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Abstract: This paper develops the methodology for modeling decision processes in complex con-
trolled dynamic systems. The idea of balancing such systems (driving them to equilibrium) is
implemented, and a new mechanism for the equilibria’s stability is proposed. Such an approach
involves economic–mathematical modeling jointly with systems analysis methods, economics, law,
sociology, game theory, management, and performance measurement. A linear-quadratic positional
differential game of several players is considered. Coefficient criteria under which the game has an
equilibrium in sanctions and countersanctions and, simultaneously, no Nash equilibrium are derived.
The economic and legal model of active equilibrium is studied through the legal concept of sanctions,
which enlarges the practical application of this class of problems.
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1. Introduction

A sanction (from Latin “sanction”—strictest decree) is a measure of influence applied
to an economic agent (an individual or a legal entity, industry, or the state) and entailing
certain consequences. Sanctions may be of an economic, legal, or social nature. In terms
of form, a sanction may be expressed as a prohibition, restriction of operations, fines, and
more. Depending on the nature of violated rights, it is customary to distinguish such
legal sanctions as criminal, administrative, property, and international legal sanctions. At
the same time, according to the consequences’ nature, legal norms’ sanctions can be both
negative and positive. The first one implies the application of penalties, and the second
one—actions of encouragement. Game Theory is actively used as a tool for modeling
socio-economic processes in general and sanctions processes in particular, so, for example,
in the research [1] based on a game-theoretic approach, the concept of a model of criminal
sanctions and a model of criminal punishment system, corresponding to fundamental
requirements of game theory, taking into account Nash’s equilibrium is offered. The author
concludes that “the game-theoretic approach to the formation of both individual criminal
law sanctions and the system of criminal law sanctions is quite applicable and complements
the formal legal logic of construction of criminal law sanctions and their system, allows
to avoid defects in the construction of criminal law sanctions and helps to eliminate legal
uncertainty in sentencing”.

It is well known that social sanctions are commonly understood as measures of en-
couragement and punishment that stimulate an individual to comply with social norms.
Sanctions can be formal (medals, diplomas, scholarships, fines, and others) and informal
(praise, ridicule, boycott, and others), positive and negative. The research on social sanc-
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tions is beyond the scope of this work. Further, we will consider economic sanctions in
detail, as much as possible, within the framework of this section.

The first economic sanctions recorded in written sources were imposed by the Athenian
Maritime Union (Delos Symmachus) on the city of Megara (part of the Peloponnesian
Union) in 432 BC in order to stop the practice of receiving runaway Athenian enslaved
people in that city and plowing the sacred border territories. They are known as “Megarian
psephism”. The effectiveness of the sanctions was not obvious. On the one hand, the
Megarian merchants suffered significant losses, but on the other hand, they were forced to
turn to their allies (primarily Sparta) for military support. As a result of the Peloponnesian
War, Athens suffered a crushing defeat, and the Athenian alliance was destroyed. Studying
the above fact and using it as an example, G. Tsebelis, in his article “Are Sanctions Effective?
A Game-Theoretic Analysis” [2], reasoned that “Although economic sanctions have been
quite frequent in the twentieth century, a close examination of the low success rate (33
out of 83 cases) indicates that sender countries are unable to select the appropriate cases.
Moreover, analysts sometimes offer contradictory advice for such selection”. This research
provides a game-theoretic explanation of these phenomena. Six different game-theoretic
scenarios lead to the same equilibrium outcome. It is a mixed strategy equilibrium. The
success ratio is the outcome of the selection of mixed strategies by sender and receiver
countries. Under a wide range of (specified) circumstances, the size of the sanction has no
impact on the behavior of the target country. Finally, some empirical implications of the
game-theoretic analysis are compared to existing empirical generalizations, and further
implications for empirical research are discussed.

In the Middle Ages in Europe, economic sanctions were primarily local and short-lived
because of the constantly changing configuration of trade and military alliances and the
changing interests of individual rulers and influential individuals. In the 19th century, the
primary tool of economic sanctions was naval blockades—measures to prevent a country’s
maritime trade with other countries without a declaration of war. Between 1827 (the first
known naval blockade) and 1914, 21 blockades were recorded against Turkey, Portugal, the
Netherlands, Colombia, Panama, Mexico, Argentina, and El Salvador. The organizers of
the blockades were mainly Great Britain (12 times) and France (11 times), but also Italy and
Germany (three times each), Russia and Austria (twice each), and Chile [3].

Economic sanctions became widespread in the twentieth century with the develop-
ment of international trade relations. Before World War II, Yugoslavia, Greece, Bolivia,
Paraguay, and Italy were subject to collective economic sanctions. During the Cold War,
sanctions were largely ineffective because they were not supported by either the Western
or Eastern blocs of countries (with the United States and the Soviet Union as leaders,
respectively). Unified sanctions, supported by both blocs, were imposed only twice: on
Rhodesia and South Africa, and according to international relations experts, in both cases,
were not effective enough.

One of the best-known examples of collective economic sanctions at the time was
the restriction of deliveries of “strategic” goods and technologies, primarily military and
computer technology, to socialist countries. The Coordination Committee (CoCom) was
created in 1949 specifically to control exports to the Eastern Bloc countries, which included
17 states, while another six countries cooperated with the committee without formally
being part of it. The committee ceased its activities in 1994. The most famous example of
long-term unilateral sanctions is the U.S. embargo against Cuba, which began in 1960–1962
and continues today. U.S. companies are prohibited from any economic contact with Cuba
without special permission, including in third countries. According to Cuban authorities,
direct damage from the embargo amounted to about USD 1 trillion in current prices.
Nevertheless, the goal of U.S. economic sanctions—establishing democracy in Cuba—has
not been achieved. Since 1990, the UN has made greater use of international economic
sanctions against various states. They have been subjected to Iraq (since 1990), Yugoslavia
(1991–2001), Somalia (since 1992), Libya (1992–2003), Liberia (since 1992), Angola (1993–
2002), Haiti (1993–1994), Rwanda (1994–2008), Sierra Leone (since 1997), Afghanistan (since
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1999), Eritrea and Ethiopia (since 2000), DR Congo (since 2003), Cǒte d’Ivoire (since 2004),
Sudan (since 2004), Lebanon (since 2005), Iran (since 2006), and DPRK (since 2006). The
sanctions are mostly partial and restrict weapons and military equipment supplies to these
countries. In some cases, foreign assets are frozen [4,5].

Global economic sanctions have been repeatedly imposed on several states. Sanctions,
whether international or unilateral, currently apply to 24 states worldwide. However,
experience has shown that states subject to sanctions have almost always found ways to
minimize their damage or use them to their advantage [6].

Many publications are devoted to economic sanctions and the application of the
game-theoretic apparatus in their study. Let us note the research of Marc V. Simon “When
sanctions can work: Economic sanctions and the theory of moves” [7]; Shidiqi, Khalifany
Ash and Pradiptyo, Rimawan “A Game Theoretical Analysis of Economic Sanctions” [8];
Karimi, Mohammad and Maleki, Abbas and Haieri Yazdi, Asieh “How the Possibility
of a Fight-Back Strategy Affects the Consequences of a Sanction’s Regime” [9]; Onder,
Mehmet “The Impact of Decision-Makers on Economic Sanctions: A Game Theoretical
Perspective” [10].

In contrast to other research, this article offers an economical and legal substantiation
of theoretical and game constructions modeling the process of application of sanctions and
countersanctions, using in general terms the idea of systemic balance of three macrosystems:
economic, legal, and social [11]. In a particular case, the economic-legal substantiation of
the proposed theoretical-game model of the balance of sanctions and countersanctions is
based on the use of the legal concept of sanctions as a component of the definition of legal
responsibility of subjects, i.e., in practical terms, the regulator implements the principle of
inevitability of legal responsibility, in particular, sanctions for offense and crime (can be a
departure from the established in the legal prescriptions rules, rules of social and economic
relations), which is manifested in the application in the description of real socio-economic
processes, various concepts of static and active equilibriums.

The current national market system is based on the neoliberal economic doctrine. In
differentiated forms, it covers all public relations spheres and appears in decision processes
at all complex control and controlled systems levels. Various concepts of static [12] and
active equilibria [13] are adopted to balance controlled systems [14,15] in game-theoretic
economic–mathematical modeling. If an analytically constructed differential game de-
scribes decision-making in a complex system, then, according to leading researchers,
equilibrium as an acceptable solution of a differential game should have the property of
stability [16–18]. In a practical interpretation, stability means no player will increase their
payoff by any unilateral deviation from equilibrium.

