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Abstract: In this study, several methods to analyze convective heat transfer in a porous medium
are presented and discussed. First, the method of Fourier was used to obtain solutions for reduced
temperatures θs and θ f . The results showed an exponentially decaying propagating temperature front.
Then, we discuss the method of integration that was presented earlier by Schumann. This method
makes use of a transformation of variables. Thirdly, the system of partial differential equations was
directly solved with the Finite Difference method, of which the result showed good agreement with
the Fourier solutions. For the chosen ∆τ and ∆ξ, the maximum error for θ f = 3.7%. The maximum
error for θs for the first ξ and first τ is large (36%) but decays rapidly. The problem was extended by
adding a linear heat source term to the solid. Again, making use of the change in variables, analytical
solutions were derived for the solid and fluid phases, and corrections to the previous literature
were suggested. Finally, results obtained from a numerical model were compared to the analytical
solutions, which again showed good agreement (maximum error of 6%).
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1. Introduction

A simplification often made specifically for heat transfer in porous media is that the
temperatures of the fluid and solid phases are equal. However, in applications where heat
transfer is characterized by a high Péclet number or in the presence of rapidly fluctuating
heat sources or sinks, local temperature differences between both phases may be significant.
In this case, the temperature is governed by two coupled equations, one each for the fluid
and solid phases. Typical applications are heat storage in packed beds [1–6] and fluidized
bed reactors [7–9].

Anzelius [10] studied a fluid moving through a porous medium and assumed no heat
exchange with the environment and no axial conduction in the fluid and solid phases. Con-
duction perpendicular to the direction of flow was assumed to be sufficiently high so that
no significant in-plane temperature variation was present. Three years later, Schumann [11]
also derived the equations for this problem. The analysis of the Anzelius problem was
extended with internal heat generation in the solid phase by Brinkley [12]. Including
additional differential terms, such as thermal diffusivity, complicates the solution pro-
cedure. Performing Laplace transformations can still lead to the derivation of an exact
solution, as was shown by Yang and Vafai [13]. Adding further complications to the heating
problem often renders the derivation of closed-form solutions impossible. Employing
perturbation techniques can in that case lead to an approximate solution, as was performed
by Villatoro et al. [14], who added a small diffusivity to the solid temperature equation.
Kuznetsov [15] included diffusivity in both the solid and fluid and used the perturbation
method as well to obtain approximate solutions.

The aim of this article is to present and review different methods to analyze the heat
transfer problem. In Section 2, the problem description is given. The Fourier transform
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and analysis are presented in Section 3. In Section 4, an additional analytical method is
discussed. In Section 5, the Finite Difference method is used to solve the equations, while
a practical example of the heating problem is given in Section 6. Finally, the heat transfer
problem is extended with internal heat generation in Section 7.

2. Theory

We consider the heating of a packed bed of granular material by a hot fluid that flows
through the pores with constant velocity. This is the case, for example, in heat storage
applications, where the heat of the fluid is transferred to the grains for later extraction.
An idealized process is as follows. Define a semi-infinite (x ≥ 0) porous solid through
which a fluid is flowing in the positive x-direction with velocity u. This means that the
volume flow rate per cross-sectional bulk area of the porous material is given by φu,
where φ is the porosity. Let the temperatures of the solid and the fluid be Tf (x, t) and
Ts(x, t). It is assumed that there is negligible conductivity in the solid in all directions
and the flow is characterized by a high Péclet number, so that all heat transport in the
x-direction is from fluid flow. Due to uniform flow profiles, there is zero variation in the
temperature perpendicular to the flow. All assumptions are listed in Table 1, along with
their justifications.

Table 1. Model assumptions and their justifications.

