In [6], the authors presented a multi-server
fluid queueing system that considered working vacations and server outages. Using the
matrix geometric solution approach, they calculated the steady-state distribution of the
fluid buffer content distribution. In [26], the authors described the equilibrium behavior of
consumers and the socially ideal threshold approach for a fluid model with two different
forms of simultaneous clients and unreliable servers. They derived equilibrium methods
for both fully observable and partially observable scenarios.

Recently, Ammar [27] delved into the stationary behavior of the buffer content distribu-
tion in a fluid queue controlled by the M/M/1 queue within a given random environment.
His focus was on how this distribution behaves in the presence of catastrophic events.

Conversely, the study of queueing systems in unpredictable environments has at-
tracted the attention of a significant number of scholars due to its myriad applications
across various facets of our lives. To gain insights into the numerous phenomena occurring
in our daily lives, including industrial systems, transportation networks, and financial
systems, many researchers have dedicated their efforts to understanding the behavior of
queueing systems. This focus arises from the versatility and applicability of queueing
systems within random environments. One distinguishing feature of queues in random
environments is their variable rates depending on the current stage of consideration. As a
result, these systems are inherently complex, making the task of analyzing their behavior
exceedingly challenging.

The proliferation of studies related to queueing systems is attributed to the increasing
interest in researching queueing systems within random environments. This surge in
interest has led to an extensive body of literature dedicated to investigating the behavior
of complex systems. Consequently, we will only focus on discussing the papers that are
directly relevant to the subject matter of our current paper, which pertains to vacation
queueing systems in a random environment.

In [28], the authors examined the unreliable M/M/1 retrial queue operating within
a given random environment, employing matrix analytic techniques. The researchers
reported on both the stability assessment and the calculation of the steady-state distribution
of the orbit’s size. In [29], the authors investigated an M/G/1 queue with multiple vaca-
tions and vacation interruptions in a random setting, utilizing the supplemental variable
approach. They concluded their study by determining the distributions of the service
status and queue length under steady-state conditions. Ref. [30] focused on the steady-state
behavior of the M/G/1 vacation queue within a provided random environment, employ-
ing the supplementary variable approach. They derived distributions for the size of the
stationary system and some performance measures and introduced a new strategy for the
system’s vacations. In [31], the authors discussed a discrete time queue with vacations
within random environment formulations, utilizing the extra variable approach. They
provided probability generating functions for the stationary sojourn time distribution and
the stationary queue length distribution. Additionally, they demonstrated that the discrete
time equivalent of the queue with vacations in the random environment could be used as
an approximation.
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Expanding on their previous work in [31], the same authors considered a GI/M/1
queue with vacations and multiple phases of service in [32]. They successfully determined
the distributions of both the stationary waiting time and the stationary system size, employ-
ing a matrix geometric solution approach and a semi-Markov procedure. In [22], the study
delved into the M/M/1 queue with vacations in a random environment. The probability
generating function technique was employed to determine the steady-state queue length
and other performance metrics. In [33], the author derived the stationary sojourn time
distribution, the stationary system size distribution, and an explanation of the stochastic de-
composition feature for an M/G/1 queue with vacations and multiple phases of operation,
using the supplementary variables strategy. All these results were obtained for the queue,
and the stochastic decomposition feature was also explained. In [34], the author explored a
single-server queueing system with geometric abandonments and server breakdowns for
use in a multi-phase randomization scenario. According to this model, server breakdowns
can only occur when the server is actively processing consumers. The study constructed
the steady-state distribution and various output metrics using techniques based on matrix
geometry and probability generating functions.

This article demonstrates the real-world applicability of the proposed system through
various examples from everyday life. The system in question finds numerous engineering
applications, including but not limited to multibody systems, automobiles, precision
machinery, and weaponry.

For instance, consider a flexible manufacturing facility primarily employed in pro-
duction systems to manufacture items based on customer specifications. Once customer
backorders become unavailable, the manufacturing plant transitions to producing items
from a stock range. This transition can be likened to the server going on vacation. During
this vacation period, customers cannot access the facility. The facility continues to take
these “vacations” until it identifies at least one customer order awaiting processing at
the conclusion of each vacation. The operation is exhaustive because of the expense of
switching between make-to-stock and make-to-order.