Within the neoliberal economic doctrine, the well-known solution proposed by J.
Nash [19–22] meets this requirement in many situations. (In 1994, J. Nash, J. Harsanyi and
R. Selten were awarded the Nobel Prize in Economic Sciences “for the pioneering analysis
of equilibria in the theory of non-cooperative games”). Note that this equilibrium does not
always exist under certain conditions and (or) has several negative properties. For example,
Nash equilibria can be internally and externally unstable. The mathematical problem of
ensuring the stability of equilibria can be solved using active equilibria, e.g., the classical
equilibrium in threats and counterthreats or the equilibrium in objections and counter-
objections [23,24], simultaneously with requiring efficiency (Pareto maximality) [25–27].

The economic and legal justification of game-theoretic models generally uses the idea
of system balancedness: complex controlled systems correlate through interaction, and
balancedness means that the legal order of public relations corresponds to the laws and
trends of economic development. In a particular case, the economic and legal justification
of the equilibrium in sanctions and countersanctions is based on the legal concept of
sanctions defining the legal responsibility of subjects (agents). In practical terms, the
adjuster implements the principle of inevitable legal liability (particularly sanctions) for an
offense and crime (any deviation from the behavioral rules established by legal regulations,
e.g., any deviation from the equilibrium mentioned above).
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2. Methods

The theoretical and methodological basis of the research is the theory of systems
analysis, economics, theory of state and law, sociology, synthesis of the provisions and
principles of economic and mathematical modeling, game theories, and management and
developed on their basis the theoretical and game models of decision-making in complex
systems with uncertainty.

Let us proceed to the conceptual framework used below. At the micro level, the
concept of threat contains both a real action by a market participant and its possibility to
compel the latter to comply with the previously established rules; at the macro level, the
matter concerns “the threat of coercion”, i.e., a regulatory definition of the legal inevitability
of punishment. In the legal literature, the threat of coercion means a sanction and refers to
measures of impact applied in regulation [28,29]. In mathematical game theory, the terms
“threat” and “sanction” can be used as a synonym for the word “objection” to mitigate
their “aggressive” nature. The economic content of sanctions in legal sources includes
measures of compulsory economic impact for violating the established procedure for
activities and often have preventive, compensatory, and repressive functions. Accordingly,
in the macro- and micromodels of decision-making, the player resisting coercion and using
counter methods of impact is determined through counter objection, counter-threat, and
countersanction.

Like other equilibria, the equilibrium in sanctions and countersanctions can yield stable
solutions, but each concept uses different mechanisms. In the case of Nash equilibrium,
all players, except for the deviating one, continue using the same strategies as before. In
the case of equilibrium in sanctions and countersanctions, the players pass to the legally
admissible actions that force the deviating player to follow the equilibrium: the players
implement countersanctions. Hence, the inevitability of punishment is a good reason for
the players to stay within such an equilibrium. From the legislative viewpoint, their actions
rest on the concept of legal responsibility for changing the content of a current obligation
and future negative consequences due to its violation [29].

As mentioned above, the classical concept of threats and counterthreats is not widespread
in mathematical game theory [24] and is restricted to static or differential two-player
games [30–37]. The approach presented below is novel for the theory of differential games:

1. We augment the equilibrium in sanctions and countersanctions with the property of
Pareto maximality.

2. We identify a relatively large class of differential games of players in which there is
an equilibrium in sanctions and countersanctions, and, at the same time, no Nash
equilibrium exists.

3. We propose an algorithm for constructing the equilibrium in sanctions and counter-
sanctions.

3. Results

To construct a game-theoretic model of equilibrium in sanctions and countersanctions,
we consider a noncooperative linear-quadratic differential N-player game in normal form
described by an ordered quadruple

Γ =
〈
N, Σ, {Ui}i∈N, {Ji(U, t0, x0}i∈N

〉
.

In the game Γ, the set of players (e.g., market participants) is N = {1, . . . N}, where
N ≥ 2. The dynamics of the controlled system Σ (the interacting subjects of market activity,
also called agents) obey the vector linear differential equation

Σ÷ .
x = A(t)x + u1 + . . . + uN , x(t0) = x0, (1)

with the following notations: x ∈ Rn is the n-dimensional state vector of the system Σ
t ∈ [t0, ϑ] is a finite time interval of the game with a fixed terminal time instant ϑ = const;
ui ∈ Rn is the control action of player i (i ∈ N); (t, x) ∈ [0, ϑ]×Rn is a pair determining a
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current position in the game Γ; finally, (t0, x0) as an initial position, where 0 ≤ t0 < ϑ. The
matrix A(t) of dimensions n× n is assumed to have continuous elements on [0, ϑ], which
is denoted by A(·) ∈ Cn×n[0, ϑ].

The strategy Ui of player i will be identified with an n-dimensional vector function
ui(t, x), and this fact will be denoted by Ui ÷ ui(t, x). Then, the strategy set of player i can
be written as

Ui = {Ui ÷ ui(t, x), ui(t, x) = Qi(t)x|∀Qi(·) ∈ Cn×n[0, ϑ]}.

Thus, player i chooses their (strategy by specifying a matrix Qi(t) (i ∈ N) of dimen-
sions n× n from the space Cn×n[0, ϑ].

The game evolves over time under market competition in the following way. Without
forming coalitions with other players, each player i chooses a particular strategy Ui÷Qi(t)x,
which yields a strategy profile U = (U1, . . . , UN) ∈ U = U1 × . . .× UN of the game. Next,
each player finds the solution x(t), t0 ≤ t ≤ ϑ, of System (1) with ui = Qi(t)x (i ∈ N), i.e.,

.
x(t) = [A(t) + Q1(t) + . . . + QN(t)]x(t), x(t0) = x0. (2)

The system of linear homogeneous differential Equation (2) with continuous coeffi-
cients on [t0, ϑ] has a continuous solution x(t) that is extendable to [t0, ϑ] ∀t0 ∈ [0, ϑ). Then,
each player constructs the realization of their strategy ui[t] = Qi(t)x(t) (i ∈ N) and the
corresponding realization of the strategy profile u[t] = (u1[t], . . . , uN [t]), which consists of
the N continuous n-dimensional vectors u1[t], . . . , uN [t] on [t0, ϑ]. The payoff function of
player i is a quadratic functional

Ji(U1, . . . UN , t0, x0) = x′(ϑ)Cix(ϑ) +
ϑ∫

t0

∑
j∈N

u′ j[t]Dijuj[t]dt(i ∈ N) (3)

defined on the continuous pairs (x(t), u[t]), t ∈ [t0, ϑ]. Without loss of generality, let
the constants matrices Ci and Dij of dimensions n× n be symmetric. The prime denotes
transposition: x′ is a row vector. The value of the functional (3) is called the payoff of
player i. The neoliberal economic doctrine assumes that each player in the game Γ seeks to
maximize their payoff only.

This research aims to find a rather general class of noncooperative linear-quadratic
differential N-player games in normal form Γ that have no Nash equilibrium but simul-
taneously have an equilibrium in sanctions and countersanctions. To this effect, we will
associate with the game Γ the N-criteria dynamic choice problem

Γv =
〈
Σ,U , {Ji(U, t0, x0)}i∈N

〉
.

Here, the controlled dynamic system Σ coincides with (1); the set of alternatives U

coincides with the set of strategy profiles U =
N
∏
i=1
Ui of the game Γ; the N criteria Ji(U, t0, x0)

(i ∈ N) are given by (3). The DM’s goal in the problem Γv is to choose an alternative UP ∈ U
for which the N criteria (3) will take the maximum possible values. V. Pareto proposed a
conventional approach to such problems in 1909; see [38,39].

Note two results, which are immediate from Definition 1.

Definition 1. An alternative UP = (UP
1 , . . . , UP

N) ∈ U is said to be Pareto-maximal in the
problem Γv if ∀U ∈ U and ∀(t0, x0) ∈ [0, ϑ)×Rn, x0 6= 0n, the system of inequalities

Ji(U, t0, x0) ≥ Ji(UP, t0, x0)(i ∈ N),

with at least one strict inequality, is inconsistent. In this case, the vector JP = JP[t0, x0] =
(J1(UP, t0, x0), . . . , JN(UP, t0, x0)) is called a Pareto maximum in the problem Γv.



Mathematics 2023, 11, 4402 6 of 22

Note two results, which are immediate from Definition 1.

Property 1.

[Ji(Û, t0, x0) > Ji(UP, t0, x0)]⇒ [Jj(Û, t0, x0) < Jj(UP, t0, x0)]

for at least one number j ∈ N, j 6= i and Û ∈ U .

