
Citation: Ivanov, I.G.; Yang, H. On

the Iterative Methods for the Solution

of Three Types of Nonlinear Matrix

Equations. Mathematics 2023, 11, 4436.

https://doi.org/10.3390/

math11214436

Academic Editors: Carlo Bianca and

Ioannis K. Argyros

Received: 12 September 2023

Revised: 8 October 2023

Accepted: 23 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On the Iterative Methods for the Solution of Three Types of
Nonlinear Matrix Equations
Ivan G. Ivanov 1,*,† and Hongli Yang 2,†

1 Faculty of Economics and Business Administration, Sofia University “St.Kl.Ohridski”, 1000 Sofia, Bulgaria
2 College of Mathematics and Systems Science, Shandong University of Science and Technology,

Qingdao 266590, China; yanghongli@sdust.edu.cn
* Correspondence: i_ivanov@feb.uni-sofia.bg
† These authors contributed equally to this work.

Abstract: In this paper, we investigate the iterative methods for the solution of different types of
nonlinear matrix equations. More specifically, we consider iterative methods for the minimal nonneg-
ative solution of a set of Riccati equations, a nonnegative solution of a quadratic matrix equation,
and the maximal positive definite solution of the equation X + A∗X−1 A = Q. We study the recent
iterative methods for computing the solution to the above specific type of equations and propose more
effective modifications of these iterative methods. In addition, we make comments and comparisons
of the existing methods and show the effectiveness of our methods by illustration examples.
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1. Introduction

Nonlinear matrix equations are commonly used in many fields of scientific and engi-
neering computing. Research on the existence and properties of the solution to the matrix
equations, as well as the corresponding numerical methods, has important theoretical
significance and practical value. In this paper, we focus on the iterative methods for the
solution of different types of nonlinear matrix equations. More specifically, we consider
the iterative methods for computing the minimal nonnegative solution of a set of Riccati
equations, a nonnegative solution of the quadratic matrix equation, and the maximal pos-
itive definite solution of the equation X + A∗X−1 A = Q. Iterative methods for solving
the nonlinear matrix equation, which avoid the calculation of the inverse matrix at each
iteration step, have gained wide popularity [1,2]. Without commenting on the reliability of
this approach, this is an efficient approach that speeds up convergence. Users of similar
methods should be aware of the possibility that some of these methods may lose accu-
racy during the calculations and may not reach the result. Moreover, we study the recent
iterative methods for computing the above specific type of equations and propose more
effective modifications of these iterative methods.

The investigated equations can be encountered in various applied tasks, for example,
in the solution of problems for stability analysis [3,4]. There have been many published
papers on the field of matrix iterative schemes and their applications. We cite some of them
related to our investigation [5–8].

We will exploit a class of nonnegative matrices for the first two equations. Some
notations are made throughout this paper. A matrix is nonnegative if all entries are
either greater than zero or equal to zero. The set of real r× n matrices is denoted as Rr×n.
The notations I or Ir are used for an unit r× r matrix. We need an elementwise order relation.
The inequality A ≥ B(A > B) for A = (aij), B = (bij) means that aij ≥ bij(aij > bij) for all
indexes i and j. A matrix A = (aij) ∈ Rp×p is said to be a Z-matrix if it has non-positive
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off-diagonal elements. A Z-matrix Q has the presentation Q = γI − P, with P being a
nonnegative matrix. Each M-matrix is a Z-matrix if γ ≥ ρ(P), where ρ(P) is the spectral
radius of P. A Z-matrix Q is called a non-singular M-matrix if γ > ρ(P); otherwise, it is a
singular M-matrix. For the third equations, we will exploit a class of Hermitian matrices.
If the matrix Q is positive definite, we write Q � 0 or Q � 0 for positive semidefinite.
Therefore, P � Q means the matrix P−Q is positive semidefinite.

2. Numerical Methods for the Solution of a Set of Riccati Equations

In this section, we investigate different iterative methods to compute the minimal
nonnegative solution of a set of matrix Riccati equations, where the matrix coefficients
of each equation are associated with an M-matrix. Our investigation follows the ideas of
Bai and coauthors in [9], Ma and Lu [10], Guan and Lu [11], Guan [12], and Ivanov and
Yang [13]. In fact, we propose a new modification of the alternate linear implicit method
introduced in [14] and modified in [15]. We propose a different iterative method to compute
the minimal nonnegative solution and derive convergence properties of the new iteration.
We apply some properties of M-matrices in the proof and show that the new iteration
method is faster than Newton’s method investigated in [16] by Liu, Zhang, and Luo.

