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Abstract: The density of a fluid or gas, which depends on the temperature, pressure and concentration
of dissolved substances or suspended particles, changes under the influence of a large number of
physical factors. We assume that an undisturbed liquid is heterogeneous. The propagation of periodic
flows in viscous, uniformly stratified fluids is considered. The analysis is based on a system of
fundamental equations for the transfer of energy, momentum and matter in periodic flows. Taking
into account the compatibility condition, dispersion relations are constructed for two-dimensional
internal, acoustic and surface linear periodic flows with a positive definite frequency and complex
wave number in a compressible viscous fluid exponentially stratified by density. The temperature
conductivity and diffusion effects are neglected. The obtained regularly perturbed solutions of the
dispersion equations describe the conventional weakly damped waves. The families of singular
solutions, specific for every kind of periodic flow, characterize the before unknown thin ligaments
that accompany each type of wave. In limited cases, the constructed regular solutions transform
into well-known expressions for a viscous homogeneous and an ideal fluid. Singular solutions are
degenerated in a viscous homogeneous fluid or disappear in an ideal fluid. The developing method of
the fundamental equation system analysis is directed to describe the dynamics and spatial structure
of periodic flows in heterogeneous fluids in linear and non-linear approximations.

Keywords: heterogeneous fluid; stratification; viscosity; compressibility; linear models; complete
description; dispersion relations

MSC: 76A02; 76Q05; 76M45

1. Introduction

In natural, laboratory and industrial conditions, the density of a liquid or gas depends
on the temperature, pressure, concentration of dissolved substances or suspended particles.
It is not constant and changes under the influence of a large number of physical factors. An
oscillating source forms waves that propagate over long distances in a medium with a weak
dissipation. Historically, it is customary to distinguish acoustic waves, the existence of
which is provided by the compressibility of the medium and gravitational waves associated
with the action of the gravity field. Inertial waves propagate in a globally rotating medium
and capillary waves run at the interface between the media. The existence of a large group
of hybrid waves is provided by the combined action of a number of factors [1,2].

In the mass forces (gravity and inertia) field, the fluid medium is separated. Heavy
particles sink, light particles float up, and the medium is naturally stratified. Compress-
ibility under the action of hydrostatic pressure has an additional impact on density. The
choice of the coordinate system depends on the overall geometry of the problem. The
consideration of flows with scales much smaller than the Earth’s radius is carried out in a
Cartesian coordinate system with an axis z pointing vertically upwards. The acceleration
of gravity g is directed downwards.
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The density distribution in the direction of gravity ρ(z) is characterized by the scale
Λ = |d ln ρ(z)/dz|−1, frequency N =

√
g/Λ and buoyancy period Tb = 2π/N. In the at-

mosphere and ocean, the average buoyancy period lies in the range
of 3 < Tb < 10 min [3,4]. In the “instantaneous” density profiles of the atmosphere
and ocean, thin, highly gradient interfaces are expressed. They separate thick, more homo-
geneous layers, thereby forming a “fine structure” of the medium [4,5].

In practice, several characteristic types of average density distributions have been
identified. Further, the models of continuous (linear or exponential), two-layer or multi-
layer stratification (the last two with a persistent density gap) will be used. In a large group
of flows, density variations are much less than the average value.

At the end of the 18th century, B. Franklin observed sea fluctuations in the free
surface and the interface between water and olive oil in a ship lighting lamp, which was
later mounted on a swing. He noted the need to analyze the influence of fluid density
heterogeneity in mathematical research [6]. Initially, the effects of stratification began to
be taken into account in calculations of the internal wave propagation in the atmosphere
and ocean, which were carried out by famous English scientists G.G. Stokes [7], Lord
Rayleigh [8], H. Lamb [9] and others.

A systematic study of the influence of stratification on the pattern of flows in the
atmosphere and ocean, including navigation (the “dead water” effect), which was noticed
in ancient times, gained interest after the publication of the scientific results from F. Nansen’s
polar expeditions [10]. V. Ekman developed the methodology and planned the experiments.
In order to conduct laboratory studies of the phenomenon of the “dead water”, he used
a review of the first publications on the theory of internal waves in the treatise [11]. In a
series of thorough experiments, V. Ekman determined the conditions for the generation of
large waves using a moving model of a ship at a smoothed interface between fresh and
salt (sea) water and determined the influence of the movement mode on the position of
the model’s hull and drag [10]. However, in general, the work on the consideration of
the equations of internal waves and the “exotic” phenomenon of “dead water” fell out of
scientific circulation for more than half a century and did not affect the development of the
general theory of fluid flows.

At least two of the reasons have to be noted: the smallness of the density variations
compared to its average value, limiting the effect on inertial properties, and the insuffi-
cient development of the mathematical apparatus. G.G. Stokes noted in a fundamental
article [12], written several years before a thorough study of wave propagation in homoge-
neous and layer-by-layer stratified media [13], “As it is quite useless to consider cases of
the utmost degree of generality, I shall suppose the fluid to be homogeneous. . .” However,
a few years later, he also emphasized the limitations of the approximation used: “The three
equations of which (l) is the type are not the general equations of motion which apply to a
heterogeneous fluid when internal friction is taken into account, which are those numbered
(10) in my former paper, but are applicable to a homogeneous incompressible fluid, or to
a homogeneous elastic fluid subject to small variations of density, such as those which
accompany sonorous vibrations” [7].

Accordingly, when studying the waves of other types—acoustic [14] or gravitational-
capillary—at the interface between the atmosphere and the hydrosphere [1,15], the unper-
turbed density was assumed to be homogeneous. Here and further, general rotation effects
and associated inertial waves [1,16] are not considered.

The interest in the mathematical study of the stratification influence started to form
in the middle of the last century. During this period, the precision instruments identified
the thin, highly gradient structure of the Baltic Seawaters [5]. Next, the flows induced by
diffusion on an inclined wall in a continuously stratified atmosphere were discovered [17].
The development of interest in studying the influence of stratification was facilitated by the
papers [18,19], which showed the important role of diffusion-induced flows on topography
not only in the atmosphere, where they manifested themselves not only in the form of
mountain and valley winds but also in the ocean. At the same time, experimental [20] and
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theoretical studies of internal waves in continuously stratified media [21] were developing.
Numerous expeditions have shown the existence of fine structure and its influence on the
dynamics of the atmosphere and ocean in various regions of the Earth.

The number of original articles and reviews describing the influence of stratification on
individual phenomena (internal waves, currents and vortices) was increasing rapidly. The
propagation of acoustic vibrations in a continuously stratified medium was considered [22].
The influence of viscosity was initially taken into account only in terms of the exponential
attenuation of wave amplitudes [1,21]. It was analyzed in more detail when describing
the propagation of gravitational surface [23–29], internal [30] and acoustic waves [31],
considering the boundary layers formed simultaneously with the waves.

