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Abstract: This study aims to identify the model that best approximates the credit spread that should be
fixed on debt instruments issued by both companies listed on the Mexican Stock Market, considering
the particularities of the Mexican market. Five models were analyzed: Merton’s model, Brownian
Motion Model, Power Law Brownian Motion Model, Bloomberg’s model, and the model presented
in this paper, which includes the conformable derivatives, taking as a reference the change in the
variable as other authors have done, and the Bloomberg corporate default risk model (DRSK) for
publics firms. We concluded that the modified Merton model approximates, to a greater extent, the
credit spreads that fix on a prime rate on the loans granted to Mexican non-financial companies.
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1. Introduction

The Bank of Mexico’s position after the economic contraction generated by the health
measures to tackle the COVID-19 pandemic to encourage consumption and investment
would be to lower its monetary policy to complement the liquidity implemented in the
financial system to stimulate the economy through the credit channel. To do so, it is
necessary to know how much the Bank of Mexico could reduce this rate without negatively
affecting inflationary dynamics (Sánchez and Lopez-Herrera [1]).

In addition, as pointed out by Ozili and Arun [2], due to the pressures derived from
the trade war between the latter country and Brexit, economic forecasts in 2019 were for
moderate growth in the world economy by 2020. The immediate consequences in the
affected countries were already apparent, as reported by Nicola et al. [3], including job
losses and a drop in demand for manufacturing companies and other goods, in contrast to
an increase in demand for medical supplies.

According to Gopinath [4], during the pandemic, there were shocks to aggregate
supply due to a decrease in production level, while on the aggregate demand side, the
shocks were due to the reluctance of consumers and businesses to spend.

Decreased consumption in the more developed countries implied a sharp decrease
in the prices of their export products for Latin America, producing exchange losses and
recessionary effects given the economy’s sensitivity to those prices, as pointed out by
Schimtt-Grohé and Uribe [5].

Furman and Summers [6], Odendahl and Sprinford [7], as well as Gall [8] pointed
out various possible risks, including financial risks such as corporate bankruptcies, lack of
liquidity, and bank insolvency.
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Sánchez and López-Herrera [1] stated that the COVID-19 effect added to the economic
contraction that had been occurring in Mexico. They pointed out that the nominal interest
rate went from 8.3% during the first quarter of 2019 to 7.4% in 2020. Meanwhile, inflation
remained at low levels. They also stated that the real interest rate had a downward trend,
which showed that the Bank of Mexico decided to reduce interest rates to reduce the fall in
economic activity and lessen the effects of the financial crisis experienced at that time.

It should be noted that although there has already been a substantial increase in interest
rates, to this day in Mexico, there is a large gap between lending rates and borrowing rates
at which both banks and extensive corporations finance, which is why there is a financial
gain at the expense of the liquidity of the end customer.

According to Article 81 Bis of the Mexican Law on Credit Institutions [9], credit insti-
tutions must have guidelines and policies for knowing information about their customers.
According to their profile, they set the interest rate and credit spread that the institution
considers appropriate so that there is no concordance between the credit risk calculated by
a credit rating agency and that determined by a credit institution. In addition, there is no
independence between large corporations and credit institutions, as members of corporate
boards of directors also serve as directors of lending institutions. So, there is an imbalance
between the credit spread they lend and the risk of default.

As Xi and Jiang [10] pointed out, the COVID-19 pandemic has led to the collapse of
global economic activity, people have remained highly uncertain, and the economy still
faces downward risks such as the COVID-19 persistence, financial turmoil, and further
disruption of the global trade and supply chains.

Xi and Jiang [10] stated that many governments have resorted to unconventional
economic stimulus measures to mitigate the negative impact of economic uncertainty
(Hu and Liu [11]), such as a negative interest rate policy (NIRP). According to the Bank for
International Settlements (BIS), major economies have made interest rate cuts mandatory to
reduce the corporate debt burden, to ensure the security of the capital chain, and to mitigate
the impact of uncertainty on economic and financial operations. Economic uncertainty
has resulted in the introduction of extraordinary monetary policies (Ulate [12]). Therefore,
central banks in many countries have introduced outstanding monetary policies, including
NIRP, and have used monetary and interest rate policy tools to stimulate economic growth.

It is important to emphasize that the analysis we carried out in this research is financial
microeconomics, not macroeconomics, which is why we have yet to study sovereign debt
or the political impact of the country’s indebtedness and the effects of monetary policy.