Consider a set of nonsymmetric coupled Riccati equations (SNCRE) associated
with M-matrices:

Mi(X1, . . . , Xq) := XiCiXi − XiDi − AiXi + Bi + ∑
j 6=i

eijXj = 0, (1)

i = 1, . . . , q,, which is introduced in [14]. The coefficients of matrix Xi are Ai = (ai
kp) ∈

Rm×m, Bi ∈ Rm×n, Ci ∈ Rn×m, Di = (di
kp) ∈ Rn×n. Let (X1, . . . , Xs) be a solution of the set

of Equation (1) with Xi ∈ Rm×n, i = 1, . . . , q. Entries of E = (eij) are nonnegative constants.
The couple of matrices (X̃1, . . . , X̃q) is the minimal nonnegative solution to (1) if

X̃i ≤ Xi, i = 1, . . . , q (elementwise order) for any nonnegative solution (X1, . . . , Xq) to (1).
Zhang and Tan [14] have investigated the inexact Newton method and the alternate

linear implicit method (ALI) to compute the minimal nonnegative solution of the SNCRE (1).
They have proved the convergence properties of these iterations. We define the ALI iterative
method with initial matrices X(0)

i = 0 ∈ Rn×n(m = n). The method uses positive constants
γi, i = 1, . . . , q, which are computed via ((31), [14]):

γi = max{maxjai
jj, maxjdi

jj}. (2)

for k = 0, 1, 2, . . . :

Y(k)
i (γi In + Di − CiX

(k)
i ) = (γi In − Ai)X(k)

i + Bi + ∑j 6=i eijX
(k)
j ,

(γi In + Ai −Y(k)
i Ci)Xk+1

i = Y(k)
i (γi In − Di) + Bi + ∑j 6=i eijY

(k)
j .

(3)

Iteration (3) computes two inverse matrices at each iteration step. In order to avoid the
computation of inverse matrices at each step, we have proposed a modification, as in [15]:

X(0)
i = 0, i = 1, 2, . . . q,

k = 0, 1, 2, . . . :

Y(k)
i (γi In + Di) = (γi In − Ai + X(k)

i Ci)X(k)
i + Bi + ∑j 6=i eijX

(k)
j ,

(γi In + Ai)Xk+1
i = Y(k)

i (γi In − Di + CiY
(k)
i ) + Bi + ∑j 6=i eijY

(k)
j .

(4)

Iteration (4) and its convergence properties are derived in [15]. Here, the computations
of the inverse matrices of (γi In + Di) and (γi In + Ai) are executed in the beginning of
the iterative process, i.e., it operates only one time. This fact significantly reduces the
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computational cost throughout the iteration process, which is confirmed by the numerical
experiments executed in [15].

2.1. Newton Method and Its Modifications

Authors Liu, Zhang, and Luo [16] investigated the Newton method to compute the
positive minimal solution to the set of Riccati Equation (1).

X(0)
i = 0, i = 1, 2, . . . q,

k = 0, 1, 2, . . . :

(Ai − X(k)
i Ci)X(k+1)

i + X(k+1)
i (Di − CiX

(k)
i ) = Bi+

+∑j 6=i eijX
(k)
j − CiX

(k)
i Ci.

(5)

Together with (5), the following modifications are studied by the same authors:

X(0)
i = 0, i = 1, 2, . . . q,

k = 0, 1, 2, . . . :

(Ai − X(k)
i Ci)X(k+1)

i + X(k+1)
i (Di − CiX

(k)
i ) = Bi+

+∑j<i eijX
(k+1)
j + ∑j>i eijX

(k)
j − CiX

(k)
i Ci.

(6)

and
X(0)

i = 0, i = 1, 2, . . . q,

k = 0, 1, 2, . . . :

(Ai − X(k)
i Ci)X(k+1)

i + X(k+1)
i (Di − CiX

(k)
i ) = Bi+

+∑j<i eij(ωX(k+1)
j + (1−ω)X(k)

j ) + ∑j>i eijX
(k)
j − CiX

(k)
i Ci.

(7)

The proof of the convergence for (5) is derived by Liu, Zhang, and Luo in [16], whereas
the iterations (6) and (7) are used by them as an empirical experiment. The idea of applying
approximation X(k+1)

i for computing X(k+1)
j , j > i, as in (6), is an effective one.

2.2. Our New Iteration Scheme and Convergence Proof

Here, we propose the following iteration strategy to compute the minimal nonnegative
solution to (1):

X(0)
i = 0, i = 1, 2, . . . q

γi as in (2), i = 1, 2, . . . q

k = 0, 1, 2, . . . :, 0 ≤ ω

Y(k)
i (γi I + Di) = (γi I − Ai + X(k)

i Ci)X(k)
i + Bi

+∑j<i eij[ωY(k)
j + (1−ω)X(k)

j ] + ∑j>i eijX
(k)
j ,

(γi I + Ai)X(k+1)
i = Y(k)

i (γi I − Di + CiY
(k)
i ) + Bi

+∑j<i eij[ωX(k+1)
j + (1−ω)Y(k)

j ] + ∑j>i eijY
(k)
j .