Assumption Justification

1-D flow tube configuration
conduction neglected Pe = udp

a f
= 0.1 × 0.04

2.3 × 10−5 = 174 >> 1
constant fluid flow experimental implementation

no heat exchange with environment good setup insulation
linear internal heat generation for Brinkley

model (see Section 7)
following Brinkley assumption that heat is

generated by chemical reaction
semi-infinite domain long-tube experiment

The transfer of heat between fluid and solid is governed by the convection–diffusion
relations (Anzelius [10], Schumann [11]):

ρsCs(1− φ)
∂Ts

∂t
= hS(Tf − Ts), (1)

ρ f C f φ

(
∂Tf

∂t
+ u

∂Tf

∂x

)
= hS(Ts − Tf ), (2)

with Cs and C f as the specific heat capacities of the solid and the fluid; ρs and ρ f as the
corresponding densities; h as the heat transfer coefficient between the fluid and the solid;
and S as a thermal length scale (the surface-to-volume ratio of the solid grains). We now
assume that the fluid temperature is T0 at x = 0 for all times and that the solid and fluid
are initially at temperature T1, for all x. The boundary conditions are thus as follows:

Ts = T1, x ≥ ut,

Tf = T0, x = 0 ∀t.
(3)

We introduce reduced temperatures

θs, f =
Ts, f − T1

T0 − T1
. (4)

The convection relations now become

∂θs

∂t
= ωs(θ f − θs), (5)



Mathematics 2023, 11, 4415 3 of 12

∂θ f

∂t
+ u

∂θ f

∂x
= −ω f (θ f − θs), (6)

where ωs = hS/(ρsCs(1− φ)) and ω f = hS/(ρ f C f φ). We rewrite the boundary condi-
tions to

θs, f = 0, x ≥ ut,

θ f = 1, x = 0 ∀t.
(7)

Following Schumann [11], we now introduce reduced coordinates ξ = ω f (x/u) and
τ = ωs(t− x/u), so that

∂θs

∂τ
= (θ f − θs), (8)

∂θ f

∂ξ
= −(θ f − θs). (9)

The boundary conditions are

θs = 1− e−τ

θ f = 1

}
for ξ = 0,

θs = 0
θ f = e−ξ

}
for τ = 0.

These transformations indicate that, for a given choice of x and u, the ξ-value is fixed
and the temperature curves can be plotted as a function of reduced time, i.e., as a function
of τ.

3. Fourier Transformation

The initial value problem will now be described by the propagation of an incident
temperature step function through the porous medium. We assume a harmonic dependency

θs, f = θ̂s, f ei(ω̃τ−k̃ξ), (10)

for the temperatures with reduced frequency ω̃ = ω/ωs and reduced wavenumber
k̃ = kω f /u, with k being the wavenumber. Complex-value amplitudes are denoted with a
hat. Note that k̃ξ = kx and ω̃τ = ω(t− x/u). The substitution of (10) in (8) and (9) leads
to a simple set of linear relations:

iω̃θ̂s = θ̂ f − θ̂s, (11)

−ik̃θ̂ f = −θ̂ f + θ̂s. (12)

Eliminating the temperatures, we find that

k̃ =
ω̃

1 + iω̃
, (13)

and
β(ω) = θ̂s/θ̂ f =

1
1 + iω̃

. (14)

At arbitrary position ξ ≥ 0, the temperatures are now given by

θ̂s(ξ, ω̃) = β(ω̃)θ̂0(ω̃)e−ik̃ξ , (15)
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θ̂ f (ξ, ω̃) = θ̂0(ω̃)e−ik̃ξ , (16)

where θ̂0 is the Fourier transform of the incident temperature step function.
After inverse Fourier transformation, these relations give the desired solid and fluid

temperatures θs(ξ, τ) and θ f (ξ, τ). The results for the reduced solid and fluid temperatures
are given in Figure 1. We recognize the typical diffusive behaviour of the solid and the
fluid temperatures subject to Dirichlet and Neumann boundary conditions, respectively.
The reduced solid temperature is zero initially and is then heated up by the arriving fluid.
The hot fluid is at reduced temperature 1, initially, and is cooled down by heat transfer to
the solid. Solid and fluid temperatures approach each other for larger ξ. A good measure
for this is the fluid temperature at τ = 0. We have that θ f = e−ξ , which rapidly changes to
zero as ξ increases.
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the chosen ∆τ and ∆ξ, the maximum error for θ f = 3.7%. The maximum error for θs for the first ξ
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and by further differentiation to 95
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Figure 1. Reduced solid (a) and fluid (b) temperatures as a function of Lagrangian time τ for different
reduced positions ξ, as obtained from the Fourier method and Finite Difference method. For the
chosen ∆τ and ∆ξ, the maximum error for θ f = 3.7%. The maximum error for θs for the first ξ and
first τ is large (36%) but decays rapidly.