Analyzing a firm’s financial performance requires thoroughly evaluating its financial
health and knowing its strengths and weaknesses. This, in turn, leads to adequate decision
making and adaptability to the ever-changing business environment. According to [5],
firms must be willing to pay the market price for whatever goods and services they employ
in their economic activities, irrespective of their sector. All these expenses, in turn, must
be finance balanced, allowing for present performance and future development. As is
well known, there are three primary sources of financial resources, i.e., inner resources
generated by a firm during its activities, cash inflows coming from stakeholders, and
financial resources obtained using debt, be it short or long term. As a rule, the debt ratios
of a firm depend not only on the goods and services it produces or distributes but also on
the stage of the business development plan, the type of market within which it operates,
and legal and fiscal restrictions, among others.

The interest rate governing such debts is often determined using credit scores from
rating agencies such as Moody’s Investor Service (henceforth Moody’s). Often, this score
will also define the yield a bond emitted by the company should offer. Nonetheless, credit
ratings are usually restricted to public companies with greater purchasing power, which
leaves smaller firms with the complicated task of evaluating the real opportunity cost of
debt. This is the case for many Mexican firms. The overall proportion of public firms in
the Mexican market is relatively small. Further complicating this matter is a debt between
peers, which can hardly be graded or rated, and a credit spread could be fixed outside the



Mathematics 2023, 11, 4397 3 of 30

scope of the market value principle. Consequently, methodologies must show that the cost
of debt is directly proportional to the risk of default.

Merton’s model in [13] can be used to directly estimate the risk-neutral default prob-
abilities and the credit spreads to be added to the base interest rate. Also, the Brownian
Motion (BM) model and the Power Law Brownian Motion (PLBM) model of [14] allow
estimation of the risk-neutral default probability; and thus, the credit spreads using the
default frequencies. These models both share features with structural and reduced-form
settings. In this work, we use these three models to estimate the cost of debt in different
loans. Moreover, we propose a novel, modified Merton’s model to the same end and
analyze and compare all four models. Our application focuses on Mexican firms. It is worth
noting that there is no secondary corporate debt market in Mexico and no public data on
loan recovery rates or credit ratings. To establish this comparison, we follow the definitions
in [6] to estimate the rate of loan recovery where needed.

The modification we propose to Merton’s model consists of incorporating the con-
formable derivatives in the company’s market value into the partial differential equation,
effecting a change in variables, and then solving the equation to arrive at the traditional
Black–Scholes and Merton solution.

The rest of the paper is organized as follows: Section 2 reviews the existing literature.
Section 3 gives a theoretical presentation of all the models used in the analysis and intro-
duces the modified Merton’s model. Section 4 presents the results of our empirical study of
Mexican firms. Finally, in Section 5, we offer our conclusions.

2. Literature Review

Ballester et al. [15] systematically reviewed the literature worldwide. They found
that most of the indexed and refereed articles referring to the role of corporate gover-
nance mechanisms on credit risk have been developed for the United States, followed by
some cases for China and developed economies such as Japan, Korea, Canada, Australia,
and the United Kingdom, In particular, studies are scarce for non-developed economies
(Switzer et al. [16]) and there are practically nonexistent references to Latin America and
even less for Colombia specifically, or at least in journals of high international prestige.

The literature on this topic is scarce for emerging markets, which has resulted in a bar-
rier in the analysis of literature reviewed previously, so there are still exciting opportunities
for more in-depth study. From the literature review conducted, the case studies described
below stand out.

One of the first articles that studied the topic in question is that of Daily and Dal-
ton [17] who analyzed whether there was an impact on the probability of bankruptcy
when considering the structure and composition of the Board of Directors above. They
compared the results of 57 bankrupt companies and 57 surviving companies. For the sur-
viving companies, they found that the results suggested a relationship between governance
structure and the probability of bankruptcy, since 37.5% had dual ownership structures;
however, for the bankrupt companies, this value rose to 59.5%. It should be clarified that
the authors recognized that these results should be taken with caution and that it was also
confirmed that for the companies analyzed that had gone bankrupt, the financial indicators
of one year before the event allowed 95% of the cases to be sure that the situation would
arise, so that intervention on the ownership structure at that time could do little to change
these results.

In addition, Ashbaugh-Skaife et al. [18] investigated whether firms with strong corpo-
rate governance obtained higher credit ratings than those with weaker authority. Using a
sample of U.S. firms, they identified that credit ratings were negatively associated with the
number of shareholders and also with the power of the chief executive officer (management)
and positively related to takeover defenses, board independence, and board experience.
They found that going from the bottom quartile to the top quartile in the corporate gov-
ernance variables doubled the probability of a company obtaining an investment grade
rating, going from 0.46 to 0.93.
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Also noteworthy is the work of Manzaneque et al. [19], who analyzed the impact
of some corporate governance mechanisms (ownership and board characteristics) on the
probability of business failure for firms listed on the Spanish stock exchange through a
study of 308 observations of bankrupt and non-bankrupt firms. They found a negative
relationship between board size and the probability of bankruptcy; however, they did not
identify significant effects of ownership concentration on the probability of default in the
Spanish case.