From the general content of papers and monographs [1,2,11,15,16], it follows that the
basis of a rational mathematical description of inhomogeneous fluid flows is a system of
fundamental equations-differential analogues of the momentum, energy and matter con-
servation laws with physically justified initial and boundary conditions. All the equations
that were originally presented in the first edition of the treatise [1], published in 1944, were
quite complex for general analysis. In practice, the reduced forms of the general system of
equations are usually used, which makes it possible to study the properties of individual
flow components, such as waves, vortices, jets, and wakes with the required degree of
completeness. In this work, the main attention is paid to the analysis of periodic flows, the
temporal variability of which is proportional to a function of the form f ∝ exp(−iωt).

In the experiment, as in the early stage of the development of the analytical theory of
waves [11], it was emphasized that the measured physical quantities-parameters of periodic
flows, such as the period Tw (frequency ω,), length λ, group cg and phase cph velocity of
the wave, are characterized by real numbers. From the very beginning of the theoretical
study, periodic flows began to be described using complex numbers, introduced to reduce
the notation and convenience of calculations. The immersion of problems in the algebra of
complex numbers leads to the expansion of the dimension of the problem space and the
emergence of additional “physically unrealizable” solutions. Accordingly, there is a need to
select a part of the solutions corresponding to the initial formulation, with the introduction
of criteria explaining the procedure.

The physical interpretation of the solutions depends on the choice of the algorithm
for the rules for immersing the problem in the algebra of complex numbers. Traditionally,
starting with the works of scientists in the 19th century, the frequency ω of a waveform
f ∝ exp(ikx− iωt) has been chosen as a complex value. Its real part determines the
dispersion relation, the functional relationship between frequency ω and wave vector
k, and the imaginary part determines the stability condition and the wave attenuation
coefficient [1]. An innumerable number of works, including popular monographs, are
devoted to the study of flow and wave stability [32,33]. The history of the develop-
ment of flow stability studies is traced in detail in [34]. Researchers investigated the
problem of finding the liquid surface shape and the criteria for the development of in-
stability under the action of various destabilizing factors, such as surface electric charge
(Tonks–Frenkel instability) [35,36], Rayleigh-Taylor and Marangoni thermal convective
instabilities [37], etc.

However, the amplitude and wavelength change within the distance of the source, but
the frequency of periodic motion remains constant, as it follows from the consideration of
the experimental patterns of non-dispersive waves, propagation in a medium at rest. In this
regard, it is natural to maintain the frequency, which is a measure of the wave energy, as a
positive definite real quantity in calculations, and take the wave number to be complex [38].
Substituting expansions of this type into a linearized system of fundamental equations, the
solution of which is found using methods of singular perturbation theory [39], allows for a
new classification of the structural components of periodic flows based on the properties of
complete solutions.

This part of the solutions of the fundamental equation system, which includes regularly
perturbed functions, characterizes waves slowly decaying in the direction of propagation
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in weakly dissipative media. Singularly perturbed components of the solution describe
ligaments—thin flows that determine the structure of the medium in both linear and weakly
nonlinear approximations [40–42].

In the hydrosphere and atmosphere, there are types of waves that differ significantly
in frequency (in particular, acoustic and internal waves in the thickness of a stratified
liquid [1,11,21,22,31]) or in the distribution of displacement amplitudes in depth (surface
and internal waves) [1,11,21]. This makes it possible to study their properties within the
framework of individual specialized equations-acoustics [1,22,31], internal [21] surface
gravity or capillary waves [11,43]. Modern researchers often consider the problem of
acoustic wave propagation in compressible media with complex structures using numerical
and analytical methods [44,45]. At the same time, an important part of the periodic flow,
which determines the fine structure of the flow, remains without attention.

The patterns of propagation of a set of two-dimensional periodic disturbances—waves
and ligaments—in an incompressible fluid, when the reduced continuity equation allows us
to introduce a stream function convenient for analysis, are considered in the thickness [38]
and on the surface of a viscous stratified fluid [46]. This paper is the first to consider
the problem of propagating a complete set of two-dimensional infinitesimal periodic
disturbances in a continuously stratified compressible fluid.

2. System of Fundamental Equations of Periodic Flows in the Atmosphere and Ocean
2.1. The Complete System of Equations Determining the Flow of the Liquid

Periodic wave processes occurring in a viscous liquid are considered. The liquids
existing in nature are heterogeneous. The inhomogeneous distribution of density ρ is
determined using the equation of state:

ρ = ρ(P, S, sn, T). (1)

The symbol P denotes pressure, S stands for entropy, sn denotes salinity of the n-th impurity
and T stands for temperature

Far from the conditions of phase transitions, the values of the temperature gradient
and the impurity content are limited, and it is permissible to use a linearized equation of
state:

ρ = ρ0

(
1− αT(T − T0) + αP(P− P0) + ∑

n
αsn(sn − sn0)

)
αT = − 1

ρ
∂ρ
∂T , αP = 1

ρ

(
∂ρ
∂P

)
S
, αsn = 1

ρ
∂ρ
∂sn

. (2)

Here, αT denotes the coefficient of thermal expansion of the liquid; αP stands for the coeffi-
cient of adiabatic compressibility of the liquid; αsn denotes the coefficient of contraction of
the n-th impurity; and T0, P0, sn0 refer to the reference level of temperature, pressure and
salinity, respectively.

The fundamental system of equations in addition to the equation of state consists of
the equations for describing the matter transfer, the concentration of impurity, temperature
and momentum. Taking into account that the neglect of thermophores is the Ludwig–Soret
effect [47,48] and Dufour effect [49], the system of equations is written as follows [38,46]:

G = G(P, S, sn, T), ρ = ρ(P, S, sn, T) (3)

∂tρ +∇j

(
pj
)
= Qρ, (4)

∂t

(
pi
)
+∇jΠij = ρgi + 2εijk pjΩk + Qi, (5)

∂t(ρT) +∇j

(
pjT
)
= ∆(κTρT) + QT , (6)
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∂t(ρsn) +∇j

(
pjsn

)
= ∆(κsρsn) + Qsn . (7)

Here, G is Gibbs potential; Qρ, Qi, QT , Qsn represent the source of mass, momen-
tum, temperature and the salinity concentration, respectively; p denotes momentum;
Πij = ρuiuj + Pδij−σij stands for the momentum flux density tensor; ui is the component of
the fluid velocity u = p/ρ; δij is the Kronecker delta; σij = µ

(
∂ui

∂xj +
∂uj

∂xi − 2
3 δij ∂uk

∂xk

)
+ ζδij ∂uk

∂xk

denotes the viscous stress tensor; µ, ζ are dynamic and bulk viscosities, respectively; g
is the gravity acceleration; εijk is the Levi-Civita symbol; Ω is the global rotation angular
velocity; and κT , κsn stand for thermal and mass diffusivity, respectively.

Equations (1), (3)–(7) form a fundamental system of equations that determine the fluid
flow. The complete solution of the system of Equations (3)–(7) defines all components of
flow in liquids—waves: acoustic, gravitational (internal and surface), capillary, hybrid
and ligaments—accompanying components that identify the fine flow structure. Usually,
researchers ignore the fine structure, limiting themselves to a partial solution of a system of
equations. In this work, we construct a theory that takes into account all flow components.