4. Method of Integration

It was shown by Schumann [11] that (8) and (9) can be solved by introducing two new
variables U and V:

θs(ξ, τ) = (U −V)e−ξ−τ , (17)

θ f (ξ, τ) = (U + V)e−ξ−τ . (18)

The substitution of (17) and (18) in (8) and (9) leads to

∂U
∂τ
− ∂V

∂τ
= U + V, (19)

∂U
∂ξ

+
∂V
∂ξ

= U −V, (20)

and by further differentiation to
∂2V
∂ξ∂τ

= V. (21)
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The boundary conditions for U and V are evidently

U(ξ, 0) = V(ξ, 0) =
1
2

, (22)

U(0, τ) = eτ − 1
2

, V(0, τ) =
1
2

. (23)

Schumann [11] showed that the solution to (21) that satisfies the boundary conditions is

V =
1
2

I0

(
2
√

ξτ
)

, (24)

where I0 is the modified Bessel function of the first kind. From (17), (18) and (8), we
have that

θ f − θs = 2Ve−ξ−τ =
∂θs

∂τ
. (25)

Integration for constant ξ yields that

θs(ξ, τ) =
∫ τ

0
I0

(
2
√

ξτ′
)

e−ξ−τ′dτ′. (26)

Once θs is found, θ f is computed from (25):

θ f = θs + I0

(
2
√

ξτ
)

e−ξ−τ . (27)

The integrand is a smooth function as shown in Figure 2. The resulting temperature
curves are fully equal to the results for the Fourier method.
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5. Finite Difference Method

The transport Equations (8) and (9) are discretized using third-order upwind spatial
discretization and implicit time integration, resulting in two Finite Difference (FD) stencils
that can be solved simultaneously:

θ
j+1
s,i − θ

j
s,i

∆τ
= θ

j+1
f ,i − θ

j+1
s,i , (28)

2θ
j+1
f ,i+1 + 3θ

j+1
f ,i − 6θ

j+1
f ,i−1 + θ

j+1
f ,i−2

6∆ξ
= θ

j+1
s,i − θ

j+1
f ,i . (29)

Here, i is used to increment ξ and j is used to increment τ. For each step j, the
linear system of equations Ax̄ = b̄ is solved for x̄, where A is a matrix populated by
coefficients determined by the chosen discretization schemes, x̄ is a vector containing the
new temperatures and b̄ is a vector containing the temperatures on the previous step and
the boundary conditions. The solutions algorithm is schematically presented in Figure 3.
Figure 1 shows the comparison between the Fourier solution and the solution obtained
from the FD model where we have used ∆ξ = 0.01 and ∆τ = 0.01.
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6. Practical Example

During the (dis)charging of sensible heat storage systems, heat is constantly exchanged
between a solid phase and a fluid phase. During charging, heat is collected from, e.g., solar
irradiation or cooling water from industrial plants and transferred via a heat exchanger to
a carrier fluid, such as water or air. The carrier fluid transfers the heat to the solid storage
material. A common storage material used for these systems is basalt. Parameters for a
packed bed heat storage system are shown in Table 2.

Table 2. Parameters for a packed bed heat storage system.

Parameter Description Value Unit

L reactor length 5 m
tcharge timescale 75,000 s

φ porosity 0.2 -
S specific area 120 1/m
ρs solid density 2900 kg/m3

Cs solid heat capacity 900 J/kgK
ρ f fluid density 1.11 kg/m3

C f fluid heat capacity 1008 J/kgK
u fluid velocity 0.1 m/s
dp solid particle diameter 0.04 m
h heat transfer coefficient 18.7 W/m2K
k f thermal conductivity 0.026 W/mK
α f thermal diffusivity k f

ρ f C f
= 2.3× 10−5 m2/s

ωs solid convective coefficient hS
ρsCs(1−φ)

= 10−3 1/s

ω f fluid convective coefficient hS
ρ f C f φ = 9.6 1/s

T0 inlet temperature 80 ◦C
T1 initial temperature 20 ◦C
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For the configuration delineated in Table 2, ξL = 48 and τcharge = 80.7. In this particular
problem, the basalt is initially at 20 ◦C and heated up to 80 ◦C. The reduced solid and fluid
temperatures for all (ξ, τ) can be calculated from (26) and (27). The reduced temperature
plot is shown in Figure 4. It can be seen that after considerable distance there are still
differences between fluid and solid temperatures.
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7. Convective Heat Transfer with Internal Heat Generation