The service capacity of the facility is determined based on the number of orders,
primarily to manage the significant personnel costs. Order quantities often exhibit cyclical
patterns. Suppose during a specific period, the order quantity is divided into n distinct
levels, each with a corresponding probability represented as the ith level (i = 1, 2, . . ., n). If
the order quantity falls within the ith level, it corresponds to a specific order arrival rate
and the facility’s service rate.

Another scenario to consider is in a production system where the server frequently
takes breaks, particularly when there are no pending tasks to handle. The server resumes
service as soon as it returns from vacation and continues if there are customers waiting for
service. The rate of service performance may be influenced by factors such as the operator’s
experience, environmental conditions, and access speed.

As a final example, in a computer network, jobs can be divided into different classes,
enabling quality of service support. The different classes of tasks may necessitate varying
service rates, and there may be natural differences in the arrival rates of data, audio, and
video packets. The system under investigation can be applied to model these diverse
scenarios effectively.

The motivation behind this paper stems from a variety of sources. Firstly, the proposed
system exhibits numerous practical applications in everyday life, some of which have been
previously discussed. Secondly, there is a notable absence of literature addressing the
specific subject matter of this study. To the best of our knowledge, this article marks the
first attempt to provide an analytical stationary solution for the presented system, shedding
light on its behavior.

In this article, we have structured the content as follows: In Section 2, we introduce the
system under investigation. Section 3 presents the derivation of the stationary probabilities
for the fluid queueing system under study. To elucidate the general behavior of the
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fluid queueing system, Section 4 includes numerical examples. Finally, Section 5 offers
our conclusion.

2. Description of System and Fluid Queue

In the given research, we explore a fluid M/M/1 vacation queueing system within a
multi-phase random environment. The following are the fundamental presumptions of the
proposed system:

(1) The system consists of n phases, with n operational phases denoted as i,i = 1, . . ., n,
and a vacation phase i = 0. During the operational phases, the system behaves as a
standard M/M/1 queue, with arrival rate λi ≥ 0 and rate of the service µi ≥ 0.

(2) When there are no customers in the system, and all services have been provided, the
system enters the vacation phase (i = 0). The duration of each vacation is exponentially
distributed with a mean of 1/θ. The system remains in the vacation phase if no new
customers arrive, and arrivals during the vacation phase follow a Poisson process
with a rate of λ0.

(3) Direct transitions between operational stages are not allowed during system operation.
Instead, the system transitions from the vacation phase to an operational phase i
with a probability qi ≥ 0, ∑n

i=1 qi = 1, and it remains in that phase until the next
vacation occurs.

(4) Suppose that X(t) shows the customer number in the given system [0, 1, 2, . . .] and let
U(t) denote the state of system at any time t [1, 2, . . ., n: operating phase; 0: vacation
phase].

In addition to this, it is illustrated that the stochastic process {X(t), U(t); t ≥ 0} indi-
cates the Markov chain along the state space Ω = {0, 1, 2, . . . , n} × Z+, where
Z+ = {0, 1, 2, . . .}.

Let C(t) be the buffer content at time t. This is a non-negative random variable, and
the buffer content cannot decrease when the buffer is empty. That is,

dC(t)/dt =


0, (X(t), U(t)) = (0, 0), C(t) = 0,
r0, (X(t), U(t)) = (m, 0), m ≥ 0, C(t) > 0,
r, (X(t), U(t)) = (m, i), m ≥ 1, i = 1, 2, . . . , n.

This indicates that the buffer content rises linearly with r > 0 rate if the background
queueing system is not empty, the system is functioning, and the system is experiencing a
consistent busy period. However, the buffer content is linearly reduced along with a rate of
r0 < 0, while the background system is empty and in the vacation phase.

The 3-D procedure {(X(t), U(t), C(t)), t ≥ 0} clearly denotes a moving M/M/1 vaca-
tion queue in a random environment under the constraint of stability, and it is represented as

ρi = λi/µi < 1, i = 1, 2, . . . , n, d = r0

∞

∑
m=0

πm0 + r
n

∑
i=1

∞

∑
m=1

πmi < 0,

where πmi represents the probability of the background queueing model being in the state
(m, i). For further details, readers may refer to [32].

Suppose that Fmi(t, u) = P{X(t) = m, U(t) = i, C(t) ≤ u}, m = 0, 1, 2, . . . , and
i = 0, 1, 2, . . . , n shows the system’s transient state probability at server state i and the
m denotes the customers number.