To complete the formulation, it is necessary to add initial and boundary conditions
of the problem. The initial conditions depend on the shape and type of the oscillation
source. Often, when studying the properties of periodic flows, instead of initial conditions,
researchers specify the type of solution and look for steady-state solutions of a given type.
No-slip, no-flux boundary and initial conditions on the surface of a solid impermeable
body Σ are written as follows:

u|Σ = 0, u| t≤0 = 0, P|t≤0 = P0, sn|t≤0 = sn0, T|t≤0 = T0, (8)

If the distance to the boundaries greatly exceeds the characteristic dimensions of the
observed phenomena, then a model of an unbounded medium is often used. In this case,
the boundary conditions are transformed into the conditions of physical implementation–
attenuation with removal:

u| r→∞ → 0, (9)

If the model under consideration contains a free surface or interface between layers of
immiscible liquids, then it is necessary to add standard hydrodynamic boundary conditions:
kinematic and dynamic boundary conditions. The kinematic boundary condition is written
for both contacting layers (or for one medium in the case of a free surface): the substantial
derivative of the function F defining the shape of the free surface is equal to zero at the
boundary:

DF
Dt
≡ ∂F

∂t
+ (u · ∇)F = 0, (10)

Dynamic boundary conditions are determined using the balance of forces at the
interface (free surface of the liquid):

nk
(1)σ

ik
(1) + nk

(2)σ
ik
(2) = 0, (11)

Here, n is the unit normal vector, and the subscript (1) and (2) refer to the two contacting
media. If the model takes into account the effects of surface tension, then on the right side
of (11), it is necessary to take into account Laplace forces as well.

2.2. The Reduced System of Equations

The fundamental system of equations is complete and allows one to determine the
patterns of changes in basic physical quantities during the propagation of periodic distur-
bances in continuous media. Since the complete system of equations is of a high order and
very complex to analyze, it is simplified to study the properties of individual processes.
An extremely simplified model in which it is possible to track the dynamics and evolution
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of the structure of periodic flows takes into account the uneven distribution of density,
without indicating the physical nature of the heterogeneity formation.

The system of Equations (3)–(7) is noticeably reduced in the constant temperature
model in the absence of impurities in a weakly compressible fluid. The consideration is
carried out in a Cartesian coordinate system Oxyz in which the Oz axis is directed against
the direction of the gravity acceleration g. The Oxy plane determines the position of the
reference level. In a weakly compressible viscous fluid, bulk viscosity takes on a zero value.
In the absence of mass sources, Qρ = 0 and under the assumptions made, the reduced
system of equations will take the following form:

ρ(∂tu + (u · ∇)u) = ρν∆u−∇P + ρg (12)

∂tρ + u · ∇ρ + ρdivu = 0 (13)

ρ = ρ0(z)(1 + ρ̃(x, y, z, t)) (14)

The initial stratification ρ0(z) when describing models is often defined as a linear
ρ0(z) = ρ00(1− z/Λ) or exponential ρ0(z) = ρ00 exp(−z/Λ) function. The symbol ρ00

indicates the density value at the reference level z = 0, and the symbol Λ = |d ln ρ/dz|−1

characterizes the stratification scale. In nature, liquids are usually weakly stratified and the
scale of stratification is on the order of tens or hundreds of kilometers. When considering
phenomena with characteristic dimensions much smaller than the scale of stratification, the
density value in the linear and exponential stratification models turns out to be practically
the same. In this case, the researchers select the more user-friendly mathematical model.
Real measurements show that in an atmosphere with good accuracy, stratification can be
considered linear or exponential [3].

A stably stratified liquid is characterized by the limiting frequency of its own mechan-
ical vibrations [8]—buoyancy frequency—the square of which is given by

N2 = − g
ρ

dρ

dz
(15)

The equation of state (2) under the assumptions made is simplified as follows:

ρ = ρ0(z)(1− αP(P− P0)) (16)

Fluid pressure is represented as the sum of reference level pressure P, hydrostatic
pressure and perturbation pressure P̃:

P = P0 +
∫ 0

z
ρ(x, y, ξ, t)gdξ + P̃(x, y, z, t) (17)

Taking into account the equation of state (16), the definition of the velocity of sound
c2 = (∂P/∂ρ)S and the definition of pressure (17), the relation (15) for the buoyancy
frequency takes the following form:

N2 =
g2

c2

(
cp

cV
− 1
)

, (18)

Here, cP, cV is the heat capacity at constant pressure and at constant volume, respec-
tively.

The resulting system of equations, despite significant simplifications, qualitatively
completely describes periodic flows in viscous inhomogeneous continuous media. The
boundary and initial conditions will not change.

In the model under consideration, there are intrinsic parameters. These parameters
determine the characteristic scales of the flow components and the characteristic times of
their observation. A set of kinetic coefficients allows one to form their own parameters.
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Intrinsic parameters for liquids with the parameters of water and air are presented in
Tables 1 and 2, respectively.

Table 1. Intrinsic parameters of hydrosphere.

Parameter

Fluid

Stratified Homogeneous

Strongly Weakly Potentially Actually

Buoyancy frequency N, s−1 1 0.01 0.00001 0.0

Buoyancy period Tb 10 s 10 min 10 days ∞

Scale of stratification Λ 10 m 100 km 108 km ∞

Viscous wave scale
δ

gν
N = (gν)1/3N−1, cm 2 200 2 · 105 ∞

Stokes microscale δν
N =

√
ν/N, cm 0.1 1 30 ∞

Table 2. Intrinsic parameters of the atmosphere.

Parameter

Fluid

Stratified Homogeneous

Strongly Weakly Potentially Actually

Buoyancy frequency N, s−1 1 0.01 0.00001 0.0

Buoyancy period Tb 10 s 10 min 10 days ∞

Scale of stratification Λ 10 m 100 km 108 km ∞

Viscous wave scale
δ

gν
N = (gν)1/3N−1, cm 5 500 5 · 105 ∞

Stokes microscale δν
N =

√
ν/N, cm 0.4 4 120 ∞

The natural parameters presented in the table have to be supplemented with temporal
and spatial scales that do not depend on the level of fluid stratification. Taking into account
compressibility, a time scale τν

c = ν/c2 is added. It takes values for water τν
c ' 4 · 10−13 s

and for air τν
c ' 10−10 s. Spatial scale δν

c = ν/c is added. It takes values for water
δν

c ' 7 · 10−10 m, and for air δν
c ' 5 · 10−8 m. In viscous liquids (homogeneous and

heterogeneous), a capillary-viscous time scale appears τ
γ
νg = γ/νg. The symbol γ = σ/ρ00

denotes the surface tension coefficient of the liquid σ normalized to the equilibrium density
value ρ00. For water, the capillary-viscous time scale takes on values τ

γ
νg ' 7 s, and for air

τ
γ
νg ' 400 s. The spatial scale in viscous liquids δν

g = 3
√

ν2/g has the value δν
g ' 5 · 10−5 m

in water and δν
g ' 3 · 10−4 m in air. The capillary length δ

γ
g =

√
γ/g is in both the viscous

liquid model and in the inviscid liquid one. For water capillary length, it takes the value
δ

γ
g ' 3 · 10−3 m, and for air it is δ

γ
g ' 8 · 10−2 m.