Property 2. If the condition

max
U∈U
{∑

i∈N
αi Ji(U, t0, x0)} = Idem{U → UP} (4)

holds for constants αi > 0 (i ∈ N), then the alternative UP is Pareto-maximal in the problem Γv.
Here, Idem{U → UP} indicates the bracketed expression from (4) with replaced U by UP.

Consider two concepts of equilibrium for the game Γ, where J = (J1, . . . , JN) ∈ RN .

Definition 2. A pair (Ue, Je = J(Ue, t0, x0)) ∈ U ×RN is called a Nash equilibrium of the game
Γ if 

max
U1∈U1

J1(U1, Ue
2, . . . , Ue

N , t0, x0) = J1(Ue
1, Ue

2, . . . , Ue
N , t0, x0) = Je

1,

max
U2∈U2

J2(Ue
1, U2, . . . , Ue

N , t0, x0) = J2(Ue
1, Ue

2, . . . , Ue
N , t0, x0) = Je

2,

. . .
max

UN∈UN
JN(Ue

1, Ue
2, . . . , Ue

N−1, UN , t0, x0) =

= JN(Ue
1, . . . , Ue

N−1, Ue
N , t0, x0) = Je

N

for any (t0, x0) ∈ [0, ϑ)×Rn, x0 6= 0n (0n denotes a zero vector of dimension n).

Now we construct the equilibrium in sanctions and countersanctions.
Let U = (U1, U2, . . . , UN) be some fixed strategy profile of the game Γ. Player 1 is said

to impose a sanction to the strategy profile U if there exists their strategy UT
1 ∈ U1 such that

J1(UT
1 , U2, . . . , UN , t0, x0) > J1(U1, U2, . . . , UN , t0, x0). (5)

An existing sanction is not necessarily implemented: it means the threat of coercion.
Recall that the role of a sanction is revealed through the legal responsibility of players:
sanctions make them refrain from violating the established game rules and are implemented
in case of “frustration”. In terms of game theory, implementing the sanction is beneficial to
Player 1: according to (5), their individual payoff will increase compared to the previous
strategy profile U.

The complex of punitive measures taken by one party against the other in response
to sanctions is manifested in countersanctions. Player 2 is said to impose an incomplete
countersanction to a sanction UT

1 of Player 1 if there exists a strategy UC
2 ∈ U2 such that

J1(UT
1 , UC

2 , . . . , UN , t0, x0) ≤ J1(U1, U2, . . . , UN , t0, x0). (6)

Player 2 is said to impose a complete countersanction to UT
1 if there exists a strategy

UC
2 ∈ U2 such that Inequality (6) is satisfied simultaneously with

J2(UT
1 , UC

2 , . . . , UN , t0, x0) > J2(UT
1 , U2, . . . , UN , t0, x0). (7)

Incomplete and complete countersanctions of other players to a sanction UT
i are

formalized by analogy.
In the presence of an incomplete countersanction, Player 2 can choose their strat-

egy UC
2 for making the payoff of Player 1 (who imposes an original sanction) equal to a
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value not exceeding their original payoff in the strategy profile U; see (6). (Note that he
(it) may even reduce the payoff of Player 1!) Therefore, the presence of an incomplete
countersanction negates the implementation of a sanction. In addition, a complete counter-
sanction motivates Player 2 to choose UC

2 because their payoff in the resulting strategy prole
(UT

1 , UC
2 , . . . , UN) yielded by implementing the sanction and countersanction will increase

compared to the strategy prole (UT
1 , U2, . . . , UN) yielded by implementing the sanction UT

1 .
A sanction UT

i of player i to a strategy profile U and a (complete) countersanction of one of
the other players are defined by analogy.

If at least one of the other players has a countersanction to each sanction imposed
by any player to U, then it makes no sense for him to implement the sanction: due to the
countersanction of another player, their payoff will not increase (but it may even decrease!).

Definition 3. A strategy profile UP = (UP
1 , UP

2 , . . . , UP
N) ∈ U is called an active equilibrium [13]

of the game Γ if, for any initial position (t0, x0) ∈ [0, ϑ)×Rn, x0 6= 0n:

1. The alternative UP is Pareto-maximal in the N-criteria dynamic choice problem Γv.
2. At least one of the other players has an incomplete countersanction to each sanction UT

i ∈ Ui
of any player.

Definition 4. A pair (UP, JP) ∈ U ×RN is called an equilibrium in sanctions and countersanc-
tions in the differential N-player game Γ if, for any initial position (t0, x0) ∈ [0, ϑ)×Rn, x0 6= 0n:

1. The alternative UP is Pareto-maximal in the N-criteria dynamic choice problem Γv.
2. At least one of the other players has an complete countersanction to each sanction UT

i ∈ Ui of
any player.

As before, JP = (JP
1 , JP

2 , . . . , JP
N) and JP

i = Ji(UP, t0, x0)(i ∈ N). From Definitions 3
and 4, it follows that any equilibrium in sanctions and countersanctions is simultaneously
an active equilibrium. Active equilibria and equilibria in sanctions and countersanctions
are based on threats and counterthreats, well known in game theory [24]. They have all the
positive properties of Nash equilibria [18]. More specifically:

1. They are stable against the deviations of an individual player.
2. They satisfy individual rationality.
3. They coincide with the saddle point in the case of zero-sum two-player games.

At the same time, these equilibria are free from the following disadvantages of Nash
equilibrium [18]:

• They exist in several cases when there is no Nash equilibrium (e.g., in the game Γ).
• Unlike Nash equilibrium, they are unimprovable and internally stable due to Pareto

maximality.
• The presence of a Nash equilibrium in the game implies the existence of certain types

of unimprovable equilibria in which the payoffs of all players are no smaller than in
the Nash equilibrium.

• The best Nash equilibria (in the sense of Pareto maximality) are equilibria in sanctions
and countersanctions.

Let us emphasize again: the requirement of efficiency (Pareto maximality) has been
incorporated into Definitions 3 and 4 to eliminate some negative properties of Nash equi-
librium, such as the internal and external instability of the set of Nash equilibria.

N.N. Krasovskii [40] formalized the concepts of players’ strategies and the motions of
a dynamic system induced by them for a two-player zero-sum positional differential game.
The constructions underlying the positive properties above are valid for a more general
class—-noncooperative positional differential games [41].

Note that under economic sanctions [42,43], the methodology for constructing active equi-
libria, particularly the concept of equilibrium in sanctions and countersanctions, is of utmost
importance for economic–mathematical modeling of decision processes and applications.
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Hereinafter, the notation D < 0(> 0) means that a quadratic form x′Dx is negative
definite (positive definite, respectively).

Consider the auxiliary N-criteria static problem

ΓN =
〈
RNn , { fi(u) = u′1Di1u1 + . . . + u′N DiNuN}i∈N

〉
, (8)

in which the DM chooses an alternative u = (u1, u2, . . . , uN) ∈ RNn for simultaneously
maximizing all components of a vector criterion f (u) = ( f1(u), f2(u), . . . , fN(u)).

For this problem, Definition 1 can be reformulated as follows: an alternative uP is
Pareto-maximal in ΓN if ∀u ∈ RNn the system of inequalities fi(u) ≥ fi(uP)(i ∈ N), with
at least one strict inequality, is inconsistent.

We present some auxiliary properties of the quadratic forms x′Dx =
n
∑

γ,β=1
dγβxγxβ

with constant coefficients dγβ (the elements of a matrix D of dimensions n× n) and the
components x1, . . . , xn of an n-dimensional vector x ∈ Rn.

Lemma 1. With the change of coefficients bγβ =
dγβ+dβγ

2 , a quadratic form x′Dx is reduced to the
form x′Bx, where the matrix B = (bij) of dimensions n× n is symmetric, i.e., B = B′.

Without loss of generality, all quadratic forms below are supposed to have symmetric
matrices.

Lemma 2. If Dii > 0, then all n roots of the characteristic equation det[Dii −ΛEn] = 0 are real
and positive (i ∈ N), where En denotes an identity matrix of dimensions n× n [44].

Let Λii > 0 be the greatest root under consideration. Then

u′ iDiiui ≤ Λii‖ui‖2 = Λiiu′ iui∀ui ∈ Rn. (9)

Since D > 0⇔ −D = (−1)D < 0 , for D < 0, all n roots λij < 0 of the characteristic
equation det[Dij − λEn] = 0 are negative (i, j ∈ N, i 6= j).

Let −λij be the greatest (smallest by magnitude) root among them. By analogy with
(9), we have

u′ jDijui ≤ −λiju′ iuj∀uj ∈ Rn. (10)

Without loss of generality, consider the N-criteria choice problem ΓN in which a
sanction is imposed by Player 1 and a countersanction by Player 2. (The players are
numbered subjectively).