The convective heating problem as described by Anzelius [10] and Schumann [11] was
extended by Brinkley [12] by adding a linear heat generation term (internal heat generation
in the solid is found in applications such as thermo-chemical and latent heat storage) to the
solid temperature equation

ρsCs(1− φ)
∂Ts

∂t
= hS[Tf − Ts(1− β) + Tα], (30)

ρ f C f φ

(
∂Tf

∂t
+ u

∂Tf

∂x

)
= hS(Ts − Tf ), (31)

with heating constant Tα and β. Using the same coordinate transformation as before and
introducing β′ = 1− β, we obtain

∂Ts

∂τ
= Tf − β′Ts + Tα, (32)

∂Tf

∂ξ
= Ts − Tf . (33)
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Instead of heating up the porous rock, we set Ts(0, 0) = T1 and cool it down with cold
air of Tf (0, 0) = 0:

Ts = T1e−β′τ − Tα
β′

(
e−β′τ − 1

)

Tf = 0

}
for ξ = 0;

Ts = T1
Tf = T1

(
1− e−ξ

)
}

for τ = 0.

Introducing
Γ = (Ts + Tf )eξ+β′τ , (34)

∆ = (Ts − Tf )eξ+β′ξ , (35)

one obtains
∂2∆
∂ξ∂τ

= ∆, (36)

with boundary conditions

Γ = T1 +
Tα
β′

(
eβ′τ − 1

)

∆ = T1 +
Tα
β′

(
eβ′τ − 1

)


 for ξ = 0;

Γ = T1(2eτ − 1)
∆ = T1

}
for τ = 0.

The solution is given by

∆ = T1 I0(2
√

ξτ) +
Tα

β′
ϕ(β′τ, ξ/β′), (37)

where

ϕ(β′τ, ξ/β′) = eβ′τ
∫ β′τ

0
e−β′τ′ I0

(
2
√

ξτ′
)

d(β′τ). (38)

Introducing

ϕ = ϕ(ξ, τ),

ϕr = ϕ(τ, ξ),

ϕ̃ = ϕ(ξ/β′, β′τ),

ϕ̃r = ϕ(β′τ, ξ/β′),

(39)

we also have that

∂Tf

∂ξ
= Ts − Tf = ∆e−ξ−β′τ = T1 I0e−ξ−β′τ +

Tα

β′
ϕ̃re−ξ−β′τ , (40)

so that

Tf = T1e−βτ
∫ ξ

0
I0e−ξ ′dξ ′ +

Tα

β′
e−β′τ

∫ ξ

0
ϕ̃re−ξ ′dξ ′ = e−ξ−β′τ

[
T1 ϕ +

Tα

β′
IB

]
, (41)

where

IB = eξ
∫ ξ

0
ϕ̃re−ξ ′dξ ′. (42)

The temperature of the solid is given by

Ts = Tf + ∆e−ξ−β′τ = e−ξ−β′τ
{

T1[ϕ− I0] +
Tα

β′
[IB + ϕ̃r]

}
. (43)
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Note that Brinkley [12] also wrote IB as follows:

IB =
β′

β

{
ϕ− ϕ̃ + eβ′τ

[
eξ/β′ − eξ

]}
, (44)

for β 6= 0. However, no derivation was given. A proof is now provided in Appendix A. We
have that

Ts = T1e−ξ−β′τ(ϕ + I0) +
Tα

β′
e−ξ−β′τ

[
β′

β

(
ϕ− ϕ̃ + eξ/β′+β′τ − eξ+β′τ

)
+ ϕ̃r

]
. (45)

Using the identities

ϕ + ϕr = eξ+τ − I0,

ϕ̃ + ϕ̃r = eξ/β′+β′τ − I0,
(46)

we find that

Ts = T1e−ξ−β′τ(eξ+τ − ϕr) +
Tα

β′
e−ξ−β′τ

[
β′

β

(
ϕ̃r − ϕr + eξ+τ − eξ+β′τ +

β

β′
ϕ̃r

)]
, (47)

which is rewritten as

Ts = T1

(
eβτ − ϕre−ξ−β′τ

)
+

Tα

β
e−ξ−β′τ

[
ϕ̃r

β′
− ϕr + eξ+τ − eξ+β′τ

]
, (48)

or

Ts =

(
T1 +

Tα

β

)(
eβτ − ϕre−ξ−β′τ

)
+

Tα

β′

[
ϕ̃r

β′
e−ξ−β′τ − 1

]
. (49)