Small disturbances of physical quantities (pressure, density, velocity) often occur in
nature. Let us solve the problem using the decomposition method for a small parameter
that plays the role of the amplitude of periodic movements.

3. Periodic Flows in the Thickness of a Uniformly Stratified Liquid
3.1. Linearization of the Equation System

The perturbations of the target values (velocity, density and pressure) are considered
small. To obtain dispersion relations, we linearize the system of Equations (12)–(14), (16).
If we assume that the fluid is exponentially stratified, then in a linear approximation in
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terms of the amplitude of periodic motion, the reduced system of fundamental equations is
written as follows: 

∂tρ̃− w
Λ + ∂xu + ∂yv + ∂zw = 0

∂tu− ν∆u + 1
ρ00

∂x P̃ = 0
∂tv− ν∆v + 1

ρ00
∂y P̃ = 0

∂tw− ν∆w + 1
ρ00

∂z P̃ + gρ̃ = 0
1

ρ00c2 ∂t P̃− wg
c2 + ∂xu + ∂yv + ∂zw = 0

(19)

Here u, v, w are the components of the velocity field u = (u, v, w). We look for the
solution of the equation system (19) in the form of periodic flows ∝ exp(iωt):

u
v
w
P̃
ρ̃

 =


Um
Vm
Wm
Pm
Pm

 exp(ikr− iωt) =


Um
Vm
Wm
Pm
Pm

 exp
(
ikxx + ikyy + ikzz− iωt

)
(20)

Here, Um, Vm, Wm, Pm, Pm are the amplitudes of the corresponding quantities; k is the
wave vector, the components of which have the right to be complex values kx, ky, kz; and
the frequency of periodic motion ω is considered positive definite.

3.2. Dispersion Relation: Classification of Flow Components

By substituting the type of solution (20) into the system of Equation (19), we obtain
a system of algebraic equations. The compatibility condition of the algebraic equations
system determines the dispersion relations between the components of the wave vector
and the frequency of periodic motion:

Dν(k)
(
ω2D2

ν(k)−ωN2Dν(k) + c2k2
⊥N2

c − c2ωk2Dν(k)
)
= 0,

Dν(k) = ω + iνk2, k2 = k2
x + k2

y + k2
z, k2
⊥ = k2

x + k2
y, N2 = g

Λ , N2
c = N2 − g2

c2

(21)

Dispersion relation (21) coincides with the relation obtained earlier [50] in which the
limiting transition to a non-rotating weakly compressible fluid (second viscosity ζ → 0)
has been made. It is convenient to find and analyze the regular and singular components
of the solution to the dispersion relation (21) in dimensionless variables if one chooses
the scales of the problem as non-dimensional parameters. Intrinsic scales characterize the
spatial and temporal dimensions of the observed phenomena (see Tables 1 and 2). We
choose the inverse buoyancy frequency τb = N−1 as the time scale, and the viscous wave
scale δ

gν
N = (gν)1/3N−1 as the spatial scale. With the selected non-dimensional parameters,

the dispersion relation (21) is written as follows:

(
ik2
∗ε + ω∗

)(
k2
⊥∗

(
ε
η −

1
ε2

)
+ ω2

∗
(
ik2
∗ε + ω∗

)2 −ω∗
(
ik2
∗ε + ω∗

)
− k2
∗ω∗

ε
η

(
ik2
∗ε + ω∗

))
= 0,

ε =
δν

g

δ
gν
N

=
√

ν/N
(gν)1/3 N−1

= Nν1/3

g2/3 , η = τν
c

τb
= Nν

c2

(22)

The ratio of the natural parameters of the medium-viscous scale δν
g and viscous wave

scale δ
gν
N and the time scale ratio η characterize the small parameters of the problem.

The dimensionless components of the wave vector and the dimensionless frequency are
indicated by the subscript «*». Since at the highest degree of Equation (22), there is a small
parameter, the equation is singularly perturbed with respect to k∗z. Consequently, the
solution of the form k∗z = k∗z

(
k∗x, k∗y, ω∗

)
contains regular and singular components. The

solutions of Equation (22) are written as follows:

k∗z = ±
√
−k2
∗⊥ +

iω∗
ε

(23)
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k∗z = ±

√√√√−εω∗
(
ω∗ + 2k2

∗⊥ε(i + ηω∗)− iη(2ω2∗ − 1)
)
−
√
−ε2ω2∗(η + iω∗) + 4ω∗k2

∗⊥(ε
3 − η)(i + ηω∗)

2ε2ω∗(i + ηω∗)
(24)

k∗z = ±

√√√√−εω∗
(
ω∗ + 2k2

∗⊥ε(i + ηω∗)− iη(2ω2∗ − 1)
)
+
√
−ε2ω2∗(η + iω∗) + 4ω∗k2

∗⊥(ε
3 − η)(i + ηω∗)

2ε2ω∗(i + ηω∗)
(25)

In dimensional form, the roots (23)–(25) are written as follows:

kz = ±
√
−k2
⊥ +

iω
ν

(26)

k∗z = ±

√√√√√−(iνN2 + 2νω
(
νk2
⊥ − iω

)
+ c2

(
2iνk2

⊥ + ω
))
−
√
−ν2N4 + 2νc2

(
2νk2
⊥N2

c − iωN2
)
+ c4

(
ω2 +

4iνN2
c k2
⊥

ω

)
2ν(ic2 + νω)

(27)

k∗z = ±

√√√√√−(iνN2 + 2νω
(
νk2
⊥ − iω

)
+ c2

(
2iνk2

⊥ + ω
))

+

√
−ν2N4 + 2νc2

(
2νk2
⊥N2

c − iωN2
)
+ c4

(
ω2 +

4iνN2
c k2
⊥

ω

)
2ν(ic2 + νω)

(28)

The choice of a sign in solutions (23)–(25) or (26)–(28) is determined by the boundary
conditions for the decay of periodic motion with distance from the source of disturbances.
The solutions (25) and (28) describe the regular component and determine the wave motion,
the solutions (23)–(24) and (26)–(27) determine the singular component of the solution and
define two types of ligaments. Wave roots (25) or (28) can be obtained approximately using
regular decomposition. Ligament roots (23)–(24) or (26)–(27) can be obtained approximately
using singular value decomposition [39]. The presented expressions are exact solutions
of the dispersion relation. By substituting numerical values of kinetic coefficients, the
components of the wave vector corresponding to both ligament and wave solutions can be
calculated.

To verify the solutions obtained, we consider some limiting cases.