The next result follows from Property 2.

Lemma 3. Assume that in the problem ΓN :
1. The symmetric matrices Dij of dimensions n× n satisfy the inequalities Dii > 0, Dij < 0

(i, j ∈ N, i 6= j) and
Λ11Λ22 < λ12λ21. (11)

2. The nonzero matrix

A =


Λ11 −λ21 . . . −λN1
−λ12 Λ22 . . . −λN2

. . . . . . . . . . . .
−λ1N −λ2N . . . ΛNN


of dimensions N × N is singular, i.e., its determinant is detA = 0.
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Then, the system of strict homogeneous linear inequalities
+α1Λ11 − α2λ21 − α3λ31 − . . .− αNλN1 < 0,
−α1λ12 + α2Λ22 − α3λ32 − . . .− αNλN2 < 0,
−α1λ13 − α2λ23 + α3Λ33 − . . .− αNλN3 < 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−α1λ1N − α2λ2N − α3λ3N − . . .− αN−1λN−1N + αNΛNN < 0,

(12)

has a positive solution α = (1, α2, . . . , αN), αj > 0, j = 2, . . . , N, where Λii and−λij(i, j ∈ N, i 6=
j) are the greatest roots of the characteristic equations det[Dii−ΛEn] = 0 and det[Dij−λEn] = 0,
respectively (i, j ∈ N, i 6= j).

Proof. To construct a Pareto-maximal strategy profile in the game Γ, we will apply Property
2 and the linear convolution ∑

i∈N
αi fi(u) of the criteria (8) with positive coefficients αi > 0.

For (8), we construct a quadratic form from the components of the Nn-dimensional vector
u = (u1, . . . , uN) :

f (u) = ∑
i∈N

αi fi(u) = ∑
i∈N

αi[u′1Di1u1 + u′2Di2u2 + . . . + u′N DiNuN ].

Due to (8)–(10),

f (u) = u′1[α1Λ11 − α2λ21 − α3λ31 − . . .− αNλN1]u1+
+u′2[−α1λ12 + α2Λ22 − α3λ32 − . . .− αNλN2]u2 + . . .+
+u′N−1[−α1λ1N−1 − α2λ2N−1 − . . . + αN−1ΛN−1N−1 − αNλNN−1]uN−1+
+u′N [−α1λ1N − α2λ2N − . . .− αN−1λN−1N + αNΛNN ]uN =

= d1‖u1‖2 + . . . + dN‖uN‖2.

The numbers αi = const > 0 (i ∈ N) can be chosen so that all di will become negative
and

d1 = [α1Λ11 − α2λ21 − α3λ31 − . . .− αNλN1],
d2 = [−α1λ12 + α2Λ22 − α3λ32 − . . .− αNλN2],
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dN−1 = [−α1λ1N−1 − α2λ2N−1 − . . . + αN−1ΛN−1N−1 − αNλNN−1],
dN = [−α1λ1N − α2λ2N − . . .− αN−1λN−1N + αNΛNN ].

(13)

To prove this fact, we associate with (12) the system of strict homogeneous linear
inequalities 

α1Λ11 − α2λ21 < 0,
−α1λ12 + α2Λ22 < 0,
−α1λ13 − α2λ23 + α3Λ33 < 0,
−α1λ14 − α2λ24 − α3λ34 + α4Λ44 < 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−α1λ1N−1 − α2λ2N−1 − . . . + αN−1ΛN−1N−1 < 0,
−α1λ1N − α2λ2N − . . .− αN−1λN−1N + αNΛNN < 0.

(14)

This system is obtained from (12) by discarding all negative terms, except for−α2λ21 in
the first inequality and −α1λ12 in the second one. Adding negative terms only strengthens
strict inequalities. Hence, for λij > 0 and αi > 0, any positive solutions of System (14) are
also positive for (12). Then, the quadratic form f (u) will be negative definite with respect to
the Nn-dimensional vector u = (u1, . . . , uN) if System (12) (or System (14)) has the positive
solution α = (1, α1, . . . , αN), αγ > 0 (γ = 2, . . . , N), that is, all numbers. Let us establish
this result for System (14). To this end, we find α2 from the first two strict inequalities
of (14): {

α1Λ11 − α2λ21 < 0,
−α1λ12 + α2Λ22 < 0.
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If α1 = 1, then for Λii > 0 and −λij > 0 (i, j ∈ N, i 6= j), there exists a positive number
α2 such that{

Λ11 − α2λ21 < 0
−λ12 + α2Λ22 < 0

}
⇔
{

Λ11
λ21

< α2
λ12
Λ22

> α2

}
⇔
{

Λ11

λ21
< α2 <

λ12

Λ22

}
.

This inequality holds under Λ11Λ22 < λ12λ21, e.g., for

α2 =
1
2

[
Λ11

λ21
+

λ12

Λ22

]
. (15)

From the third inequality of (14), for α1 = 1 and α2 (15), we obtain

0 < α3 <
1

Λ33

[
λ13 +

λ23

2

(
Λ11

λ21
+

λ12

Λ22

)]
,

e.g., by letting α3 = 1
2Λ33

[
λ13 +

λ23
2

(
Λ11
λ31

+ λ32
Λ22

)]
. Continuing the considerations above,

using the subsequent inequalities of (14) and the calculated values α1 = 1, α2, α3, . . . , we
finally arrive at the recurrent formula αN = 1

2ΛNN
[λ1N + α2λ2N + . . . + αN−1λN−1N ]. �

Remark 1. By analogy with Lemma 3, we have the following result. Assume that in the problem
ΓN , the symmetric matrices Dij of dimensions n× n and positive numbers Λii and λij are such that
Dii > 0, Dij < 0 for i 6= j and Λ11Λ33 < Λ13Λ31.

Then, for

α2 =
1
2

(
λ13

Λ33
+

Λ11

λ31

)
, α3 =

1
2

[
λ12

Λ22
+

1
2

(
λ13

Λ33
+

Λ11

λ31

)
λ32

Λ22

]
, . . .

and αγ(γ = 4, . . . , N) given by Lemma 3, the quadratic form

f (u) = f1(u) + α2 f2(u) + α3 f3(u) + . . . + αN fN(u) = u′1d1u1 + u′2d2u2 + u′3d3u3 + . . . + u′NdNuN

becomes negative definite; the constants di < 0 are given by (13).

Really, α2 and α3 in this expression satisfy the strict inequalities (12).
Note that in addition to the solutions αγ (Lemma 3 and Remark 1), the system of strict

inequalities (12) has a continuum of other solutions. As demonstrated below, each of them
induces a specific equilibrium in sanctions and countersanctions of the differential game Γ
under the conditions Dii > 0, Dij < 0 (i, j ∈ N, i 6= j).

Remark 2. Positive solutions of (12) can be found using S.N. Chernikov’s approach [35]. To avoid
cumbersome transformations and notations dictated by this approach, we propose an original method
for proving Lemma 3.

Lemma 4. The solutions x(t) of the system
.
x = K(t)x, x(t0) = x0, where K(·) ∈ Cn×n[0, ϑ],

satisfy the nontrivial property

x0 6= 0n ⇒ x(t) 6= 0n∀t ∈ [t0, ϑ];

here 0n denotes a zero vector from the space Rn.

Proof. Assume on the contrary that ∃t1(t0, ϑ] such that x(t) = 0n. In other words, at
the time instant t1, two different solutions of the system

.
x = K(t)x are passing through

the position (t1, 0n) : the trivial one x(1)(t) = 0n ∀t ∈ [0, ϑ] and the nontrivial one x(2)(t)
induced by the nonzero initial condition x0 6= 0n. This obviously contradicts the existence
and uniqueness theorem for the solution of a matrix linear differential equation with
continuous coefficients. �
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Proposition 1. Assume that in the differential game Γ,

Dii > 0, Dij < 0, Ci < 0(i, j ∈ N, i 6= j) and Λ11Λ22 < Λ12Λ21. (16)

Then, a Pareto-maximal alternative UP in the N-criteria choice problem Γv has the form

UP = (UP
1 , UP

2 , . . . , UP
N)÷ (uP

1 (t, x), uP
2 (t, x), . . . , uP

N(t, x)) =
= uP(t, x) = (QP

1 (t)x, QP
2 (t)x, . . . , QP

N(t)x) = (−d−1
1 ΘP(t)x,−d−1

2 ΘP(t)x, . . . ,−d−1
N ΘP(t)x),

(17)

where

ΘP(t) = [X−1(t)]′{C−1 +

ϑ∫
t

X−1(τ)[d−1
1 + d−1

2 + . . . + d−1
N ][X−1(τ)]′dτ}−1X−1(t) (18)

is a continuous symmetric matrix of dimensions n× n on the time interval [0, ϑ] ; the negative
constants di are given by (13);

α2 =
1
2

[
Λ11

λ21
+

λ12

Λ22

]
, α3 =

1
2

[
λ13

Λ33
+

1
2

(
Λ12

λ21
+

λ12

Λ22

)
λ23

Λ33

]
, (19)

and the other numbers αγ(γ = 4, . . . , N) are calculated by the recurrent formulas

αm =
1

2Λmm
[λ1m + α2λ2m + . . . + αm−1λm−1m](m = 4, . . . , N), (20)

where Λii is the greatest root of the characteristic equation det[Dii −ΛEn] = 0 (i ∈ N), and −λij
is the greatest root of the characteristic equation det[Dij − λEn] = 0 (i, j ∈ N, i 6= j); En denotes
an identity matrix of dimensions n× n; finally, X(t) means the fundamental matrix of the system
.
x = A(t)x, X(ϑ) = En.