(8)

We derive several matrix identities for matrices obtained by iteration (8) in the lemma.
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Lemma 1. The matrix sequences {X(k)
i , Y(k)

i }
∞
k=0 are constructed by iteration (8) with initial

values X(0)
i = 0, i = 1, 2, ..q. The following matrix identities are satisfied for k = 0, 1, . . . , ∞:

(i) (Y(k)
i − X(k)

i )(γi I + Di) = (X(k)
i −Y(k−1)

i )(γi I − Di)

+X(k)
i Ci(X(k)

i −Y(k−1)
i ) + (X(k)

i −Y(k−1)
i )CiYi

(k−1)

+∑j<i eij[ω(X(k+1)
j − X(k)

j ) + (1−ω)(Y(k)
j − X(k)

j )]

+∑j>i eij(X(k)
j −Y(k)

j ),

(ii) (γi I + Ai)(X(k+1)
i −Y(k)

i ) = (γi I − Ai)(Y
(k)
i − X(k)

i )

+Y(k)
i Ci(Y

(k)
i − X(k)

i ) + (Y(k)
i − X(k)

i )CiX
(k)
i

+∑j<i eij[ω(X(k+1)
j −Y(k)

j ) + (1−ω)(Y(k)
j − X(k)

j )]

+∑j>i eij(Y
(k)
j − X(k)

j ),

where I is an identity n× n matrix.
Moreover, if (X̃1, . . . , X̃q) is an exact nonnegative solution ofMi(X1, . . . , Xq) = 0, the sub-

sequent identities can be verified:

(iii) (X̃i −Y(k)
i )(γi I + Di) = (γi I − Ai)(X̃i − X(k)

i )

+X(k)
i Ci(X̃i − X(k)

i ) + (X̃i − X(k)
i )CiX̃i

+∑j<i eij[ω(X̃j −Y(k)
j ) + (1−ω)(X̃j − X(k)

j )]

+∑j>i eij(X̃j − X(k)
j )

(iv) (γi I + Ai)(X̃i − X(k+1)
i ) = (X̃i −Y(k)

i )(γi I − Di)

+(X̃i −Y(k)
i )CiX̃i + Y(k)

i Ci(X̃i −Y(k)
i )

+∑j<i eij[ω(X̃i − X(k+1)
j ) + (1−ω)(X̃i −Y(k)

j )]

+∑j>i eij(X̃i −Y(k)
j )

Proof. The proof is completed by direct calculations and matrices manipulations. We
rewrite Equation (8) for X(k)

i and consider the difference Y(k)
i (γI + Ai)− (γI2n + Di)X(k)

i .
After some matrix calculations, we obtain the matrix identity (i). Subtracting matrix
equations in (8), we derive (ii).

We prove the convergence of the matrix sequence generated by (8).

Theorem 1. Suppose the matrix coefficients Ai, Di of (1) are Z-matrices and Bi, Ci, (i = 1, . . . , q)
are nonnegative. There must exist positive scalars γi such that (γi I + Ai) and (γi I + Di) are
nonsingular M-matrices.

If there exits a nonnegative solution to set of matrix Equation (1), then the matrix sequences
{X(k)

i , Y(k)
i }

∞
k=0 i = 1, . . . , q generated by (8) satisfy the following monotonicity property:

(i) X̂i ≥ X(k+1)
i ≥ Y(k)

i ≥ X(k)
i for i = 1, . . . , q, k = 0, 1, . . . for an exact nonnegative

solution (X̂1, . . . , X̂q) of (1). Moreover, the same matrix sequences converge to the nonnegative
minimal solution of (1).

(ii) Moreover, if Ai − X̂iCi and Di − CiX̂i, i = 1, . . . , q are nonsingular M-matrices, then
Ai − X̃iCi and Di −CiX̃i, i = 1, . . . , q are nonsingular M-matrices, i.e., matrices −Ai + X̃iCi and
−Di + CiX̃i, i = 1, . . . , q are c-stable.

Proof. Under assumptions that we have (γi I + Ai)
−1 ≥ 0 and (γi I + Di)

−1 ≥ 0, i = 1,
. . . , q. Apply recurrence Equation (8) with X(0)

1 = . . . = X(0)
q = 0 and γi computed by (2).
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For Y(0)
1 , we have Y(0)

1 (γ1 I + D1) = B1 ≥ 0 and Y(0)
1 = B1(γi I + D1)

−1 ≥ 0. For Y(0)
2 ,

we have Y(0)
2 (γ2 I + D2) = B2 + e21ωY(0)

1 ≥ 0. Thus, Y(0)
2 ≥ 0. Therefore Y(0)

i ≥ 0, and

Y(0)
i ≥ X(0)

i = 0, i = 1, . . . , q.

Construct matrix sequences {X(k)
i , Y(k)

i }
∞
k=0 i = 1, . . . , q by (8) and exploit the facts

γi I − Di ≥ 0 and γi I − Ai ≥ 0, i = 1, . . . , q.
We assume that the inequalities are true X(p)

i ≥ Y(p−1)
i ≥ X(p−1)

i ≥ 0 for some
integer p.

Next, we prove that X(p+1)
i ≥ Y(p)

i ≥ X(p)
i ≥ 0, i = 1, . . . , q.

Taking into account of Lemma 1(i), we get:

(Y(p)
i − X(p)

i ) = F(p)
i (γi I + Di)

−1 ≥ 0 ,

because

F(p)
i := (X(p)

i −Y(p−1)
i )(γi I − Di)

+X(p)
i Ci(X(p)

i −Y(p−1)
i ) + (X(p)

i −Y(p−1)
i )CiYi

(p−1)

+∑j<i eij[ω(X(p+1)
j − X(p)

j ) + (1−ω)(Y(p)
j − X(p)

j )]

+∑j>i eij(X(p)
j −Y(p)

j ) ≥ 0 .

Note that:

ω(X(p+1)
j − X(p)

j ) + (1−ω)(Y(p)
j − X(p)

j ) = (Y(p)
j − X(p)

j ) + ω(X(p+1)
j −Y(p)

j ) ≥ 0.