4. High-Frequency Acoustic Waves

Let us consider the limit of high-frequency oscillations corresponding to acoustic
oscillations if their oscillation frequency significantly exceeds the buoyancy frequency of
the medium ω � N [22,50]. In this approximation, the dispersion Equation (21) is rewritten
as follows:

Dν(k)
(

Dν(k)ω
(

Dν(k)ω− c2k2
)
− g2k2

⊥

)
= 0, (29)

The solution of dispersion relation (29) is written as follows:

kz = ±
√
−k2
⊥ + iω

ν ;

kz = ±

√
−k2
⊥ −

c2ω−2iνω2+

√
c4ω2−

4g2νk2
⊥

ω (ic2+νω)

2ν(ic2+νω)
;

kz = ±

√
−k2
⊥ −

c2ω−2iνω2−

√
c4ω2−

4g2νk2
⊥

ω (ic2+νω)

2ν(ic2+νω)
;

(30)

The roots (30) describe the wave motion and two attached ligaments. The sign-in
solution (30) is chosen based on the need for attenuation of periodic motion Im(kz) > 0
when moving in the positive direction of the axis Oz. For oppositely directed motion, the
solutions are symmetrical.
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When moving to a 2D formulation (if we consider the movement to be independent of
the horizontal coordinate y), one of the ligaments degenerates and the solution contains
one wave and one ligament component:

kz = ±

√
−k2

x −
c2ω−2iνω2+

√
c4ω2− 4g2νk2

x
ω (ic2+νω)

2ν(ic2+νω)
;

kz = ±

√
−k2

x −
c2ω−2iνω2−

√
c4ω2− 4g2νk2

x
ω (ic2+νω)

2ν(ic2+νω)
;

(31)

In the limit of an inviscid fluid, the dispersion relation (29) is simplified even further
and written in the following form:

ω2
(

ω2 − k2c2
)
− g2k2

⊥ = 0, (32)

The ligament components of the solution to relation (32) degenerate and only the wave
component remains:

kz = ±

√
−k2
⊥ −

g2k2
⊥

c2ω2 +
ω2

c2 (33)

5. Low-Frequency Gravity Waves

In the limit of low-frequency oscillations ω � N, the dispersion relation (21) takes the
following form:

Dν(k)
(

c2ωik4ν− c2N2k2
⊥ + c2k2ω2 + N2ωDν(k) + g2k2

⊥

)
= 0, (34)

The relation (34) also contains a solution in the form of a wave disturbance and two
attached ligaments:

kz = ±
√
−k2
⊥ + iω

ν ;

kz = ±
√
−k2
⊥ −

ic2ω2−N2νω+
√

N4ν2ω2+4ic2k2
⊥ων(g2−c2 N2)−c4ω4

2c2νω
;

kz = ±
√
−k2
⊥ −

ic2ω2−N2νω−
√

N4ν2ω2+4ic2k2
⊥ων(g2−c2 N2)−c4ω4

2c2νω
;

(35)

When transitioning to a flat formulation, one of the ligaments degenerates.
Relation (34) also contains a solution in the form of a wave disturbance and two

attached ligaments:

kz = ±
√
−k2

x −
ic2ω2−N2νω+

√
N4ν2ω2+4ic2k2

xων(g2−c2 N2)−c4ω4

2c2νω
;

kz = ±
√
−k2

x −
ic2ω2−N2νω−

√
N4ν2ω2+4ic2k2

xων(g2−c2 N2)−c4ω4

2c2νω
;

(36)

In an ideal liquid, the dispersion relation (34) is simplified as follows:

c2k2ω2 − c2k2
⊥N2 + N2ω2 + g2k2

⊥ = 0, (37)

The solution (37), which is represented only by a wave component, in an ideal
liquid transforms into a well-known expression that does not include the wavelength
ω2 = N2 sin2 θ, which describes the geometry of the wave packet in the shape of a “St.
Andrew’s cross” (θ is the angle of inclination of the wave vector to the horizontal) [20,21].
Ligaments in the ideal fluid model degenerate:

kz = ±
√
−k2
⊥ + k2

⊥
N2c2 − g2

c2ω2 − N2

c2 ; (38)
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The limiting cases discussed in paragraphs 4 and 5 show that ligaments are observed
in the entire frequency range from infra-low-frequency mechanical vibrations to high-
frequency sound vibrations. The fine structure of the flow accompanies wave motion and
requires attention when analyzing phenomena.

6. Periodic Flows in a Two-Layer System of Stratified Liquids

In a two-layer system, which consists of a stratified weakly compressible ocean and a
stratified compressible atmosphere, it is necessary to write down the boundary conditions
at the interface. In a two-layer system, the pressure in both media is written in the form of
the sum of hydrostatic pressure and perturbation pressure, so in a 2D formulation (if we
consider the movement independent of the horizontal coordinate y) it is written as follows:

Po,a =
∫ ζ

z
ρo,a(x, ξ, t)gdξ + P̃o,a(x, z, t) (39)

Here and further, the superscripts “o” and “a” denote quantities related to the ocean
(the lower denser liquid) and the atmosphere (the upper less dense liquid), respectively.
The symbol ζ = ζ(x, t) denotes the function that determines the deviation of the interface
between media from the equilibrium position z = 0. The system of equations of motion,
taking into account Expression (39), is written as follows:

z < ζ : ∂tuo − νo∆uo +
1

ρo
00
∇Po − ρog = 0 (40)

∂tρ
o + uo · ∇ρo + ρodivuo = 0 (41)

ρo = ρo
0(z)(1− αo

P(Po − Po
0 )) (42)

z > ζ : ∂tua − νa∆ua +
1

ρa
00
∇Pa − ρag = 0 (43)

∂tρ
a + ua · ∇ρa + ρadivua = 0 (44)

ρa = ρa
0(z)(1− αa

P(Pa − Pa
0 )) (45)

The system of Equations (40)–(45) is supplemented with the boundary conditions at
the interface: z = ξ

z = ζ : ∂tζ + uo∂xζ = wo (46)

∂tζ + ua∂xζ = wa (47)

Po − 2ρoνon · ((n · ∇)uo) = Pa − 2ρaνan · ((n · ∇)ua)− σdivn (48)

uo · τ = ua · τ (49)

ρoνo(τ · ((n · ∇)uo) + n · ((τ · ∇)uo)) = ρaνa(τ · ((n · ∇)ua) + n · ((τ · ∇)ua)) (50)

n =
∇(z− ζ)

|∇(z− ζ)| =

 −∂xζ√
1 + (∂xζ)2

,
1√

1 + (∂xζ)2

, τ =

 1√
1 + (∂xζ)2

,
∂xζ√

1 + (∂xζ)2
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Here, σ is the coefficient of surface tension at the interface between contacting media,
and n,τ are the normal and tangent vectors to the interface, respectively. After carrying out
the linearization procedure and transferring the boundary conditions to the equilibrium
surface z = 0 [51], the mathematical formulation in a linear approximation takes the
following form:

z < 0 :
∫ ζ

z e−
ξ

Λo g∂x ρ̃o(x, ξ, t) + e−
ζ

Λo g∂xζ + ∂tuo − νo∆uo + ∂x P̃o = 0
e−

z
Λo ∂two − νoe−

z
Λo ∆wo + ∂z P̃o

ρo
00

= 0

∂tρ̃
o − wo

Λo + ∂xuo + ∂zwo = 0
1

ρo
00co2 ∂t P̃o − wo g

co2 + ∂xuo + ∂zwo = 0

(51)

z > 0 :
∫ ζ

z e−
ξ

Λa g∂x ρ̃a(x, ξ, t) + e−
ζ

Λa g∂xζ + ∂tua − νa∆ua + ∂x P̃a = 0
e−

z
Λa ∂twa − νae−

z
Λa ∆wa + ∂z P̃a

ρa
00

= 0

∂tρ̃
a − wa

Λa + ∂xua + ∂zwa = 0
1

ρa
00ca2 ∂t P̃a − wag

ca2 + ∂xua + ∂zwa = 0

(52)

z = 0 : ∂tζ − wo = 0, ∂tζ − wa = 0, uo − ua = 0,
P̃o − P̃a + 2ρa

00νa∂zwa − 2ρo
00νo∂zwo + σ∂xxζ = 0,

ρoνo(∂zuo + ∂xwo)− ρaνa(∂zua + ∂xwa) = 0
(53)