Similarly, Switzer et al. [16] investigated Canadian entities and found that the corporate
governance structure impacted financial and non-financial firms differently.

Focusing only on non-financial companies in Colombia, the authors found that, for
non-financial companies, more independent boards of directors were associated with
lower credit risk; however, they did not find a significant relationship between ownership
structure (institutional shareholders and majority shareholders) and default risk.

For the Latin American case, we highlight the work of Esparza and Soto [20], who
considered a sample of family firms in Mexico for the period 2012–2016. By applying a mod-
ified Altman Z-Score index, they found that “the size of the board of directors significantly
influences a higher probability of incurring insolvency risk, as well as a differentiation
by sector”. Ballester et al. [15] systematically reviewed the literature worldwide. They
found that most of the indexed and refereed articles referring to the role of corporate
governance mechanisms on credit risk have been developed for the United States, followed
by some cases for China and developed economies such as Japan, Korea, Canada, Aus-
tralia, and the United Kingdom, being particularly scarce for non-developed economies
(Switzer et al. [15]), and practically nonexistent references to Latin America at least in
journals of high international prestige.

According to [21], the development in advanced economies indicates that successful
business management can increase a firm’s performance. Also, following [22], corporate
performance bears a causal link with the results of a firm, but an exact formula to compare
the success of a corporate firm, be it with its past results or those of other firms, does not
exist. For this reason, financial ratios, including debt indicators [23], are primary tools for
assessing a firm as they help to assess financial health [24]. Debt ratios can determine the
extent that external and internal resources are financing a firm and can help to evaluate the
risk of default.

The probability of default is determined by several factors, including the size of the
firm, its industrial sector, whether it pays dividends, the fiscal policy in the country where it
operates, the inflation rate, interest rates, exchange rates, and the overall economic outlook,
among others. According to [25], models that employ data to predict the occurrence of a
default event have evolved into three distinct types: structural, reduced form, and mixed.
The first group, pioneered by Merton [13], base their calculations on a firm’s market value.
A structural model uses the Black–Scholes option pricing model to approximate a firm’s
market value. It then uses this information to develop a default model and compare how
likely it is that a firm will default.

Reduced-form models do not explicitly include the default and firm characteristics
relationships. A default is viewed as an accidental, unanticipated event that can result
from diverse situations in the financial and economic markets. In this way, an exogenous
factor is included to help model default. This exogenous factor is often modeled as a jump
process or is driven by some underlying stochastic process [25].

Research on the relation between the probability of default and credit spread includes
that of Eberhart [26]. The author studied the models by Merton [13], Leland [27], and
Anderson et al. [28] and concluded that Merton’s model strongly and consistently underes-
timated the credit spread. In contrast, the other two models offered a better fit for accurate
data on credit spreads. On the one hand, Ericsson and Reneby [29] also concluded that
the risk of default and the liquidity premium were correlated with significant variations in
credit spreads. The authors see this relation as causal. On the other hand, more minor vari-
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ations in credit spread did not seem to be highly correlated with the probability of default.
They mostly considered the effect of unknown and unmodeled factors, i.e., statistical noise.

Eom et al. [30] tested and compared five models that are conventionally used to
price bonds and corporate firms, namely, those by Merton [1], Geske [31], Longstaff and
Schwartz [32], Leland and Toft [33], and Collin-Dufresne and Goldstein [34]. The authors
showed that using stochastic interest rates in the models did not significantly affect their
valuations’ accuracies. They also argued that all the proposed models were prone to
substantial prediction errors, but the errors varied in magnitude and sign among the
models. More specifically, when used on safer bonds (low leverage and volatility), all the
models underestimated credit spread, and the opposite was true for riskier bonds. It is
worth noting that Geske’s model outperformed Merton’s model by including different
types of debt. Additionally, Leland and Toft’s model overestimated credit spread, and
this phenomenon did not seem solvable by parameter variation. Finally, it was seen that
the assumptions on the recovery rates may strongly affect the prediction variance for
credit spreads.

Another study by Teixeira [35] showed that Merton’s model overestimated bond prices
by approximately 11% and underestimated credit spreads by 76%.