Thus, ω(X(p+1)
j − X(p)

j ) + (1−ω)(Y(p)
j − X(p)

j ) ≥ 0 for positive ω and all j.

Therefore, Y(p)
i − X(p)

i ≥ 0, i = 1, . . . , q.
Taking account of Lemma 1(ii), we have:

(X(p+1)
i −Y(p)

i ) = (γi I + Ai)
−1 G(p)

i ,

where
G(p)

i = (γi I − Ai)(Y
(p)
i − X(p)

i )

+Y(p)
i Ci(Y

(p)
i − X(p)

i ) + (Y(p)
i − X(p)

i )CiX
(p)
i

+∑j<i eij[ω(X(p+1)
j −Y(p)

j ) + (1−ω)(Y(p)
j − X(p)

j )]

+∑j>i eij(Y
(p)
j − X(p)

j ) ≥ 0.

Thus, X(p+1)
i −Y(p)

i ≥ 0, i = 1, . . . , q.

We conclude that the matrix sequences {X(k)
i , Y(k)

i }
∞
k=0 are monotone increasing. We have

to prove that they are bonded above. Consider any exact nonnegative solution (X̂1, . . . , X̂q)
of (1). We shall prove that the solution is an upper bound of the matrix sequences.

For k = 0, we have X̂i ≥ X(0)
i = 0. We compute Y(0)

i , i = 1 . . . , q, and by (Lemma 1(iii)):

X̂i −Y(0)
i = (Q(0)

i + S(0)
i ) (γi I + Di)

−1,

where

Q(0)
i = (γi I − Ai)(X̂i − X(0)

i ) + X(0)
i Ci(X̂i − X(0)

i ) + (X̂i − X(0)
i )CiX̂i,

and
S(0)

i = ∑j<i eij[ω(X̃j −Y(0)
j ) + (1−ω)(X̃j − X(0)

j )]

+∑j>i eij(X̃j − X(0)
j ).
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Note that Q(0)
i ≥ 0, i = 1, . . . , q.

Moreover, for i = 1 we have X̂1 −Y(0)
1 ≥ 0, because:

S(0)
1 = ∑j>1 e1j(X̂j − X(0)

j ) ≥ 0.

For i = 2, we obtain:

S(0)
2 = e21[ω(X̂1 −Y(0)

1 ) + (1−ω)(X̂1 − X(0)
1 )]

+∑j>2 e2j(X̂j − X(0)
j ) ≥ 0 .

Thus, X̂2 −Y(0)
2 ≥ 0. We conclude that X̂j −Y(0)

j ≥ 0 j = 1, . . . , q.
Thus:

X̂j ≥ Y(0)
j ≥ X(0)

j ≥ 0, j = 1, . . . , q.

We will prove:
X̂j ≥ X(1)

j , j = 1, . . . , q.

From Lemma 1(iv), for k = 0, we obtain:

X̂i − X(k+1)
i = (γi I + Ai)

−1 (G(0)
Yi + L(0)

i ),

where
G(0)

Yi = (X̃i −Y(0)
i )(γi I − Di) + (X̂i −Y(0)

i )CiX̂i + Y(0)
i Ci(X̂i −Y(0)

i ),

which is a nonnegative matrix. For the matrix L(0)
i , write:

L(0)
i = ∑j<i eij[ω(X̂j − X(1)

j ) + (1−ω)(X̂j −Y(0)
j )] + ∑j>i eij(X̂j −Y(0)

j ).

For i = 1, we obtain:
L(0)

1 = ∑
j>1

e1j(X̂j −Y(0)
j ) ≥ 0,

and thus X̂1 − X(1)
1 ≥ 0. For i = 2, write:

L(0)
2 = e21[ω(X̃1 − X(1)

1 ) + (1−ω)(X̂1 −Y(0)
1 )] + ∑

j>2
e2j(X̂j −Y(0)

j ) ≥ 0,

which leads to X̂2 − X(1)
2 ≥ 0.

Consequently, we infer X̂j − X(1)
j ≥ 0, j = 1, . . . , q.

Assume:
X̂j ≥ X(k)

j ≥ Y(k−1)
j ≥ 0, j = 1, . . . , q.

With similar reasoning, we derive the inequalities:

X̂j ≥ X(k+1)
j ≥ Y(k)

j ≥ 0, j = 1, . . . , q.

Both matrix sequences are monotone increasing in the elemenwise order and bounded
by the above. They converge to same limit (P̃1, . . . , P̃q). Going to the limits in Equation (8),
one concludes that (P̃1, . . . , P̃q) is a nonnegative solution of (1).

Suppose there is another solution (S̃1, . . . , S̃q) with S̃j ≤ P̃j. The last inequalities lead
us to a contradiction with the inequalities S̃j ≤ P̃j. Therefore, the solution (S̃1, . . . , S̃q) is the
minimal one.