While the given process {(X(t), U(t), C(t)), t ≥ 0} is stable, we could write this as
the following:

Fmi(u) = lim
t→∞

P{X(t) = m, U(t) = i, C(t) ≤ u} = P{X = m, U = i, C(t) ≤ u}, ((m, i) ∈ Ω).
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The buffer’s content has a stationary distribution, and this function is given by the
following:

F(u) = lim
t→∞

P{C(t) ≤ u} =
∞

∑
m=0

Fm0(u) +
n

∑
i=1

∞

∑
m=0

Fmi(u)

The fluid queueing system’s differential difference equations are supplied by the
following standard arguments:

For vacation phase i = 0,

r0dF00(u)/du = −λ0F00(u) +
n

∑
i=1

µiF1i(u), (1)

r0dFm0(u)/du = −(λ0 + θ)Fm0(u) + λ0Fm−10(u), m ≥ 1, (2)

and for i = 1, 2,. . . n,

rdFmi(u)/du = −(λi + µi)Fm,i(u) + λi(1− δm,1)Fm−1,i(u) + µiFm+1i(u) + θqiFm,0(u), m ≥ 1 (3)

Here, δm,1 denotes the symbol of Kronecker. Subjected to boundary conditions,
we obtain

F00(0) = a, Fmj(0) = 0, (m, j) ∈ Ω/(0, 0). (4)

For determing the constant a which represents the F00(0), adding the equations in
(1)–(3) gives the following:

r0

∞

∑
m=0

dF0m(u)
du

+ r
n

∑
i=1

∞

∑
m=1

dFmi(u)
du

= 0. (5)

By integrating (5) from the 0 to ∞ gives the following:

r0(F00(∞)− F00(0)) + r0

∞

∑
m=1

(Fm0(∞)− Fm0(0)) + r
n

∑
i=1

∞

∑
m=1

(Fmi(∞)− Fmi(0)) = 0.

Noting the following:

Fm,i(∞) = lim
t→∞

P{X(t) = m, U(t) = i, C(t) ≤ ∞} = P{X = m, U = i} = πmi, ((m, i) ∈ Ω).

By utilizing the boundary condition that is displayed by (4), we attain the following:

r0(π00 − a) + r0

∞

∑
m=1

πm0 + r
n

∑
i=1

∞

∑
m=1

πmi = 0.

By simplifying, we obtain the following:

a =

r0
∞
∑

m=0
πm0 + r

n
∑

i=1

∞
∑

m=1
πmi

r0
. (6)

Consequently, the constant a is explicitly expressed as the following:

a =

(r0 − r)
∞
∑

m=0
πm0 + r

r0
. (7)

Here, πm0 is provided in Liu and Li [22].
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3. Stationary Probability Analysis

We analyze the fluid model stationary probabilities that are obtained by utilizing the
generating function approach and the LT in this section.

3.1. Evaluation of Fm,i(u)

By defining the probability generating function Pi(z, u), i = 1, 2, . . . , n for the proba-
bilities of a transient state as given below:

Pi(z, u) =
∞

∑
m=1

Fmi(u)zm, |z| ≤ 1. (8)

By utilizing the system of equations, we obtain a linear differential equation.

∂Pi(z, u)
∂u

=

[
λiz
r

+
µi
rz
− (

(λi + µi
r

)

]
Pi(z, u)− µi

r
F1i(u) +

θqi
r

∞

∑
m=1

Fm0(u)zm. (9)

The differential equation solution can easily be attained as the following:

Pi(z, u) =
∫ u

0

{
θqi
r

∞

∑
m=0

Fm0(u)zm − µi
rz

F1i(u)

}
× e−(

λi+µi
r )(u−y)e−(

λi z
r +

µi
rz )(u−y)dy. (10)

It is widely understood that if αi =
2
√

λiµi
r and βi =

√
λi/µi, then

exp
[(

λiz
r

+
µi
rz

)
u
]
=

∞

∑
m=−∞

(βiz)
m Im(αiu), (11)

Here, the above metioned Bessel function of the first type form is denoted as Im(.). Com-
paring the coefficients of zm on both sides of (10), we obtain for m ≥ 1 and
i = 1, 2, . . . , n the following:

Fmi(u) =
θqi
r

∫ u

0

∞

∑
k=1

Fm0(u)βm−k
i Im−k(αi(u− y))e−(λi+µi)(u−y)dy−

µiβ
m
i

r

∫ u

0
F1i(u)e−(

(λi+µi
r )(t−u) Im(αi(u− y))dy. (12)

The above equation holds for m = −1,−2,−3, . . . , by its left-hand side for being
substituted with 0.