Heynderickx, Carboni, Schoutens and Smits [36] empirically quantified the relation-
ship between default probabilities under the risk-neutral measure (Q) and the actual
measure (P) for European corporates. They concluded that, in general, the ratio between
PDs under Q and P, which they called the coverage ratio, was larger than one. For average
credit quality (Aa-Baa), the coverage ratio was between two and five before the financial
and sovereign crises. For highly distress bonds (high actual intensity or PD) it converged
toward one. The credit risk premium is a decreasing function of credit quality, i.e., the
higher the credit quality, the higher the coverage ratio.

Coval, Jurek, and Stafford [37] analyzed a structural model to investigate investment-
grade credit risk pricing during financial crises. Their analysis suggested that the dramatic
recent widening of credit spreads is highly consistent with the declining equity market,
its volatility increase, and an improved investor appreciation of the risks embedded in
structured products.

Anderson and Sundaresan [28] studied reduced-form models, and highlighted some
limitations. They argued that such models (i) strongly depended on the functional form
chosen and (ii) did not consider other firms. Specifically, market risk and how it correlated
to any given firm was separate from the model compared to the reduced form and struc-
tural models shown in [28]. The authors argued that by treating default as an accidental,
unexpected event, reduced-form models lose focus on s firm’s structure, balance sheet,
etc. Focused on computing the default and probability rates using observed market credit
spreads, these models neither depend upon nor provide economic or financial insight
regarding default.

The PLBM model has been seen to better approximate credit spread in an empirical
study by Denzler et al. [14]. Model accuracy and quality were evaluated by comparing the
results obtained using each model with the observed spread through a measure henceforth
denoted by G.

The existing literature is consistent in its conclusions. However, it must be considered
that these studies have primarily been based on fully developed and stable economies and
financial markets. The problem of evaluating these models in emerging economies is still
open. This paper addresses this problem and includes a novel model based on Merton’s
model of [13] and conformable calculus.

Although our research aims to carry out an analysis from a non-macroeconomic
financial point of view, we analyze the debts of the Mexican companies listed on the stock
exchange; we do not analyze the sovereign debt. According to Xin and Jiang [10], due to the
economic crisis resulting from COVID-19, scholars have concluded that uncertainty shocks
can inhibit output growth, but how uncertainty affects inflation is yet to be completed.
Some scholars consider that the impact of uncertainty shocks on the economy is deflation.
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For example, using a calibrated stochastic general equilibrium (DSGE) model, Leduc and
Liu [38] showed that price stickiness led to economic deflations following uncertainty shock
with U.S. data. Haque and Magnusson [39] estimated a time-varying parameter VAR using
U.S. data and found the response of inflation to be negative in the post-World War II period.
Other scholars have argued that the uncertainty shock has no significant effect on inflation.

It is essential to point out that there are no analyses like the one conducted in this
research, much less in Latin America. There are macroeconomic analyses of sovereign debt
credit ratings, as well as the influence of corporate governance on corporate behavior. But
the added value of this analysis is that, from a financial point of view, the credit rating
per company is obtained, as well as the probability of default and its consequent credit
spread through different models. However, it should be noted that this paper’s objective is
not to study the correlation between default probabilities and Mexican or world economic
performance. The implication that financial markets lack efficiency is conclusive.

3. Methods

This section describes the theoretical models that estimate credit spread using default
probabilities as input. We describe the following models: the Merton’s and Vasicek and
Kealhofer’s (VK) model, the Brownian motion (BM) model, the power law Brownian motion
(PLBM) model, the corporate default risk model for public firms, and the modified Merton
model. Following financial theory, the cost of debt should be directly related, among other
factors, to the financial situation of the entity issuing it, the economic landscape of the
country in which it operates, and the features of the industry sector to which it belongs.
All these factors should, therefore, be reflected by the interest rate at which the debt
is bought.

Following Crosbie and Bohn [40], the risk of default is defined as the uncertainty that
a firm may not have the means to pay its debt. However, before the facts, there is no exact
way to determine if a given firm will or will not default in each period. Estimating default
probabilities becomes an important endeavor. It is well known that due to this uncertainty,
firms are compelled to offer a risk premium, i.e., an excess return as compared to a risk-free
interest rate, and that this risk premium is, broadly speaking, directly proportional to the
probability of default.