Proof. We construct a Pareto-maximal alternative UP using Lemma 3 (formula (4)) and
dynamic programming [16]. Due to Property 2, the application of dynamic programming
reduces to two stages as follows.

First stage. For the problem Γ, find (N − 1) positive numbers αm(m = 2, . . . , N − 1), a
continuously differentiable scalar function V(t, x) = x′Θ(t)x, Θ(t) = Θ′(t) ∀t ∈ [0, ϑ], and
Nn-dimensional vector functions ui(t, x, V) (i ∈ N) such that

V(ϑ, x) = x′Cx,C = C1 + α2C2 + . . . + αNCN ,∀x ∈ Rn. (21)

Then, using the scalar function

W(t, x, u1, u2, . . . , uN , V) =
∂V
∂x

+

[
∂V
∂t

]′
(A(t)x + u1 + u2 + . . . + uN) + u′1d1u1 + u′2d2u2 + . . . + u′NdNuN ,

find Nn-dimensional vector functions ui(t, x, V) (i ∈ N) from

max
u1,u2,...,uN

W(t, x, u1, u2, . . . , uN , V) = Idem{ui → ui(t, x, V)}(i ∈ N) (22)

for any t ∈ [0, ϑ], x ∈ Rn and V ∈ R
(

∂V
∂x = gradxV

)
. The functions ui(t, x, V) in (22) exist

under the following sufficient conditions: for all (t, x) ∈ [0, ϑ)×Rn,

∂V
∂x

∣∣∣
u(t,x,V)

= ∂V
∂x + 2diui(t, x, V) = 0n, (i ∈ N),

∂2W
∂u2

i
= 2diEn < 0, (i ∈ N),

(23)

where (as before) 0n denotes an n-dimensional zero vector from the space Rn, and di < 0
by Lemma 3.
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From (23), it follows that

ui(t, x, V) = −1
2

d−1
1

∂V
∂x

(i ∈ N). (24)

Then

W(t, x, u(t, x, V), V) = W[t, x, V] =
∂V
∂t

+

[
∂V
∂x

]′
A(t)x− 1

4

(
∂V
∂x

)′
[d−1

1 + d−1
2 + . . . + d−1

N ]
∂V
∂x

.

The second stage. Find the solution V = VP(t, x) = x′ΘPx, ΘP = [ΘP(t)], of the
partial differential equation

W[t, x, V] = 0

with the boundary condition

V(ϑ, x) = x′Cx∀x ∈ Rn,

where C = C1 + α2C2 + . . . + αNCN . In other words, for all t ∈ [0, ϑ] and all x ∈ Rn,

W[t, x, V(t, x)] = x′ΘPx = 0,V(ϑ, x) = x′Cx∀x ∈ Rn.

Consequently, the symmetric matrix ΘP(t) of dimensions n× n satisfies the Riccati
matrix differential equation

.
Θ

P
(t) + ΘP(t)A(t) + A′(t)ΘP(t)−ΘP(t)[d−1

1 + d−1
2 + . . . + d−1

N ]ΘP(t) = 0n×n,
ΘP(ϑ) = C = C1 + α2C2 + . . . + αNCN ,

where 0n×n denotes a zero matrix of dimensions n× n.
As is well known [16], the solution ΘP(t) of the Riccati matrix differential equation

has the form (18). (Here, the implication

Ci < 0(i ∈ N)⇒ C1 + α2C2 + . . . + αNCN < 0

has been taken into account). Formula (18), in combination with another implication

[V(t, x) = x′ΘP(t)x] =
[

∂V(t, x)
∂x

= 2ΘP(t)x
]

,

finally yields (17). Thus, a Pareto-maximal alternative UP in the multicriteria choice
problem Γv is given by (17) and (18).

Now we construct the Pareto-maximal payoffs

JP = (J1(UP, t0, x0), J2(UP, t0, x0), . . . , JN(UP, t0, x0)) = (JP
1 , JP

2 , . . . , JP
N)

using dynamic programming and [44]. �

Proposition 2. Let Conditions (16) of Proposition 1 be valid. Assume that for the differential game
Γ , there are N scalar continuously differentiable functions Vi(t, x) = x′Θi(t)x(i ∈ N) such that:

1. Vi(ϑ, x) = x′Cix∀x ∈ Rn,
2. The system of N partial differential equations

∂Vi
∂t

+

(
∂Vi
∂x

)′
(N(t)x + x′ΘP(t)Mi(t)ΘP(t)x) = 0, Vi(ϑ, x) = x′Cix, ∀x ∈ Rn(i ∈ N) (25)

has the solution Vi(t, x) = x′Θi(t)x, [Θi(t)]′ = Θi(t)(i ∈ N).
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Then, for any initial position (t0, x0) ∈ [0, ϑ)×Rn, x0 6= 0n,

JP
i = Ji(UP, t0, x0) = x′0ΘP

i (t0)x0(i ∈ N).

In (25),
N(t) = A(t)− (d−1

1 + d−1
2 + . . . + d−1

N )En,

Mi(t) = ΘP(t)
(
[d−1

1 ]
2
Di1 + [d−1

2 ]
2
Di2 + . . . + [d−1

N ]
2
DiN

)
ΘP(t)

(i ∈ N)

are continuous matrices of dimensions n × n ; the matrix ΘP(t) is given by (17) and (18); the
numbers di are given by (13);

Θi(t) =
[
Y−1(t)

]′Ci −
ϑ∫

t

Y′(τ)Θ(τ)Mi(τ)Y(τ)dτ

Y−1(t) (i ∈ N) (26)

are symmetric matrices of dimensions n× n; finally, Y(t) denotes the fundamental matrix of the
homogeneous system

.
y = N(t)y, Y(ϑ) = En.

Proof. We construct the N scalar functions

W[t, x, Vi] =
∂V
∂t +

[
∂V
∂x

]′
(N(t)x + [uP

1 (t, x)]′Di1uP
1 (t, x)+

+[uP
2 (t, x)]′Di2uP

2 (t, x) + . . . + [uP
N(t, x)]′DiNuP

N(t, x)(i ∈ N),
(27)

where uP
i (t, x) are the n-dimensional vector functions given by (17) and (18).

Let us find the solution Vi(t, x) (i ∈ N) of the system of N partial differential equations

Wi[t, x, Vi] = 0, Vi(ϑ, x) = x′Cix (28)

as the quadratic form Vi(t, x) = x′Θi(t)x, [Θi(t)]′ = Θi(t) (i ∈ N).
We will establish two facts as follows.
First, the solution of Systems (27) and (28) has the property

Vi(t0, x0) = Ji(UP, t0, x0)(i ∈ N), (29)

where the strategy profile UP = (UP
1 , UP

2 , . . . , UP
N) has the form (17) and (18). Really, if UP

is a strategy profile from (12)–(14), then by (27) and (28), the solution xP(t) of the system
.
x = N(t)x, x(t0) = x0 6= 0n, for x = xP(t) will be

0 = Wi[t, xp(t), Vi(t, xp(t))] =

= ∂Vi(t,xp(t))
∂t +

[
∂Vi(t,xp(t))

∂x

]′
N(t)xp(t) +

N
∑

j=1
[uP

j (t, xP(t))]′DijuP
j (t, xP(t)) = Wi[t]

∀t ∈ [t0ϑ](i ∈ N).