By applying I−m(.) = Im(.) for m = 1, 2, 3, . . . , we obtain the following:

0 =
θqi
r

∫ u

0

∞

∑
k=1

Fm0(u)βm−k
i Im+k(αi(u− y))e−(λi+µi)(u−y)dy−

µiβ
m
i

r

∫ u

0
F1i(u)e−(

(λi+µi
r )(t−u) Im(αi(u− y))dy. (13)

Using (10) in (9) makes working much easier and produces an elegant expression for
the Fmi(u) as follows:

Fmi(u) =
θqi
r

∫ u

0

∞

∑
k=1

Fm0(u)βm−k
i [Im−k(αi(u− y))− Im+k(αi(u− y))]e−(

(λi+µi
r )(t−u)dy (14)

for m = 1, 2, 3, . . ., i = 1, 2, . . ., n. Therefore, Fmi(u) is represented in terms of Fm0(u).
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3.2. Evaluation of Fm,0(u)

For determining the Fm0(u), we would utilize the Laplace transformation. We provide
the equation after obtaining the Laplace transforms of the system in (2).

Fm0(s) =
(

λ0/r0

s + λ0/r0 + θ/r0

)
Fm−1,1(s). (15)

By iteration, we obtain the following:

Fm0(s) =
(

λ0/r0

s + λ0/r0 + θ/r0

)m

F00(s), m ≥ 1.

On the inversion, we obtain the following:

Fm0(u) =
(λ0/r0)

mum−1

(m− 1)!
e−(λ0/r0+θ/r0)u ∗ F00(u), m ≥ 1, (16)

where ∗ represents the convolution. Therefore, Fm0(u) has been represented in the terms of
F00(u) for m ≥ 1. It has displayed that Fm0(u) is provided in the form of F00(u). So, we are
required to evaluate F00(u).

3.3. Evaluation of F00(u)

Using the system of Equation (1)’s Laplace transforms, we can derive the following:

F00(s) =
a

s + λ0/r0
+

1
r0s + λ0

n

∑
i=1

µiF1,i(s). (17)

From (14), for the value of m = 1, we obtain the following:

F1,i(s) =
θqi
µi

∞

∑
k=1

(
λi/rβi

s + λi/r + θ/r

)k
 (s + λi/r + µi/r)−

√
(s + λi/r + µi/r)2 − α2

i

αi

k

F00(s). (18)

Utilizing (18) in (17) gives the following results after extensive mathematical
manipulations:

F00(s) = a
∞
∑

j=0

θ

rj
0(s+

λ
r0
)

j
+1

[
n
∑

i=1
qi

∞
∑

m=0

(
λi/rβi

s+λi/r+θ/r

)k+1(
λ0/r0

s+λ0/r0+θ/r0

)k+1

×
(

(s+λi/r+µi/r)−
√
(s+λi/r+µi/r)2−α2

i
αi

)k+1
j

.

On the process of inversion, we obtain an explicit expression for the F00(u) as follows:

F00(u) = a
∞
∑

j=0
θ
(

1
r0

)j uj

j! e−(λ0/r0)u ∗
[

n
∑

i=1
qi

∞
∑

k=1

(
(λi/rβi)

k+1uk

k! e−(λi/r+θ/r)u
)

∗
(

(λ0/r0)
k+1uk

k! e−(λ0/r+θ/r)u
)
∗
(
(m+1)Ik+1(αiu)

u

)]j
.