We look for a solution to the system of Equations (51)–(53) in the form of periodic
flows ∝ exp(iωt):

uo,a

wo,a

P̃o,a

ρ̃o,a

ζ

 =


Uo,a

m
Wo,a

m
Po,a

m
Po,a

m
Am

 exp(iko,ar− iωt) =


Uo,a

m exp(iko,a
z z)

Wo,a
m exp(iko,a

z z)
Po,a

m exp(iko,a
z z)

Po,a
m exp(iko,a

z z)
Am

 exp(ikxx− iωt) (54)

Substituting the type of solution (54) into the main Equations (51) and (52) leads to a
system of algebraic equations connecting the components of wave vectors kx, ko,a

z and the
frequency of periodic disturbances ω:



−gk2
x +

ω(i+ko
zΛo)(νo(k2

x+ko2
z )−iω)

Λo −kx
(

No2(i + ko
zΛo) + ω

(
νo(k2

x + ko2
z
)
− iω

))
0 0

0 νo(k2
x + ko2

z
)
− iω iko

ze
z

Λo

ρo
00

0

ikx iko
z − 1

Λo 0 −iω
ikx − g

co2 + iko
z − iω

ρo
00co2 0

−gk2
x +

ω(i+ka
zΛa)(νa(k2

x+ka2
z )−iω)

Λa −kx
(

Na2(i + ka
zΛa) + ω

(
νa(k2

x + ka2
z
)
− iω

))
0 0

0 νa(k2
x + ka2

z
)
− iω ika

ze
z

Λa

ρa
00

0

ikx ika
z − 1

Λa 0 −iω
ikx − g

ca2 + ika
z − iω

ρa
00ca2 0


=



0
0
0
0
0
0
0
0


(55)

The resulting system is divided into two independent systems of equations that
describe the relationships between the upper and lower media. The compatibility condition
for each of the systems leads to dispersion relations for the lower one:

ω
co2Λo2

[
ω
(
νo(k2

x + ko2
z
)
− iω

)(
−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)
− iω

))
+

+e
z

Λo ko
z
((

g + ico2ko2
z
)(
−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)
− iω

))
+

+ co2k2
xΛo(No2(iko

zΛo − 1) + ω
(
iν
(
k2

x + ko2
z
)
+ ω

)))]
= 0

(56)
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and top liquid:

ω
ca2Λa2

[
ω
(
νa(k2

x + ka2
z
)
− iω

)(
−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)
− iω

))
+

+e
z

Λa ka
z
((

g + ica2ka2
z
)(
−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)
− iω

))
+

+ ca2k2
xΛa(Na2(ika

zΛa − 1) + ω
(
iν
(
k2

x + ka2
z
)
+ ω

)))]
= 0

(57)

Let us consider expressions (56) and (57) in a dimensionless form. We choose the
natural parameters of each medium as non-dimensional scales: as the time scale, we take
the inverse buoyancy frequency τb = N−1, and as the spatial scale, we select the viscous
wave scale δ

gν
N = (gν)1/3N−1:

ω∗
εo2

[
εoηoω∗

(
εoω∗(ko

z∗ + iεo)
(
εoko2

z∗ − iω∗
)
+ εok4

x∗
(
−1 + εo2ω∗ko

z∗ + iεo3ω∗
)
+

+k2
x∗
(
2εo3ω∗ko3

z∗ − 2iεo2ω2
∗ko

z∗ + ω∗
(
i + 2εo3ω∗

)
+ ko2

z∗
(
−εo + 2iεo4ω∗

)))
+

+e
z

Λo ko
z∗
(
iεo4ω∗k4

x∗+ εoω∗(ko
z∗ + iεo)

(
εo2ko

z∗ − iηo)(iεoko2
z∗ + ω∗

)
−

− k2
x∗
(
ηo − 2iεo4ω∗ko2

z∗ + εo5ω∗ko
z∗ − εo2ηoω∗ko

z∗ + εo3(1− iηoω∗ −ω2
∗
)))]

= 0

(58)

ω∗
εa2

[
εaηaω∗

(
εaω∗(ka

z∗ + iεa)
(
εaka2

z∗ − iω∗
)
+ εak4

x∗
(
−1 + εa2ω∗ka

z∗ + iεa3ω∗
)
+

+k2
x∗
(
2εa3ω∗ka3

z∗ − 2iεa2ω2
∗ka

z∗ + ω∗
(
i + 2εa3ω∗

)
+ ka2

z∗
(
−εa + 2iεa4ω∗

)))
+

+e
z

Λa ka
z∗
(
iεa4ω∗k4

x∗+ εaω∗(ka
z∗ + iεa)

(
εa2ka

z∗ − iηa)(iεaka2
z∗ + ω∗

)
−

− k2
x∗
(
ηa − 2iεa4ω∗ka2

z∗ + εa5ω∗ka
z∗ − εa2ηaω∗ka

z∗ + εa3(1− iηaω∗ −ω2
∗
)))]

= 0

(59)

εa = Na 3

√
νa

g2 , εo = No 3

√
νo

g2 , ηa =
Naνa

ca2 , ηo =
Noνo

co2 .