Furthermore, we shall prove point (ii) of the theorem. Matrices Ai − X̂iCi and Di − CiX̂i,
i = 1, . . . , q are nonsingular M-matrices for an upper nonnegative limit (X̂1, . . . , X̂q) for
nonnegative solutions of (1). According to properties of M-matrices, we conclude that
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Ai − X̃iCi is a nonsingular M-matrix for i = 1, . . . , q and, moreover, −Ai + X̃iCi, i = 1, . . . , s
is c-stable for the minimal nonnegative solution (X̃1, . . . , X̃q) of (1).

Remark 1. The existence of a nonnegative solution for the set of matrix Equation (1) is commented
by [16]. Two assumptions are necessary in [14], which involve the existence of a nonnegative
matrices sequence Z1, . . . , Zq such thatMi(Z1, . . . , Zq) ≤ 0. However, we drop this condition in
our investigation. We derive a direct convergence proof for iteration (8) based on Lemma 1.

Remark 2. We use the parameter ω, the values of which are bigger than 2 in (8) in order to speed
up the rate of convergence for (8) comparing with the case ω = 1. We denote Wj,ω = ωY(k)

j + (1−

ω)X(k)
j and Vj,ω = ωX(k+1)

j + (1− ω)Y(k)
j . For ω > 2, we have Wj,ω −Wj,ω=1 = ωY(k)

j +

(1− ω)X(k)
j − Y(k)

j = (ω − 1)Y(k)
j + (1− ω)X(k)

j ≥ 0. That means Wj,ω>2 −Wj,ω=1 ≥ 0.
Analogously, the inequality Vj,ω>2 −Vj,ω=1 ≥ 0 is true for all values of j. We expect that iteration
(8) for ω ≥ 2 makes a smaller number of iteration steps than the case ω = 1. We shall track this
fact in numerical experiments.

The above remarks allow choosing ω > 1, and confirm that the choice preserves the
monotony of the matrix sequences {X(k)

i , Y(k)
i }

∞
k=0 i = 1, . . . , q.

2.3. Numerical Experiments

We provide numerical experiments to compute the minimal nonnegative solution
to (1). We compare the results of iterations (5)–(7) with the results of the proposed new
iterations (8). All experiments are performed in MATLAB (version R2018b) on a personal
computer. The iterations stop when the current iterative step satisfies RESi ≤ 10× 10−12,
where RESi is defined as [14]:

RESi :=
‖Mi(X1

(k), . . . , Xq
(k))‖

‖Mi(X1
(0), . . . , Xq

(0))‖
,

i = 1, . . . , q.
In the experiments, we choose the parameters γi, as defined in (2). We take X(0)

1 =

. . . = X(0)
q = 0 for all examples and all iterative methods. Thus,Mi(X1

(0), . . . , Xq
(0)) = Bi.

Example 1. A set of n× n matrix coefficients for different values of n are tested. The matrices
Ai, Di, i = 1, 2, 3 are introduced following the Matlab terminology:

A1 = A2=A3 = zeros(n,n);
For i = 1:n, A1(i, i) = 4; A2(i, i) = 3; A3(i, i) = 2; end
For i = 1:n− 1, A1(i, i + 1) = −0.5; A1(i + 1,i) = −0.03; end
For i = 1:n− 2, A1(i, i + 2) = −0.25; A1(i + 2, i) = −0.9; end
A1(1, n) = −0.05; A1(n, 1) = −0.4;
A2 = A1; A2(1, n) = −0.8; A2(n, 1) = −0.06;
A3 = A1; A3(1, n) = −0.7; A3(n, 1) = −0.09;
B1 = B2 = B3 = 0.75 In, B2 = B1, B3 = B1, C1 = 0.92 In, C2 = C1, C3 = C1, where

In is an identity matrix order n.

E = (eij) =

 0.0661 0.4512 0.8887
0.4965 0.3156 0.8780
0.6542 0.8914 0.1947

,

The results from the experiments are presented at Table 1. A hundred runs are executed
for each example for n = 12 and n = 24. Ten runs are executed for n = 48. In this case,
iterations (5) and (6) are very slowly (in the used computer), whereas iteration (8) is fastest.
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Table 1. Example 1 with (5)–(8).

(5) (6) (7), ω = 1.2 (8), ω = 2.5

n It CPU It CPU It CPU It CPU

12 34 4.3 s 19 2.57 s 18 2.44 s 25 0.10 s
24 38 128.7 s 21 81.9 s 19 70.7 s 28 0.33 s

10 runs

48 22 323.0 s 22 281 s 20 220.8 s 33 0.23 s

Example 2. A set of n× n matrix examples with the matrix coefficients for different values of n
are tested.

The matrices Ai, Di, i = 1, 2, 4 are introduced following the Matlab terminology:
A1 = gallery(‘tridiag’, n, 0, 1,−1); A1 = f ull(A1);
A2 = gallery(‘tridiag’, n, 0, 2,−1); A2 = f ull(A2);
A3 = gallery(‘tridiag’, n, 0, 3,−1); A3 = f ull(A3);
A4 = gallery(‘tridiag’, n, 0, 4,−1); A4 = f ull(A4);
D1 = gallery(‘tridiag’, n, 0, 2,−1); D1 = f ull(D1);
D2 = gallery(‘tridiag’, n, 0, 4,−1); D2 = f ull(D2);
D3 = gallery(‘tridiag’, n, 0, 6,−1); D3 = f ull(D3);
D4 = gallery(‘tridiag’, n, 0, 8,−1); D4 = f ull(D4);
B1 = 0.5 ∗ eye(n, n); B2 = B1; B3 = B1; B4 = B1;
C1 = 0.2 ∗ eye(n, n); C2 = C1; C3 = C1; C4 = C1;
E = rand(4);
The results from the experiments are presented in Table 2.