(19)

As a result, the fluid vacation queueing system’s stationary probabilities are all com-
puted explicitly.
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3.4. Buffer Content Distribution

The stationary content of the buffer in the fluid queue under analysis is provided by
the following:

F(u) = P(C ≤ u) =
∞

∑
m=0

Fm0(u) +
n

∑
i=1

∞

∑
m=0

Fmi(u). (20)

Taking the Laplace transform of (20) yields the following:

F(s) = P(C ≤ s) = F00(s) +
∞

∑
m=1

(
λ0/r0

s + λ0/r0 + θ/r0

)m
F00(s) +

n

∑
i=1

∞

∑
m=0

hi(s)F00(s),

where

hi(s) = θ
r

∞
∑

k=1
βm−k

i

(
λ0/r0

s+λ0/r0+θ/r0

)k


[
(s+λi/r+µi/r)−

√
(s+λi/r+µi/r)2−α2

i

]m−k

αm−k
i

√
(s+λi/r+µi/r)2−α2

i

−

[
(s+λi/r+µi/r)−

√
(s+λi/r+µi/r)2−α2

i

]m+k

αm+k
i

√
(s+λi/r+µi/r)2−α2

i

.

By inversion, we obtain the following:

F(u) =
[

θ
r

∞
∑

m=0

(λ0/r0)
mum−1

(m−1)! e−(λ0/r+θ/r)u +
n
∑

i=1

∞
∑

m=0

(λ0/r0)
mum−1

(m−1)! e−(λ0/r+θ/r)u

∗
∞
∑

k=1
βm−k

i

(
(λ0/r0)

kuk−1

(k−1)! e−(λ0/r+θ/r)u
)
∗
(
[Im−k(αiu)− Im+k(αiu)]e−

(λi+µi)u
r

)]
∗ F00(u),

(21)

where F00(u) has been given by Equation (19).

3.5. Mean Buffer Content

We consider the following:

F(s) = F00(s) +
∞
∑

m=1

(
λ0/r0

s+λ0/r0+θ/r0

)m
F00(s) +

n
∑

i=1

∞
∑

m=1
Fmi(s),

= F00(s) +
(

λ0/r0
s+θ/r0

)
F00(s) +

n
∑

i=1

∞
∑

m=0
Fmi(s).

(22)

The result of (9)’s Laplace transform is as follows:

sPi(z, s) =
[

λiz
r

+
µi
rz
− (

(λi + µi
r

)

]
Pi(z, s)− µi

r
F1i(s) +

θqi
r

∞

∑
m=1

Fm0(s)zm.

At the z = 1, and from the above equation, we obtain the following:

∞

∑
m=1

Fmi(s) =
θqi

∞
∑

m=1
Fm0(s)− µiF1i(s)

sr
. (23)

By rewriting (18) as µiF1i(s) = gi(s)F00(s), we have, the following:

gi(s) = θqi

∞

∑
m=1

(
λi/rβi

s + λi/r + θ/r

)m
 (s + λi/r + µi/r)−

√
(s + λi/r + µi/r)2 − α2

i

αi

m

.
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So, we obtain the following:

n

∑
i=1

∞

∑
m=1

Fmi(s) =

[
θ

sr

(
λ0/r0

s + θ/r0

)
− 1

sr

n

∑
i=1

gi(s)

]
F00(s). (24)

By substituting (24) in (22) and doing some algebraic manipulations, we reach the
following:

F(s) =
( ar0

rs

) rs(sr0 + θ) + λ0r0(sr + θ)− (sr0 + θ)
n
∑

i=1
gi(s)

r(sr0 + θ)

(
sr0 + λ0 −

n
∑

i=1
gi(s)

)
. (25)

Let F∗(s) represent the Laplace transformation of the distribution of the buffer content
realized as follows:

F∗(s) =
∫ ∞

0
e−sudF(u) = sF̂(s).

From Equation (25), we obtain the following:

F∗(s) =
( ar0

r

) rs(sr0 + θ) + λ0r0(sr + θ)− (sr0 + θ)
n
∑

i=1
gi(s)

r(sr0 + θ)

(
sr0 + λ0 −

n
∑

i=1
gi(s)

)
. (26)

The mean buffer content is provided by the following:

E(C) =
dF∗(s)

ds

∣∣∣∣s=0.

Hence, through the given derivatives of Equation (26) in relation to s, and by letting
the s to 0, we obtained the mean buffer content in λi, µi, r0 and r′′.

4. Numerical Results

The distribution of the buffer content in the stationary state for the proposed system has
been determined as outlined in the preceding sections. Building upon the insights gleaned
from the previous sections, this section delves into an explanation of how various factors
impact the overall behavior of the system under consideration. The forthcoming graphics
will illustrate how different parameters, such as the vacation rate and the fluid net input rate
to the buffer content distribution, exert visible influences on the behavior of the system. For
illustrative purposes, we assume n = 2, implying the presence of two operational phases and
a vacation phase, without loss of generality. Numerical calculations are employed to clarify
the effects of various parameters, utilizing the formula F(u). The value of a is determined

during these numerical calculations based on the value of
(
(r0 − r)

∞
∑

m=0
π0m + r

)/
r0.