Note that there is a sign error in Brinkley’s Equation (26).
We can also solve (32) and (33) numerically using third-order spatial discretization

and implicit time-stepping

T j+1
s,i − T j

s,i

∆τ
= T j+1

f ,i − β′T j+1
s,i + Tα, (50)

2T j+1
f ,i+1 + 3T j+1

f ,i − 6T j+1
f ,i−1 + T j+1

f ,i−2

6∆ξ
= T j+1

s,i − T j+1
f ,i , (51)

again with ξ-increment i and τ-increment j. Using heating constants Tα = 0.02, β′ = 0.96
and T1 = 1 and the same step sizes as before, (50) and (51) are solved. The comparison of
solutions (41) and (49) and the numerical results is presented in Figure 5. Rock material near
the inlet is immediately cooled down by the incoming air. Further downstream, the rock
material is allowed to generate heat for a longer span of time without being simultaneously
cooled down by the air. Moreover, the air passing by has already been heated up by the
warmer rock upstream. For sufficiently large τ, Ts and Tf attain an equilibrium value
dependent on ξ. Note that this does not mean the porous medium is in perfect local
thermal equilibrium, as the solid temperature remains significantly higher than the fluid
temperature. The third-order upwind scheme is again shown to produce perfectly accurate
results compared with the analytical solution. The steady-state limit was also addressed by
Brinkley [12].
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8. Conclusions

In this work, we have presented and discussed different methods to solve the heating
problem in a porous medium and obtain solutions for the temperatures of the solid and fluid
phases as functions of space and time. Analytical solutions were obtained using Fourier
analysis as well as with the method of integration. Results show that the propagating
temperature front decays exponentially. Subsequently, the system of differential equations
was also solved numerically using a Finite Difference model, which was able to perfectly
replicate the analytical results. Finally, a linear heat source term in the solid phase was
added to the system. Following and extending a solution procedure similar to Brinkley,
analytical solutions for the solid and fluid temperatures as functions of ξ, τ were derived.
Comparison with numerical methods again showed good agreement.
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Appendix A

Integration by parts yields that

∫ ξ

0
e−ξ ′ϕ(β′τ, ξ/β′)dξ ′ = −

∫
ϕ̃rde−ξ ′ = −

[
ϕ̃re−ξ ′

]ξ

0
+
∫

e−ξ ′ ∂ϕ̃r

∂ξ ′
dξ ′. (A1)
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Brinkley [12] supplied the following useful property

∂ϕ(x, y)
∂y

= ϕ(x, y)− ∂

∂y
I0(2
√

xy), (A2)

from which it can be derived that

∂ϕ(y, x)
∂x

= ϕ(y, x)− ∂

∂x
I0(2
√

xy), (A3)

so that
β′

∂ϕ̃r

∂ξ
= ϕ̃− β′

∂I0

∂ξ
. (A4)

Substitution yields

∫ ξ

0
e−ξ ′ ϕ̃rdξ ′ = −

[
ϕ̃re−ξ ′

]ξ

0
+

1
β′

∫
e−ξ ′ ϕ̃rdξ ′ −

∫
e−ξ ′dI0, (A5)

or

− β

β′

∫ ξ

0
e−ξ ′ ϕ̃rdξ ′ = −

[
ϕ̃re−ξ ′

]ξ

0
−
[
e−ξ ′ I0

]ξ

0
−
∫

e−ξ ′dI0. (A6)

Noting that ϕ(β′τ, 0) = eβ′τ − 1, I0(0) = 1, and recognizing the definition of ϕ, we find

β

β′

∫ ξ

0
e−ξ ′ ϕ̃rdξ ′ = ϕ̃re−ξ − eβ′τ + e−ξ I0 + e−ξ ϕ = e−ξ

(
ϕ̃r + I0 + ϕ− eβ′τ+ξ

)
. (A7)