Integrating both sides of this identity from t0 to ϑ subject to the boundary conditions
(28) yields

0 =
ϑ∫

t0

Wi[t]dt =
ϑ∫

t0

dVi(t,xP(t))
dt dt+

ϑ∫
t0

N
∑

j=1
[uP

j (t, xP(t))]′DijuP
j (t, xP(t))dt =

= VP
i (ϑ, xP(ϑ))−VP

i (t0, xP(t0)) +
ϑ∫

t0

N
∑

j=1
[uP

j (t, xP(t))]′DijuP
j (t, xP(t))dt =

= x′(ϑ)Cix(ϑ) +
ϑ∫

t0

N
∑

j=1
[uP

j (t, xP(t))]′DijuP
j (t, xP(t))dt−VP

i (t0, xP(t0)) =

= Ji(UP, t0, x0)−VP
i (t0, xP(t0))(i ∈ N).

Hence, Property (29) is proved.
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Second, the solution of System (29) has the form Vi(t, x) = x′Θi(t)x, where a symmet-
ric matrix Θi(t) of dimensions n× n is given by (26). Really, substituting Vi(t, x) = x′Θi(t)x
into (28) leads to (29) if Θi(t) is the solution of the matrix linear inhomogeneous differen-
tial equation

Θi + Θi N + N′Θi + ΘP(t)MiΘP(t) = 0n×n, ΘP(ϑ) = Ci(i ∈ N).

A direct substitution of (26) into equation (29) shows that this symmetric matrix Θi(t)
of dimensions n× n is the desired solution. The proof of Proposition 2 is complete.

Note that

dY−1(t)
dt

= −Y−1(t)A(t),
d[Y−1(t)]′

dt
= −A(t)[Y−1(t)]′.

�

Remark 3. Propositions 1 and 2 considered together finally yield the following explicit form of the
Pareto-maximal solution (UP, JP) ∈ U ×Rn of the game Γ.

Assume that in the differential game Γ:

1. The symmetric constant matrices Dij and Ci of dimensions n× n are such that

Dii > 0, Dij < 0, Ci < 0(i, j ∈ N, i 6= j).

2. Λ11Λ22 < λ12λ21.

Then, for all (t0, x0) ∈ [0, ϑ)×Rn, x0 6= 0n,

UP ÷ uP(t, x) = (−d−1
1 ΘP(t)x,−d−1

2 ΘP(t)x, . . . ,−d−1
N ΘP(t)x),

JP = (JP
1 , JP

2 , . . . , JP
N), (JP

i = x′0Θi(t0)x0(i ∈ N),

where

ΘP(t) = [X−1(t)]′
{

C−1 +
ϑ∫
t

X−1(τ)[d−1
1 + d−1

2 + . . . + d−1
N ][X−1(τ)]′dτ

}−1

X−1(t),

Θi(t) = [Y−1(t)]′
{

Ci −
ϑ∫
t

Y′(τ)ΘP Mi(τ)ΘPY(τ)dτ

}
Y−1(t),

are symmetric matrices of dimensions n× n ; the matrices X(t) and Y(t) of dimensions n× n are
the fundamental matrices of the systems

.
x = A(t)x, X(ϑ) = En and

.
y = N(t)x, Y(ϑ) = En,

respectively;

C = C1 + α2C2 + . . . + αNCN ,
N(t) = A(t)− (d−1

1 + d−1
2 + . . . + d−1

N )ΘP(t),
Mi(t) = ΘP(t)

(
[d−1

1 ]
2
Di1 + [d−1

2 ]
2
Di2 + . . . + [d−1

N ]
2
DiN

)
ΘP(t),

the numbers α2 = 1
2

(
λ13
Λ33

+ Λ11
λ31

)
, α3 = 1

2

[
λ12
Λ22

+ 1
2

(
λ13
Λ33

+ Λ11
λ31

)
λ32
Λ22

]
, . . . , and αγ(γ = 4, . . . N)

are given by (20); the negative numbers di are given by (13); Λij and −λij are the greatest
roots of the characteristic equations det[Dii − ΛEn] = 0 and det[Dij − λEn] = 0, respectively
(i, j ∈ N, i 6= j).

Lemmas of Majorants

Next, let us proceed to the propositions that

1. Will allow us to reveal the absence of Nash equilibrium in differential games if (11) is
satisfied;
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2. Realize for the game the concept of sanctions and countersanctions for the differential
game Γ.

These items (1) and (2) involve the definiteness of quadratic forms figuring in the
integral terms of the payoff functions (3). From this point onwards, assume that Conditions
(11) are satisfied. Hence, there exists a Pareto-maximal alternative

UP = (UP
1 , UP

2 , . . . , UP
N)÷ (uP

1 (t, x), uP
2 (t, x), . . . , uP

N(t, x)) =
= uP(t, x) = (QP

1 (t)x, QP
2 (t)x, . . . , QP

N(t)x) =
= (−d−1

1 ΘP(t)x,−d−1
2 ΘP(t)x, . . . ,−d−1

N ΘP(t)x).

in the N-criteria choice problem Γv.

Lemma 5. Let the payoff function (3) be such that D11 > 0. Then, for a Pareto-maximal strategy
profile alternative UP in the game Γ, there exists a constant α(1)(UP, t0, x0) > 0 such that, for all
α = α(1)(UP, t0, x0) > 0 and the strategy UT

1 ÷ αx of Player 1, the inequality

J1(UT
1 , UP

2 , . . . , UP
N , t0, x0) > J1(UP

1 , UP
2 , . . . , UP

N , t0, x0) (30)

will hold for any initial positions (t0, x0) ∈ [0, ϑ)× [Rn\{0n}].

Proof. According to Proposition 2, there exists a Bellman function V1(t, x) = x′Θ1(t)x
such that

J1(UP, t0, x0) = V1(t0, x0) = x′0Θ1(t0)x0,

where the symmetric matrix Θ1(t) of dimensions n× n is continuous on [0, ϑ) and has the
form (26) (i = 1).

Consider the strategy UT
1 ÷uT

1 (t, x) = αx of Player 1, in which the numerical parameter
α > 0 will be determined below. Due to the symmetry of the matrix D11 and D11 > 0,

u′1D11u1 ≥ λ1‖u1‖2 = λ1u′1u1∀u1 ∈ Rn, (31)

where ‖·‖ denotes the Euclidean norm, and λ1 > 0 is the smallest root of the characteristic
equation det[D11 − λEn]; see [45].

We take the symmetric matrix ΘP(t) of dimensions n× n from (18) and the strategies
UP

2 ÷QP
2 (t)x, . . . , UP

N ÷QP
N(t)x of players 2, . . . , N, respectively, from (17). We introduce

the scalar function

W1[t, x] =
= [W1(t, x, uT

1 (t, x) = αx, uT
2 (t, x) = QP

2 x, . . . . . . , uT
N(t, x) = QP

N x,
V(t, x)1 = x′Θ1(t)x] =

= ∂V1(t,x)
∂t +

[
∂V1(t,x)

∂x

]′
(A(t)x + uT

1 (t, x) + uT
2 (t, x) + . . . + uT

N(t, x))+
+[uT

1 (t, x)]′d1uT
1 (t, x) + [uT

2 (t, x)]′d2uT
2 (t, x) + . . . + [uT

N(t, x)]′dNuT
N(t, x) ≥

≥ x′ dΘ1(t)
dt x + 2x′Θ1(t)[A(t) + αEn + QP

2 (t) + . . . QP
N(t)]x+

+x′(λ1α2En)x + x′[QP
2 (t)]

′D12QP
2 (t)x + . . .

. . . + x′[QP
N(t)]

′D1NQP
N(t)x = x′{ dΘ1(t)

dt + Θ1(t)[A(t) + αEn + QP
2 (t) + . . . + QP

N(t)]+
+[A′(t) + αEn + (QP

2 (t))
′ + . . . + (QP

N(t))
′]Θ1(t) + λ1α2En+

+[QP
2 (t)]

′D12QP
2 (t) + . . . + [QP

N(t)]
′D1NQP

N(t)}x =
= x′M1(t, α)x.

The matrix M1(t, α) in curly brackets is symmetric and has the form

M1(t, α) = λ1α2En + 2αΘ1(t) + K1(t),

where
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K1(t) =
.