The MATLAB built-in command “quad” is employed for the numerical evaluation of
the integrals with an error tolerance of 10−6. This assessment is achieved through recursive
adaptive Simpson quadrature and is applied to the convolution term, which is expressed in
terms of infinite sums, transformations, and Bessel functions as outlined in the previously
mentioned formulas.

Figure 1 represents the impacts of the vacation rate on the F(u) for various values of
the θ, where µ1 = 5, µ2 = 8, λ0 = 2, λ1 = 3, λ2 = 4, r0 = −4, r = 5, q1 = 0.6 and q2 = 0.4.
As depicted in Figure 1, the θ vacation rate exerts a noteworthy influence on the behavior
of the buffer content distribution. It is evident that an increase in the vacation rate results in
a substantial reduction in the buffer content distribution. Additionally, the buffer content
distribution typically exhibits an upward trend as u is increased.
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Figure 1. Illustrates the effect of vacation rate on F(u).

The influence that the fluid’s total net input rate has on the distribution of the buffer’s
content can be seen in Figure 2. Thus, the plots of F(u) versus the buffer content u are
represented in Figure 2 for r0 and r, respectively, where λ0 = 2, λ1 = 3, λ2 = 5, µ1 = 7,
µ2 = 8, θ = 3, q1 = 0.6, and q2 = 0.4. The behavior of the buffer content distribution is
evidently influenced by the net input rates’ values, since the increase in r and the absolute
values of r0 lead to a notable decrease in the values of F(u). Consequently, any alterations
to these rates lead to a different behavior of F(u).
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The behavior of the buffer content distribution is evidently influenced by the values
of the net input rates, as indicated by the increase in r and the absolute values of r0.
These factors contribute to a significant reduction in the values of F(u). Consequently, any
modifications to these rates result in an altered behavior of F(u).

Figure 3 represents the rates of the arrvial and service impacts on the F(u), where
r0 = −4, θ = 3, q1 = 0.6, r = 5, and q2 = 0.4. It is noteworthy that alterations in the service
and arrival rates have a substantial impact on F(u). Specifically, the distribution of the
buffer content experiences a significant increase as the values of the arrival and service
rates rise.
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Furthermore, the influence of λ0 on F(u) is presented in Table 1. As demonstrated
in Table 1, F(u) values are provided for various λ0 values, and as anticipated, the table
distinctly illustrates that an increase in the rate of arrival during the vacation phase leads to
an augmentation in the buffer content. This observation reinforces the proposed hypothesis
that variations in the arrival and service rates at any stage can exert a substantial impact on
the overall behavior of the system.

Table 1. Effect of λ0 on F(u).

U
λ1 = 4, λ2 = 5, µ1 = 6 and µ2 = 8

λ0=1 λ0=2 λ0=3

0 0.0019 0.0019 0.0019
1 0.0022 0.0022 0.0022
2 0.0033 0.0033 0.0033
3 0.0059 0.0063 0.0064
4 0.0114 0.0142 0.0158
5 0.0211 0.0298 0.0317
6 0.0364 0.0541 0.0761
7 0.0574 0.0879 0.1242
8 0.0878 0.1368 0.2015
9 0.1168 0.1832 0.2838
10 0.1269 0.1894 0.2903

Note: r0 = 4, r = 5, q1 = 0.5 and q2 = 0.5.

5. Conclusions

A multi-phase random environment has been employed to conduct research on the
M/M/1 fluid vacation queueing system, utilizing the Laplace–Stieltjes transform and
the generating function approach. Stationary probabilities are employed to represent the
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distribution of the buffer content. Furthermore, the stationary probabilities of the state
for the background queueing model are explicitly expressed in terms of the modified
Bessel function of the first kind. The significance of this research lies in the presentation of
novel formulas that did not previously exist, given that the proposed system had not been
investigated before. To illustrate the influence of various factors on the behavior of the
proposed system, numerous numerical examples have been presented. These numerical
examples serve to demonstrate the suitability of the proposed approach for modeling
real-world scenarios.
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