Expressions (58) and (59) are reduced to the dispersion relations in an incompressible
fluid when passing to the limit co,a → ∞ ( ηo,a → 0):

ω∗
(

iεo
(

k2
x∗ + ko2

z∗

)
+ ω∗

)(
εoω∗(ko

z∗ + iεo)
(

εoko2
z∗ − iω∗

)
+ k2

x∗

(
−1 + εo2ω∗ko

z∗ + iεo3ω∗
))

= 0 (60)

ω∗
(

iεa
(

k2
x∗ + ka2

z∗

)
+ ω∗

)(
εaω∗(ka

z∗ + iεa)
(

εaka2
z∗ − iω∗

)
+ k2

x∗

(
−1 + εa2ω∗ka

z∗ + iεa3ω∗
))

= 0 (61)

The small parameter ηo,a for liquids with the parameters of water and air turns out
to be significantly smaller than the small parameter εo,a. The approximate solutions of
dispersion relations (58) and (59) ko,a

∗z have the following form:

ko,a
∗z = ko,a

0∗z + ηko,a
1∗z (62)

In solution ko,a
0∗z (62) takes one of the following values:

ko,a
0∗z = 0; (63)

ko,a
0∗z = −

iεo,a

4
− 1

2

√
− εo,a

4
− 2εo,ak2

x∗ − iω∗
εo,a + θ ± 1

2

√√√√− εo,a2

2
− 2εo,ak2

x∗ − iω∗
εo,a − θ − iεo,a3 − 8i(εo,ak2

x∗ − iω∗) + 4i(2εo,ak2
x∗ − iω∗)

4
√
− εo,a2

4 + θ − 2εo,ak2
x∗−iω∗

εo,a

(64)

ko,a
0∗z = −

iεo,a

4
+

1
2

√
− εo,a

4
− 2εo,ak2

x∗ − iω∗
εo,a + θ ± 1

2

√√√√− εo,a2

2
− 2εo,ak2

x∗ − iω∗
εo,a − θ +

iεo,a3 − 8i(εo,ak2
x∗ − iω∗) + 4i(2εo,ak2

x∗ − iω∗)

4
√
− εo,a2

4 −
2εo,ak2

x∗−iω∗
εo,a + θ

; (65)

θ =

(
i +
√

3
)(

α +
√

α2 − 4β3
)1/3

6 · 21/3εo,aω∗
+

2εo,ak2
x∗ − iω∗

3εo,a +

(
i−
√

3
)

21/3β

3εo,a
(

α +
√

α2 − 4β3
)1/3

β =
(
−16εo,a2k4

x∗ω∗ + ω2
∗(3iεo,a + ω∗) + k2

x∗

(
−3εo,a4ω∗ + 4iεo,a

(
−3 + 4ω2

∗

)))
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α = ω2
∗

(
128iεo,a3ω∗k6

x∗ + 2ω3
∗

(
−9iεo,a3 + ω∗

)
+ 12εo,a2k4

x∗

(
−12 + 3iεo,a3ω∗ + 16ω2

∗

)
+ 3k2

x∗

(
9εo,a4

(
−1 + 2ω2

∗

)
− 4iεo,aω∗

(
−6 + 5ω2

∗

)))
and ko,a

1∗z takes the corresponding (63)–(65) values:

ko,a
1∗z =

(
ko,a

0z∗ + εo,ae−
z

Λo,a
(

εo,aω∗
(

k2
x∗ + ko,a2

0z∗ − iω∗
)))(

εo,aω∗
(
ko,a

0z∗ + iεo,a)(εo,ako,a2
0z∗ − iω∗

)
+ k2

x∗
(
−1 + εo,a2ko,a

0z∗ω∗ + iεo,a3ω∗
))

εo,a3
(
−iεo,aω∗k4

x∗ + ω∗ko,a
0z∗

(
−5iεo,ako,a3

0z∗ + 4εo,a2k2
0z∗ − 3ω∗ko,a

0z∗ − 2iεo,aω∗
)
+ k2

x∗

(
1− 6iεo,aω∗ko,a2

0z∗ + 2εo,a2ω∗ko,a
0z∗ −ω2

∗

)) (66)

Additional conditions for physical implementation are imposed on solutions (63)–(66):

Im(k∗x) > 0, Im(ko
∗z) < 0, Im(ka

∗z) > 0 (67)

Taking (67) into account, solution (63) turns out to be physically unrealizable in both
media. Solution (64) describes a regular solution with respect to a small parameter εo,a and
the corresponding wave component of a periodic flow. Solution (65) describes a singular
solution with respect to a small parameter εo,a and corresponds to the ligament component
of the periodic flow. To distinguish the roots, we introduce a redesignation for singular
solutions ko,a

∗l . Mathematically, the solutions corresponding to the wave component are
determined by the following condition:

|Re(ko,a
∗z )| � |Im(ko,a

∗z )| (68)

and the solutions corresponding to the ligament component are determined by the follow-
ing mathematical condition: ∣∣Re

(
ko,a
∗l
)∣∣ ∼ ∣∣Im(ko,a

∗l
)∣∣ (69)

Taking into account the ligament components, the form of the complete solution (54)
is rewritten as follows:

uo,a

wo,a

P̃o,a

ρ̃o,a

ζ

 =


Uo,a

m
(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Wo,a
m
(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Po,a
m
(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Po,a
m
(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Am

 exp(ikxx− iωt) (70)

Substituting the form of solution (70) for the boundary conditions (53), we obtain the
dispersion relations connecting the components of the wave vector kx with the frequency
of wave motion ω. Substituting the approximate solutions (64), (66), (65) and (66) into the
resulting relation, we obtain a dispersion equation. Restrictions (67) are imposed on the
solution, and thus physically realizable roots are selected. The resulting expressions are
cumbersome and difficult to analyze. Let us consider some limiting cases.

We consider the behavior of oscillations far from the interface between the media. In
this case, we assume that |z| � 1 for the lower liquid and for the upper liquid. Thus, for the
ocean in the dispersion relation (56), we can neglect the second term and use the following:

ω2(νo(k2
x + ko2

z
)
− iω

)(
−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)
− iω

))
co2Λo2 = 0 (71)

or in a dimensionless form:

ω2
∗η

o
(

ω∗(ko
z∗ + iεo)

(
εoko2

z∗ − iω∗
)
+ k4

x∗

(
−1 + εo2ω∗ko

z∗ + iεo3ω∗
)
= 0 (72)

The solutions to expression (71) (or (72)) are found exactly, but due to their cumber-
someness, they are not given here.

For the atmosphere in the dispersion relation (57), based on similar reasoning, we
neglect the first term and obtain the dispersion relation, which is far from the interface:

ωka
z
((

g + ica2ka2
z
)(
−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)
− iω

))
+ ca2k2

xΛa(Na2(ika
zΛa − 1) + ω

(
iν
(
k2

x + ka2
z
)
+ ω

)))
ca2Λa2 = 0 (73)
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or in a dimensionless form:

ω2
∗

εa ηa(εaω∗(ka
z∗ + iεa)

(
εaka2

z∗ − iω∗
)
+ εak4

x∗
(
−1 + εa2ω∗ka

z∗ + iεa3ω∗
)
+

+k2
x∗
(
2εa3ω∗ka3

z∗ − 2iεa2ω2
∗ka

z∗ + ω∗
(
i + 2εa3ω∗

)
+ ka2

z∗
(
−εa + 2iεa4ω∗

)))
= 0

(74)

The solutions of expression (73) (or (74)) are not given here due to their cumbersome-
ness. For waves near the surface, we can assume that the dispersion relations (56) and (57)
are simplified:

ω
co2Λo2

[
ω
(
νo(k2

x + ko2
z
)
− iω

)(
−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)
− iω

))
+

+ko
z
((

g + ico2ko2
z
)(
−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)
− iω

))
+

+ co2k2
xΛo(No2(iko

zΛo − 1) + ω
(
iν
(
k2

x + ko2
z
)
+ ω

)))]
= 0

(75)