Using the identity ϕ̃ + ϕ̃r = eξ/β′+β′τ − I0, we finally have that

eξ
∫ ξ

0
e−ξ ′ ϕ̃rdξ ′ =

β′

β

(
ϕ− ϕ̃ + eβ′τ+ξ/β′ − eβ′τ+ξ

)
. (A8)

References
1. Trevisan, S.; Jemmal, Y.; Guedez, R.; Laumert, B. Packed bed thermal energy storage: A novel design methodology including

quasi-dynamic boundary conditions and techno-economic optimization. J. Energy Storage 2021, 36, 102441. [CrossRef]
2. Anderson, R.; Bates, L.; Johnson, E.; Morris, J.F. Packed bed thermal energy storage: A simplified experimentally validated model.

J. Energy Storage 2015, 4, 14–23. [CrossRef]
3. McTigue, J.D.; Markides, C.N.; White, A.J. Performance response of packed-bed thermal storage to cycle duration perturbations.

J. Energy Storage 2018, 19, 379–392. [CrossRef]
4. Ahmed, Z.; Constantin, A.; Bindra, H. The Thermal Response of a Packed Bed Thermal Energy Storage System upon Saturated

Steam Injection Using Distributed Temperature Sensing. Energies 2022, 15, 3704. [CrossRef]
5. Ma, X.; Fan, C.; Shao, W.; Cao, Q.; Cui, Z. Numerical and experimental studies of packed bed thermal energy storage system

based on a novel transient energy model. Energy Sci. Eng. 2023, 11, 727–744. [CrossRef]
6. Rindt, C.; Gaastra-Nedea, S. Modeling thermochemical reactions in thermal energy storage systems. In Advances in Thermal

Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 375–415.
7. Gutfinger, C.; Abuaf, N. Heat transfer in fluidized beds. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands,

1974; Volume 10, pp. 167–218.
8. Patil, A.V.; Peters, E.; Kolkman, T.; Kuipers, J. Modeling bubble heat transfer in gas–solid fluidized beds using DEM. Chem. Eng.

Sci. 2014, 105, 121–131. [CrossRef]
9. Oppong, F. Recent studies of heat transfer mechanisms in a fluidized bed. R D J. South Afr. Inst. Mech. Eng. 2018, 2018, 72–82.
10. Anzelius, A. Über erwärmung vermittels durchströmender medien. ZAMM-J. Appl. Math. Mech. Angew. Math. Mech. 1926,

6, 291–294. [CrossRef]
11. Schumann, T.E. Heat transfer: A liquid flowing through a porous prism. J. Frankl. Inst. 1929, 208, 405–416. [CrossRef]
12. Brinkley, S.R., Jr. Heat transfer between a fluid and a porous solid generating heat. J. Appl. Phys. 1947, 18, 582–585. [CrossRef]
13. Yang, K.; Vafai, K. Transient aspects of heat flux bifurcation in porous media: An exact solution. J. Heat Transfer. 2011, 133, 052602.

[CrossRef]

http://doi.org/10.1016/j.est.2021.102441
http://dx.doi.org/10.1016/j.est.2015.08.007
http://dx.doi.org/10.1016/j.est.2018.08.016
http://dx.doi.org/10.3390/en15103704
http://dx.doi.org/10.1002/ese3.1358
http://dx.doi.org/10.1016/j.ces.2013.11.001
http://dx.doi.org/10.1002/zamm.19260060404
http://dx.doi.org/10.1016/S0016-0032(29)91186-8
http://dx.doi.org/10.1063/1.1697692
http://dx.doi.org/10.1115/1.4003047


Mathematics 2023, 11, 4415 12 of 12

14. Villatoro, F.; Pérez, J.; Domínguez-Muñoz, F.; Cejudo-López, J. Approximate analytical solution for the heat transfer in packed
beds for solar thermal storage in building simulators. In Proceedings of the Eleventh International IBPSA Conference, Glasgow,
UK, 27–30 July 2009; pp. 709–715.

15. Kuznetsov, A. An analytical solution for heating a two-dimensional porous packed bed by a non-thermal equilibrium fluid flow.
Appl. Sci. Res. 1995, 55, 83–93. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF00854225

	Introduction
	Theory
	Fourier Transformation
	Method of Integration
	Finite Difference Method
	Practical Example
	Convective Heat Transfer with Internal Heat Generation
	Conclusions
	Appendix A
	References