Table 2. Example 2 for 10 runs with (5)–(8).

(5) (6) (7), ω = 1.2 (8), ω = 2.5

n It CPU It CPU It CPU It CPU

12 31 0.63 s 17 0.32 s 14 0.3 s 17 0.03 s
24 32 10.7 s 16 4.62 s 16 4.6 s 19 0.03 s
48 28 406.2 s 25 386.6 s 19 291.9 s 29 0.24 s
96 slow convergence 35 0.98 s

The experiments with the above examples show the effectiveness of the proposed iteration
Formula (8). Moreover, the high value of ω speeds up the convergence.

3. Numerical Method for the Maximal Solutions of Specifical Nonlinear
Matrix Equations

Consider the iterative solution to the following nonlinear matrix equations:

X + A∗X−1 A = Q,

MY2 + NY + P = 0,

investigated in [1,2,17]. Numerical methods on the specific solutions of the above ma-
trix equations (maximal positive definite and minimal nonnegative) are investigated and
some families of iterative formulas are proposed in [1,2,17]. However, comments and
improvements of the proposed iteration schemes are provided to improve and accelerate
the convergence. In this section, we will focus on the problem of how to accelerate the
numerical solution of the above nonlinear matrix equations. The main tricks in the iterative
methods proposed in these publications are to avoid the computation of an inverse matrix
at each iteration step.

In general cases, the matrix A may be a real or complex square matrix. The notation
A∗ denotes a complex conjugate operation.
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3.1. Iterative Solution of X + A∗X−1 A = Q

We firstly list several known algorithms for computing the maximal solution of
X + A∗X−1 A = Q and compare their computational behavior.

Algorithm 1 follows iterative Formula (2.2) and the corresponding algorithm from [1].

Algorithm 1 For matrix equation X + A∗X−1 A = Q

1: Introduce matrix coefficients A, Q = I and a small positive number tol.
Take X0 = Y0 = I (the identity matrix).

2: Yk+1 = −I + Yk(3I + Xk − 2XkYk),
Xk+1 = I − A∗Yk+1 A,

3: Stop if ‖Xk+1 + A∗X−1
k+1 A− I‖ ≤ tol. Otherwise, k := k + 1 go to 2.

end

Algorithm 2 follows iterative Formula (3.3) and the corresponding algorithm from [2].

Algorithm 2 For matrix equation X + A∗X−1 A = Q

1: Introduce matrix coefficients A, Q = I and a small positive number tol. Choose
p = 1, m = 1, q1 = −1 for Equation (1.9) [2].
Take X0 = Y0 = I (the identity matrix).

2: Ek = XkYk,
Yk+1 = − 2

5 I + 12
5 Yk +

1
5 (Ek + E∗k )−

7
5 YkEk),

Xk+1 = I − A∗Yk+1 A,
Resk = ‖Xk+1 + A∗X−1

k+1 A− I‖ ≤ tol.
3: If Resk ≤ tol then stop. Otherwise, k := k + 1 go to 2.

end

In addition, we apply iterative Formula (3) from [18] to compute the same solution.
The iteration (3) is:

Xk+1 = I − A∗X−1
k A, X0 = αI, 0.5 ≤ α ≤ 1, k = 0, 1, . . . . (9)

Here, we apply Algorithms 1 and 2 and iteration (9) to compute the maximal positive
definite solution to X + A∗X−1 A = I. We use tol = 10−16 in examples. The computa-
tions are performed on a computer Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz via
Matlab R2018b.

Example 3. Consider the Example 3.1 introduced in [1]. The matrix is:

A =
1
40


2 −1 3 4
7 6 −5 9
4 8 10 6
−3 5 2 8

 .

We have executed 100 runs with all algorithms. Algorithm 1 makes 26 iteration steps for
0.0276 s. Algorithm 2 makes 21 iteration steps for 0.0238 s. The computer realization of iteration
(9) performs 21 iteration steps for 0.0186 s. The performance results of the three algorithms are
comparable and show their applicability.

Example 4. The example is considered in [2] as Example 4.1.

A =

 0.37 0.13 0.12
−0.30 0.34 0.12

0.11 −0.17 0.29

 .
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We have executed 100 runs with all algorithms. Algorithm 1 needs 81 iteration steps for
0.0754 s. Algorithm 2 needs 111 iteration steps for 0.1005 s. Iteration (9) performs 124 iteration
steps for 0.0942 s. All three algorithms are working effectively for this example. The computational
time is almost the same.