Θ1(t) + Θ1(t)[A(t) + QP
2 (t) + . . . + QP

N(t)] + [QP
2 (t)]

′D12QP
2 (t) + . . . + [QP

N(t)]
′D1NQP

N(t)+
+[A′(t) + (QP

2 (t))
′ + . . . + (QP

N(t))
′]Θ1(t)

is a symmetric and continuous matrix of dimensions n× n.
The elements of the matrices Θ1(t) and K1(t) are continuous on [0, ϑ] and hence

uniformly bounded on the compact set [0, ϑ]. The factor α2 enters only the diagonal
elements of the matrix M1(t, α). Recall that λ1 > 0 is the smallest root of the characteristic
equation det[D11 − λEn] = 0, where En denotes an identity matrix of dimensions n× n.
Therefore, the constant α = α(1)(UP, t0, x0) > 0 can be chosen sufficiently great for making
all principal minors of the matrix M1(t, α) positive ∀t ∈ [0, ϑ] α ≥ α(1)(UP, t0, x0). (This
fact will be proved below). According to Lemma 2 and [46], the quadratic form x′M1(t, α)x
is positive definite for all t ∈ [0, ϑ] and all constants α ≥ α(1)(UP, t0, x0).

Now we show the existence of a constant α(1)(UP, t0, x0) > 0 such that, for all
α ≥ α(1)(UP, t0, x0), the quadratic form x′M1(t, α)x is positive definite for all t ∈ [0, ϑ]
and x ∈ Rn. Note that the matrix M1(t, α) of dimensions n× n is symmetric. By Sylvester’s
criterion, the quadratic form x′M1(t, α)x is positive definite if all principal minors ∆r(r =
1, . . . , n) of the matrix M1(t, α) are positive. The minors ∆r are located in the first r rows
and first r columns of the matrix M1(t, α) (r = 1, . . . , n):

∆r(t, α) =

∣∣∣∣∣∣∣
λ1α2n + αl11(t) + k11(t) · · · αl1r(t) + k1r(t)

...
. . .

...
αlr1(t) + kr1(t) · · · λ1α2n + αlrr(t) + krr(t)

∣∣∣∣∣∣∣.
They must be positive ∀t ∈ [0, ϑ] and ∀α ≥ α(1)(UP, t0, x0). Expanding the deter-

minants ∆r(t, α) and rearranging the terms in the descending order of the power of the
parameter α, we obtain

∆r(t, α) = α0(t)α2r + α1(t)α2r−1 + . . . + α2r−1(t)α + α2r(t),

where α0 = λrnr > 0 (constant), and the other coefficients α1(t), . . . , α2r(t) are continuous
on the compact set [0, ϑ], hence being uniformly bounded. This uniform boundedness
guarantees the existence of Ωr = const > 0 such that

max
0≤t≤ϑ

{αp(t)|p = 0, 1, . . . , 2r} < Ωr.

Let us demonstrate that if

α >
Ωr

|α0|
+ 1 = α(1)(UP, t0, x0),

then
|α1(t)α2r−1 + α2(t)α2r−2 + . . . + α2r−1(t)α + α2r(t)| <

∣∣∣α0α2r
∣∣∣.

In other words, for a sufficiently great value |α|, the sign of the polynomial ∆r(t, α) is
determined by the sign of its leading term. Really,

|α1(t)α2r−1 + α2(t)α2r−2 + . . . + α2r−1(t)α + α2r(t)| ≤
≤
∣∣α1(t)α2r−1

∣∣+ ∣∣α2(t)α2r−2
∣∣+ . . . + |α2r−1(t)α|+ |α2r(t)| ≤

≤ Ωr(α2r−1 + α2r−2 + . . . + α + 1) = Ωr
α2r−1

α−1 .

In addition, [
α >

Ωr

|α0|
+ 1
]
⇒ [Ωr < α0(α− 1)].
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Replacing Ωr in this inequality by a greater value α0(α− 1) yields

|α1(t)α2r−1 + α2(t)α2r−2 + . . . + α2r−1(t)α + α2r(t)| <
< α0(α− 1) α2r−1

α−1 = α0(α− 1) < α0α2r.

Thus ∀α ≥ Ωr = α(r)(U, t0, x0) > 0, and ∀t ∈ [0, ϑ], we have

|α1(t)α2r−1 + α2(t)α2r−2 + . . . + α2r−1(t)α + α2r(t)| < α0α2r.

Well, for a sufficiently great value α, the sign of the polynomial ∆r(t, α) is determined
by the sign of its leading term. Finally, for each r = 1, . . . , n, we calculate Ωr > 0 and let
α(1)(UP, t0, x0) = max

r=1,...,n
Ωr.

Then, for α(1)(UP, t0, x0), it follows that

W̃1[t, x] = x′M1(t, α(1))x > 0∀t ∈ [0, ϑ]∀x ∈ Rn\{0n}. (32)

We denote by x̃(t), t ∈ [0, ϑ], the solution of the vector differential equation

.
x = A(t)x + α(1)x + QP

2 (t)x + . . . + QP
N(t)x,x(t0) = x0 6= 0n.

Due to Lemma 2, the implication [x0 6= 0n]⇒ (x̃(t) 6= 0n t ∈ [0, ϑ]) and (32),

W̃1[t, x̃(t)] > 0, ∀t ∈ [0, ϑ].

Integrating both sides of (32) from t0 to ϑ subject to the boundary condition Θ1(ϑ) = C1
and uT

1 [t] = α(1) x̃(t) gives:

0 =
ϑ∫

t0

W̃1[t, x̃(t)]dt =

=
ϑ∫

t0

{
∂V1(t,x)

∂t +
[

∂V1(t,x)
∂x

]′
[A[t]x + α(1)Enx + QP

2 (t)x + . . . +QP
N(t)x]

}
x=x̃(t)dt =

=
ϑ∫

t0

{(α(1))2
x′D11x+x′[QP

2 (t)]
′D12QP

2 (t) + . . . + x′[QP
N(t)]

′D1NQP
N(t)}x=x̃(t)dt =

=
ϑ∫

t0

dV1(t,x̃(t))
dt +

ϑ∫
t0

N
∑

j=1
[uT

j [t]]
′D1juT

j [t]dt =

= [x̃(ϑ)]′C1 x̃(ϑ) +
ϑ∫

t0

N
∑

j=1
[uT

j [t]]
′D1juT

j [t]dt−V1(t0, x0) =

= J1(UT
1 , UP

2 , . . . , UP
N , t0, x0)−V1(t0, x0).

This result, in combination with the equality J1(UP
1 , UP

2 , . . . , UP
N , t0, x0) = V1(t0, x0),

finally proves Lemma 5. �

Remark 4. Consider the inner optimization problem in the game Γ: for fixed strategies U2 =
UP

2 ∈ U2, . . . , UN = UP
N ∈ UN of players 2, . . . , N, respectively, and for any (t0, x0) ∈ [0, ϑ)×

[Rn\{0n}], find max
U1∈U1

J1(U1, UP
2 , . . . , UP

N , t0, x0) subject to System (1). Lemma 5 claims that for

D11 > 0 and x0 6= 0n, this problem maximization problem has no solution. Really, whatever
strategy U1 ∈ U1 is chosen by Player 1, there always exists another strategy UT

1 of this player
such that

J1(ŨT
1 , UP

2 , . . . , UP
N , t0, x0) > J1(U1, UP

2 , . . . , UP
N , t0, x0)∀(t0, x0) ∈ [0, ϑ)× [Rn\{0n}].

When choosing an appropriate solution of the game Γ , this result allows directly eliminating
those concepts of equilibrium that involve the maximization of the payoff function of Player 1 with
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respect to U1. (For example, if D11 > 0 , the concept of Nash equilibrium should not be used as the
solution of the game Γ ).

Thus, under Conditions (11), the differential game Γ has no Nash equilibrium. At the same
time, the strategy UT

1 ÷ αx∀α ≥ α(1)(UP, t0, x0) implements the sanction of Player 1 to the Pareto-
maximal (efficient) strategy profile UP ; see (5). In the lemmas below, the initial position (t0, x0)
is fixed and coincides with the one from Lemma 5; in addition, the sanction strategy UT

1 ÷ αx of
Player 1 has a constant scalar α = α(1) . Recall that Conditions (11) are assumed to hold without
special mention. Well, Lemma 5 establishes the following result.

Proposition 3. Assume that in the game Γ, at least one of the constant symmetric matrices Dii > 0
(i ∈ N) of dimensions n× n is positive definite. Then, this game has no Nash equilibrium, i.e.,
there does not exist a strategy Ue

i ∈ Ui satisfying Definition 2.
Note that:

1. The condition Dii > 0 with a fixed number i ∈ N breaks only the i th equality of Definition
2. This is enough for the absence of a Nash equilibrium Ue in the game Γ . If Dii > 0 for all
i ∈ N , then the N equalities of Definition 2 will be violated.

2. The equivalence

D > 0⇔ −D < 0

is obvious. (Here,—D means that all elements of the matrix D are multiplied by –1).

Then, Lemma 5 also implies the following.