ω
ca2Λa2

[
ω
(
νa(k2

x + ka2
z
)
− iω

)(
−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)
− iω

))
+

+ka
z
((

g + ica2ka2
z
)(
−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)
− iω

))
+

+ ca2k2
xΛa(Na2(ika

zΛa − 1) + ω
(
iν
(
k2

x + ka2
z
)
+ ω

)))]
= 0

(76)

or in a dimensionless form:

ω∗
εo2

[
εoηoω∗

(
εoω∗(ko

z∗ + iεo)
(
εoko2

z∗ − iω∗
)
+ εok4

x∗
(
−1 + εo2ω∗ko

z∗ + iεo3ω∗
)
+

+k2
x∗
(
2εo3ω∗ko3

z∗ − 2iεo2ω2
∗ko

z∗ + ω∗
(
i + 2εo3ω∗

)
+ ko2

z∗
(
−εo + 2iεo4ω∗

)))
+

+ko
z∗
(
iεo4ω∗k4

x∗+ εoω∗(ko
z∗ + iεo)

(
εo2ko

z∗ − iηo)(iεoko2
z∗ + ω∗

)
−

− k2
x∗
(
ηo − 2iεo4ω∗ko2

z∗ + εo5ω∗ko
z∗ − εo2ηoω∗ko

z∗ + εo3(1− iηoω∗ −ω2
∗
)))]

= 0

(77)

ω∗
εa2

[
εaηaω∗

(
εaω∗(ka

z∗ + iεa)
(
εaka2

z∗ − iω∗
)
+ εak4

x∗
(
−1 + εa2ω∗ka

z∗ + iεa3ω∗
)
+

+k2
x∗
(
2εa3ω∗ka3

z∗ − 2iεa2ω2
∗ka

z∗ + ω∗
(
i + 2εa3ω∗

)
+ ka2

z∗
(
−εa + 2iεa4ω∗

)))
+

+ka
z∗
(
iεa4ω∗k4

x∗+ εaω∗(ka
z∗ + iεa)

(
εa2ka

z∗ − iηa)(iεaka2
z∗ + ω∗

)
−

− k2
x∗
(
ηa − 2iεa4ω∗ka2

z∗ + εa5ω∗ka
z∗ − εa2ηaω∗ka

z∗ + εa3(1− iηaω∗ −ω2
∗
)))]

= 0

(78)

Nevertheless, despite their simpler appearance, the roots of expressions (77) and (78),
as well as complete expressions, can only be found asymptotically or numerically.

7. Discussion

The expressive properties of periodic flows in fluids—the regularity of wave displace-
ments of the liquid-free surface, the high speed of sound vibrations propagation and the
clarity of the pattern of periodic internal waves beams—formed the basis for the generally
accepted classification of waves and predetermined the rules for constructing mathemat-
ical models of the phenomenon. To describe each wave process in a linear [1,2,16,21] or
nonlinear approximation [41], its own system of equations was developed based on the
system of fundamental equations of mechanics of fluids and gases [1,2,4,16], and general
physical considerations [31,52].

Under natural conditions, sharp disturbances lead to the formation of several types
of waves, which propagate with their own phase and group velocities and differ in atten-
uation laws. The parameters of wave processes—periods, wavelength, group and phase
propagation velocities—are described by real numbers. The mathematical description of
periodic flows is carried out in the algebra of complex numbers. The use of wave represen-
tations by exponential functions of complex frequency and complex wave vector allows
us to construct the dispersion relations [1,2] and evaluate the stability of the flows under
study [32,33].

Taking into account the special physical properties of the wave frequency—the mea-
sure of the energy of periodic motion—in this work, as in [38,40,42,46], the wave frequency
ω is assumed to be real, and the wave number k is taken to be complex. In this approx-
imation, the degree of the dispersion relation corresponds to the order of the system of
differential equations. The solutions of the system of governing equations, constructed
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using methods of singular perturbation theory and by taking into account the type of
small parameter of the process under study, contain two types of solutions. The real part
of some wave numbers is large, and the imaginary part is small. The other types have
real and imaginary parts of the same order. Accordingly, some of the solutions, including
solutions with small values of the imaginary part of the wave vectors, contain functions
that are regular in the small parameter and describe waves. For each type of wave, its own
dispersion equation is constructed.

Another part of the solutions with large values of the wave vector imaginary parts
determines the ligaments, which correspond to thin high-gradient fibers and interfaces
in the thickness of a stratified liquid [30,38]. From the given analysis, it follows that
specific ligaments accompany all types of waves—surface, internal and acoustic ones. The
consideration of the ligaments’ influence made it possible to pre-calculate the parameters
of reflected and leaking waves, which occur when the reflecting beams of the internal
waves of the critical level separate the medium with a high buoyancy frequency from a
low-frequency layer not exceeding the wave frequency [5]. It is consistent with the data of
later experiments [53].

From the theoretical point of view, the number of ligaments accompanying the wave
is determined by the completeness degree taking into account the factors influencing the
density and the dimension of the problem space. The minimum number—two ligaments—
accompany two-dimensional waves in a medium with one dissipative parameter (kine-
matic viscosity). Their thickness is determined by the scale of the periodic Stokes flow
δν

ω =
√

ν/ω [13]. Considering the three-dimensionality of space, the effects of thermal
diffusivity and diffusion lead to an increase in the number of ligaments with different
properties [40]. The effects of nonlinear interaction between ligaments can increase the
mutual influence of waves of different types [42].

The developed methodology for constructing complete solutions makes it possible
to describe not only the wave component of a periodic flow but also the fine structure,
manifested in the form of ligaments—thin jets accompanying the wave motion. The param-
eters of the observed phenomena in the process of propagation of periodic disturbances in
liquids and gases, which are determined using the properties of the medium, define the
requirements for the experimental methodology and the resolution (spatial and temporal)
of the equipment for observing the complete picture of flows.

8. Conclusions

For the first time in a unified formulation, the propagation of infinitesimal periodic
disturbances in the thickness and on the surface of a viscous compressible exponentially
stratified fluid has been studied based on a system of fundamental equations. The analysis
of linearized equations has been carried out using the methods of singular perturbation
theory, taking into account the compatibility condition. The dispersion relations for periodic
flows with a real positive definite frequency and complex wave number are calculated and
analyzed. Complete solutions of the dispersion relations containing regular and singular
roots are found. Regular roots, which determine the wave components of periodic flows,
are regularly reduced to known dispersion relations for waves in a homogeneous viscous
or ideal fluid. Singular roots define the ligament components of periodic flows. Ligaments
describe the fine structure of periodic flows and characterize thin high-gradient jets and
interfaces.

The general properties of solutions are that acoustic or internal waves propagating in
the thickness, as well as gravitational waves at the interface of infinitely deep media, are
accompanied by ligaments forming a fine structure of the medium. In extreme cases, the ob-
tained relationships transform into known expressions for waves a viscous incompressible
and an ideal homogeneous fluid.

The further application of the obtained expressions in studying the physical properties
of periodic flows in configuration space and in comparison with experimental data using
high-resolution instruments is of scientific and practical interest.
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