Example 5. The example is introduced by Guo and Lancaster in [19] with:

A =

 0.2 0.2 0.1
0.2 0.15 0.15
0.1 0.15 0.25

,

We have executed 100 runs with all algorithms using two different values of tol. We take
tol = 10−4. Algorithm 1 needs 48 iteration steps to compute the solution for 0.05 s. Algorithm 2
needs 59 iteration steps for 0.0586 s. Iteration (9) applies only three iteration steps for 0.0064 s
with α = 0.5. Further on, we take tol = 10−8. Algorithm 1 needs 4714 iteration steps to compute
the solution for 4.1306 s (for 100 runs). Algorithm 2 needs 5893 iteration steps for 5.7824 s (for
100 runs). However, iteration (9) has done only five iteration steps for 0.0101 s (for 100 runs) with
α = 0.5. Thus, iteration (9) is superior than Algorithms 1 and 2 when the maximal solution is
computed in this example.

Example 6. The example is firstly considered in [20] and, next, is investigated in [18]. The matrix
A is defined:

A =
Ã

2‖Ã‖
, Ã =

 0.1 −0.15 −0.2598076
0.15 0.2125 −0.0649519

0.2598076 −0.0649519 0.1375

 .

Algorithms 1 and 2 do not converge for this example. Iteration (9) with α = 0.5 converges to
the maximal solution after 11 iteration steps for tol = 10−7. The maximal solution X̃ is:

X̃ =

 0.500000082310064 −0.000000016964994 0.000000002309095
−0.000000016964994 0.729639588876686 −0.132582448109853

0.000000002309095 −0.132582448109853 0.576546597071862

 .

The results of the experiments in this section show that the introduced iterative method
(9) in [18] is effective and comparable to the iterative methods introduced in [1,2], and even
better. Iterative method (9) uses the choice of an initial approximation depending on the
value of α. How to make the choice of α can be read in [18]. Algorithms 1 and 2 avoid
the computation of the inverse matrix, but this is not always reliable, as can be seen from
the examples discussed in this section. Thus, we have to be careful where the inverse free
algorithm is applied.

3.2. Numerical Method for the Solution of MY2 + NY + P = 0

In this section, we study square matrix equation MY2 + NY + P = 0, where M, N, P
are real matrix coefficients. Different iterative methods are analyzed in [17] . The authors
of [17] have investigated a family of iterative methods for finding the minimal nonnegative
solution to MY2 + NY + P = 0. Their conclusion shows that Algorithms 1 and 6 defined
in [17] are able to find the corresponding solution with the given accuracy. We will present
these two algorithms and propose their modifications to improve their computational
behavior, i.e., we will propose new modifications of both algorithms to make them more
effective in the computational aspects.

We describe Algorithm 1 proposed in [17] as Algorithm 3 here.
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Algorithm 3 Algorithm 1 [17]

1: Input n× n matrices M, N, P.
2: We take Y0 and α > 0.
3: Compute VM = αM, and WM = (1− α)M.

Note that M = VM + WM.
4: Compute Yr+1 from

(VMYr + N + R)Yr+1 = (R−WMYr)Yr − P.
5: If ‖MY2

r + NYr + P‖ < tol then stop.

Now, we introduce our modifications to the above algorithms. The aim of the modifi-
cations is to use a diagonal matrix WM = ξ ∗ In. Then, the matrix multiplication WMYr can
be realized as ξ ∗Yr in Matlab. Taking WM as a diagonal matrix, we preserve the properties
of Theorem 2.4 proved by Erfanifar and Hajarian [17]. Thus, the matrix VMYr+1 + N is an
M-matrix and the matrix sequence {Yr} is monotone increasing and then converges to the
minimal nonnegative solution. Moreover, applying a diagonal form for the matrix WM, we
avoid a matrix multiplication and replace it with a matrix multiplication by a number.

Compare the results from Algorithms 3 and 4 by Example 7.

Algorithm 4 Our modification to Algorithm 3

1: Input n× n matrices M, N, P.
2: Take Y0 = 0 and α > 0, R = α ∗ In.
3: Compute VM = M + R, and WM = −R, and NN = N + R.

Note that M = VM + WM.
4: Compute Yr+1 using the equation

(VMYr + N + R)Yr+1 = (R−WMYr)Yr − P.
4.1: Compute im = inv(VM ∗Y0 + NN). (Remark Y0 = Yr.)
4.2: Compute tQ = (R + α ∗Y0) ∗Y0− P.
4.3: Compute Y0 = im ∗ tQ;. (Remark Y0 = Yr+1 here).
4.4: If norm((M ∗Y0 + N) ∗Y0 + P) ≤ tol then stop. Ortherwise, r = r + 1 and

go to Step 4.2.
5: The computed solution is Y0.

Example 7 (Example 4.1, [17]). For s× s matrix coefficients M = (mij), P = (pij), N = (nij),
we have: 

mii = −1.5, i = 1, . . . s;
mi,i+1 = −8, mi+1,i = −5, i = 1, . . . s− 1;
pii = −0.5, i = 1, . . . s;
pi,i+1 = −0.8, pi+1,i = −1.5, i = 1, . . . s− 1;
nii = 45, i = 1, . . . s,
ni,i+1 = −6, ni+1,i = −4, i = 1, . . . s− 1,
n11 = nss = 18.

Introducing a vector-row of size s of units, i.e., e = (1, . . . , 1), we compute
emat = 0.1 ∗ e′ ∗ e, and M = M-emat.

Based on the matrices M, N, P, we compute a nonnegative solution of matrix Equation (1)
with Algorithms 3 and 4 with the stop criterion with tol = 10−14 and compare numbers of
iteration steps (It) and CPU time for 1000 runs for each value of s. The results are listed in
Table 3.
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Table 3. Example 7 for 1000 runs with Algorithms 3 and 4.