Lemma 6. Let the payoff function (3) be such that D12 > 0. Then, there exists a constant
α(2) = α(2)(UP, UT

1 , t0, x0) > 0 such that, for all ∀α ≥ α(2) and the strategy UC
2 ÷ αx of Player 2,

J1(UT
1 , UC

2 , UP
3 , . . . , UP

N , t0, x0) < J1(UP, t0, x0). (33)

In other words, the strategy UC
2 ÷ αx∀α ≥ α(2) implements in the game Γ an incomplete

countersanction to the sanction UT
1 of Player 1.

Proof. With some obvious modifications, the proof is immediate from Lemma 5.
Let a Bellman function Ṽ1(t, x) = x′Θ̃(t)x, Θ̃(t) = Θ1(t), be constructed, satisfying

J1(UT
1 , UP

2 , . . . , UP
N , t0, x0) = Ṽ1(t0, x0). (34)

By analogy with Lemmas 5 and 6, we will establish another important result below.
Recall that an initial position (t0, x0), a continuous matrix ΘP(t) of dimensions n× n, and
an incomplete countersanction strategy UC

2 ÷ α(2)x figuring in Lemmas 5 and 6 are assumed
to be fixed, and Conditions (11) are assumed to hold. �

Lemma 7. The condition D22 > 0 implies the existence of a value α(3)(UP, UT
1 , t0, x0) = const > 0

such that, for all α > α(3) and the strategy UC
2 ÷ αx,

J2(UT
1 , UC

2 , UP
3 , t0, x0) < J2(UT

1 , UP
2 , UP

3 , t0, x0).

In other words, the strategy UC
2 ÷ (max{α(2), α(3)})x of Player 2 implements a complete

countersanction, jointly with UC
2 ÷ α(2)x, to the sanction of Player 1 to UP.�

The sanctions of another player and countersanctions of the other players are constructed
similarly.
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Proof of Existence

Theorem 1. Assume that the game Γ =
〈
N, Σ÷ (2), {Ui}i∈N, {Ji(U, t0, x0)÷ (3)}i∈N

〉
satisfies

Conditions (16). Then, the (N + 1)-tuple

(UP, JP
1 , JP

2 , . . . , JP
N) = ((UP

1 , UP
2 , . . . , UP

N), J1(UP, t0, x0), J2(UP, t0, x0), . . .
. . . , JN(UP, t0, x0) = ((−d−1

1 ΘP(t)x,−d−1
2 ΘP(t)x, . . .

. . . ,−d−1
N ΘP(t)x), x′0Θ1(t0)x0, x′0Θ2(t0)x0, . . . , x′0ΘN(t0)x0)

is an equilibrium in sanctions and countersanctions of differential game Γ where:

ΘP(t) = [X−1(t)]′{C−1 −
ϑ∫

t

X−1(τ)[d−1
1 + d−1

2 + . . . + d−1
N ][X−1(τ)]′dt}−1X−1(t);

the constants di are given by (13); C = C1 + α2C2 + . . . + αNCN , where α2 = 1
2

(
Λ11
λ21

+ λ12
Λ22

)
,

α3 = 1
2

[
Λ13
λ33

+ 1
2

(
Λ11
λ21

+ λ12
Λ22

)
λ23
Λ33

]
and αm = 1

2Λmn
[λ1m + α2λ2m + . . . + αm−1λm−1m] (m =

4, . . . , N) and Λi and −λij are the smallest and greatest roots of the equations det[Dij −ΛEn] = 0
and det[Dij − λEn] = 0, respectively; X(t) denotes the fundamental matrix of the system

.
x =

A(t)x, X(ϑ) = En (i, j ∈ N, i 6= j); finally, the symmetric matrices Θi(t)(i ∈ N) are given
by (26).

Proof. The absence of a Nash equilibrium in the game Γ and the presence of a sanction UT
1

imposed by Player 1 to a Pareto-maximal alternative UP in the N-criteria choice problem
Γv immediately follow from D11 > 0; see Remark 4. The existence of a Pareto-maximal
alternative and Pareto-maximal outcomes in Γv (including their explicit forms in this case)
has been established by Propositions 2 and 3, respectively. The condition D21 > 0 allows
constructing an incomplete countersanction UC

2 of Player 2 to the sanctions of Player 1
(Lemma 6). The condition D22 > 0 and Lemma 7 enable transforming the incomplete
countersanction UC

2 of Player 2 into the complete one UC
2 . The requirement D22 > 0

simultaneously implies the absence of a Nash equilibrium (max
U1

J(U1, Ue
2, Ue

3, . . . , Ue
N , t0, x0)

is not achieved UC
1 ∈ U1) and the ability of Player 2 to design analytically a sanction UT

2 to
UP in the game Γ:

J2(UC
1 , UT

2 , UP
3 , . . . , UP

N) ≤ J2(UPt0, x0). (35)

The condition D22 > 0 and Lemma 7 guarantee the existence of an incomplete coun-
tersanction UC

1 ∈ U1 of Player 1 to the sanction UT
2 of Player 2:

J2(UC
1 , UT

2 , UP
3 , . . . , UP

N) < J2(UPt0, x0). (36)

Finally, the Pareto maximality of UP and Property 1 lead to

J1(UP
1 , UT

2 , UP
3 , . . . , UP

N) < J1(UPt0, x0). (37)

Due to D11 > 0 and Lemma 5, there exists a UC
1 ∈ U1 such that

J1(U
C
1 , UT

2 , UP
3 , . . . , UP

N) > J1(UP
1 , UT

2 , UP
3 , . . . , UP

N , t0, x0). (38)

The countersanction to the sanctions imposed by players 3, . . . , N to UP is designed
by analogy.

Thus, one of the other players in the game Γ always has a complete countersanction to
a sanction imposed by any player to the Pareto-maximal strategy profile UP. The proof of
Theorem 1 is complete. �
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4. Discussion

Game-theoretic analysis of international legal agreements is based on a qualitative
assessment of the interaction mechanisms between their participants. The application of
this methodology is also justified by the fact that, unlike national law, international law
lacks a superstructure with the legal personality to punish violations of these agreements
and to compel the participants to fulfill them. As a rule, the subjects of international law
agree with each other on the mechanisms of fulfilling legal prescriptions and responsibility
for their violations. However, recently the system of international law is undergoing signif-
icant changes, which changes the basis of relations between its subjects and, accordingly,
some consequences affect the functioning of national socio-economic systems. At the same
time, the application of sanctioning legal regimes concerning individual national economies
becomes a demanded multilateral mechanism of economic and political coercion. The
so-called “treaty games” are often used to analyze the parties’ benefits and the effectiveness
of existing and planned international legal regimes. They make it possible to estimate the
number of sanctions and compensatory payments to ensure that the signing (implementa-
tion) of an agreement benefits all parties and prevents the violation of international legal
regimes. As a rule, classical symmetric games with nonzero sums are widely used to model
situations arising during the creation and modification of international legal regimes.

In contrast to such studies [47–58], this article presents a new methodology for mod-
eling decision-making processes in complex controlled dynamic systems and forms a
mechanism of equilibrium of sanctions and countersanctions, which contributes to solving
the problems of stability of equilibria: a linear-quadratic positional differential game of
many individuals is considered, coefficient criteria are established if they are met, there is
an equilibrium of sanctions and countersanctions in the game, and there is no generally
accepted Nash equilibrium.

The substantive meaning of the result obtained in this study is as follows. Both for
the subjects using sanction coercive regimes and for the subjects stabilizing the situation
by countersanctions, under certain conditions, there is a situation of stable effective active
equilibrium with the most tremendous benefits for its participants. Thus, a debatable
question is raised: If there is a way to use sanctions for one’s benefit, how expedient is
their use?

5. Conclusions

This research demonstrates that there is no Nash equilibrium in a linear-quadratic
game when Constraints (11) are satisfied. However, there is an equilibrium of sanctions
and countersanctions. The novelty of the study of the theory of differential games is that

− The equilibrium of sanctions and countersanctions is simultaneously Pareto-maximal;
− A wide sufficient class of differential games of N persons at N ≥ 2, in which there

is an equilibrium of sanctions and countersanctions and simultaneously there is no
Nash equilibrium;

− An algorithm for practical constructing the equilibrium of sanctions and countersanc-
tions is proposed.

The research results allow us to assert that the economic and legal justification of the
construction of game-theoretic equilibrium models expands the practical application of
the class of problems considered in this paper. At the same time, the authors do not claim
the universality of game-theoretic methodology in modeling socio-economic processes.
At the same time, they show the urgent need for additional research into the properties
used in the analytical construction of various equilibria, including the equilibrium of
sanctions and countersanctions, as a mechanism for researching the equilibrium of complex
controlled systems.
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