Algorithm 3 Algorithm 4

s(α) It CPU Time It CPU Time
Seconds Seconds

10 (0.6) 14 0.20 13 0.19
20 (0.6) 14 0.48 13 0.42
30 (0.6) 14 0.80 13 0.74
40 (0.6) 14 1.45 13 1.41
50 (0.6) 14 4.35 13 3.87
60 (0.6) 14 5.56 13 5.25
70 (0.6) 15 8.60 14 8.22
80 (0.7) no convergence 14 7.52
80 (0.9) 15 8.37 15 8.12

tol = 10−13

90 (0.6) 14 10.51 13 9.43
100 (0.6) 14 14.1 13 13.71

Further on, we describe Algorithm 6 introduced in [17].
Applying the same approach, we obtain a modification of Algorithm 5.

Algorithm 5 Algorithm 6 [17]

1: Input n× n matrices M, N, P.
2: We take Y0 and α > 0, β > 0.
3: Compute VM = αM, and WM = (1− α)M.

VN = αN, and WN = (1− β)N.
Note that M = VM + WM and N = VN + WN .

4: Compute Zr, Yr+1 from
(VMYr + VN + R)Zr = (R−WMYr −WN)Yr − P,
(WMZr + VN + S)Yr+1 = (S−VMZr −WN)Zr − P.

5: If ‖MY2
r + NYr + P‖ < tol then stop . Ortherwise, r = r + 1 and go to Step 4.

We have performed experiments with Algorithms 4 and 5 for Example 7. The tol value
is tol = 10−14 and 1000 runs for each value of s are played. The results can be found in
Table 4.

Table 4. Example 7 for 1000 runs with Algorithms 5 and 6.

Algorithm 5 Algorithm 6 Algorithm 6

α = 0.8, β = 0.9 α = β = 0.94 α = 0.8; β = 0.95

n(α, β) It CPU Time It CPU Time It CPU Time
Seconds Seconds Seconds

10 7 0.15 6 0.14 6 0.12
20 7 0.34 6 0.31 6 0.28
30 7 0.59 6 0.51 6 0.48
40 7 1.05 6 0.87 6 0.85
50 7 3.32 6 1.92 6 1.82
60 7 3.11 6 2.38 6 2.46
70 7 4.25 6 3.56 6 3.62

tol = 10−13

80 7 5.32 6 4.70 6 4.44
90 7 5.62 6 5.60 6 5.87
100 7 10.26 6 8.30 6 8.24
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Algorithm 6 Our modification of Algorithm 5

1: Input n× n matrices M, N, P.
2: We take Y0 and α > 0, β > 0, R = α ∗ In, S = β ∗ In.
3: Compute VM = M + R, and WM = −R, and VN = β ∗ N, WN = (1− β) ∗ N and

NN = VN + R, NM = VN + S.
Note that M = VM + WM and N = VN + WN .

4: Compute Zr, Yr+1 from matrix equations:
(VMYr + VN + R)Zr = (R−WMYr −WN)Yr − P,
(WMZr + VN + S)Yr+1 = (S−VMZr −WN)Zr − P.

4.1: Compute im = inv(VM ∗Y0 + NN). (Remark Y0 = Yr.)
4.2: Compute tQ = (R + α ∗Y0−WN) ∗Y0− P.
4.3: Compute Z0 = im ∗ tQ;. (Remark Z0 = Zr here).
4.4: Compute im = inv(NM− α ∗ Z0).
4.5: Compute tQ = (S−VM ∗ X0−WN) ∗Y0− P.
4.6: Compute Y0 = im ∗ tQ;. (Remark Y0 = Yr+1 here).
4.7: If norm((M ∗Y0 + N) ∗Y0 + P) ≤ tol then stop. Ortherwise, r = r + 1 and

go to Step 4.1.
5: The computed solution is Y0.

Comparing Tables 3 and 4, we conclude that Algorithm 5 is faster than Algorithm 3,
and Algorithm 6 is faster than Algorithm 4. Algorithm 6 is faster than the remaining
algorithms. The approach to divide the given iteration from Algorithm 3 in two parts, as it
is shown in Algorithm 5, is more effective than the original one.

4. Conclusions

In this paper, we have studied numerical methods for three computational tasks: (a) to
compute the minimal nonnegative solution of a set of Riccati equations, (b) to compute the
maximal positive definite solution of the equation X + A∗X−1 A = Q, and (c) to compute
the minimal nonnegative solution to the quadratic matrix equation MY2 + NY + P = 0.
We have considered the existing iterative methods and have proposed their improvements
to accelerate the convergence process. We have performed several numerical experiments
for each task where to show the effectiveness of the proposed modifications.

Moreover, as a weakness of the iterative methods for solving task (b), we note that the
application of the inverse free approach, where the computation of an inverse matrix is
avoided, will save the cost of computation. However, the use of this approach is limited.
This fact is confirmed by experiments in Section 3.1. In recent years, this approach has been
widely used in the analysis of iterative solutions of matrix equations. The effectiveness of
this approach will be investigated in our future work more deeply.
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