From an accounting point of view, the risk of default increases as the value of the assets
approaches the book value of the debt, since a firm defaults when the value of its assets is
less than the total debt. Nonetheless, Crosbie and Bohn [40] found that the actual moment
of default strongly depends on the ratio of short-term debt to long-term debt. According to
the authors, the probability of default is an increasing function of this ratio. To state this
differently, remember that the relevant net value of a firm (net market value) is obtained by
subtracting the point of default from the total market value of its assets. Then, a firm is in
default when its net market value is equal to zero. Thus, a measure of the risk involved is
the volatility of its assets or, more precisely, of the percentual change in its market price.

The former concepts can be combined into a single concept known as the distance to
default (DD) that compares the net market value of a firm to its volatility using the formula:

DD =
[Market value o f assets]− [Point o f de f aullt]
[Market value o f assets][Volatilitu o f assets]

. (1)

The distance to default combines vital elements to estimate the risk of default, i.e., the
market value of a firm’s assets and their volatility, and indirectly, industry and firm risks,
geographical risks, company size, and other factors that can be correlated to the market
value of the assets. Using this measure, the probability of default can be estimated. Such
estimation depends upon the probability distribution of the price of the firm’s assets but
may also be derived from known empirical relations between default and the DD.
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3.1. Merton’s Model, Vasicek, and Kealhofer

Next, we briefly explain the model by Vasicek and Kealhofer in [21], hereafter ab-
breviated VK, which serves as a preamble to better understand Merton’s model in [13].
The authors of [41] extended the option valuation model initially developed in [13] to
compute default probabilities. Similar to Merton’s model, a firm’s equity is considered to
be a perpetual option in the VK model. The point of default acts as a barrier to the firm’s
value; if the value of equity attains this value, the firm will no longer be able to pay its
debts. Under this model, debt and equity are considered to be derivatives, with the firm’s
value as the underlying asset.

According to [41], default probability depends on six variables, namely, the current
value of a firm’s assets; the probability distribution of said assets at time t; the volatility
of the value of the assets, estimated using the VK model at time t; the point of default;
the book value of the debt; the expected growth rate for the asset’s worth; and the time
horizon. Also, according to [41], default probability represents the possibility that the value
of the assets is below the point of default, also known as the expected default frequency
and abbreviated as EDF.

The users from Moody’s system can obtain the EDF. The platform predicts the yearly
probability of default for the year to come. In Moody’s approach, the best grade for a firm
or instrument is Aaa, meaning an almost certain payment or a practically null probability
of default. Next are rates Aa, A, Baa, Ba, B, and Caa, each representing a greater risk than
its predecessor. To facilitate a finer analysis, each category has been segmented. We, thus,
have Aa1, Aa2, Aa2, A1, A2, A3, and so on, until reaching the riskiest Caa.

Having determined the EDF, the next step is to mutate this probability into the credit
spread to be added to the risk-free rate, considering the risk particular to a firm. More
specifically, diverse methods exist to compute the credit spread, such as the Brownian mo-
tion model, the power law Brownian motion model, the modified Merton model (proposed
in this paper), and Merton’s model.

According to Merton [13], the valuation of financial options can be applied to corporate
instruments, such as actions and debt. In this scenario, the underlying asset corresponds to
the value of a firm’s help, and the diffusion process to be used will be the Brownian motion
as follows:

dV = (µ− q)Vdt + σVdZ. (2)

where µ represents the expected return on the firm’s investment; q is the rate of dividends,
coupons, and interests paid by the firm to stakeholders; σV is the volatility on the value of
the assets; and dZ represents integration concerning a traditional Wiener process.

Merton affirms, in [13], that a shareholder has a residual right on the economic flows
generated by a firm. If the debt is due on t = 0, they will receive the difference between the
free cash flow and the total amount of repayable debt. If a firm with assets of a value of V
and a nominal B debt satisfies V > B, the shareholders will obtain a total of E = V − B. On
the contrary, if B > V, the shareholder will not receive any cash flow since all of V will be
allocated to pay the debt. Finally, the shareholder gets nothing again if V = B and E = 0.
As can be inferred, the value of a firm at time T equals the sum of its debt B and its equity
capital E. Furthermore, equity can be compared to a call option on the value of the firm’s
assets VT with an exercise price equal to B since:

ET = max(VT − B, 0). (3)

It uses the Black–Scholes formula of [42] to evaluate European options. It takes as
the volatility the underlying variance of a company’s returns, and the market value of the
company must be cleared by forming a system of equations as follows:

E0(V, T; B) = V0φ(d1)− Be−rTφ(d2), (4)
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d1 =
ln
(

V0
B

)
+
(

r + σV
2

2

)
T

σV
√

T
, (5)

d2 = d1 − σV
√

T. (6)

where V0 is the total market value of the firm’s assets at time t0 and VT represents the same
value at time T. E is the market value of the share capital, i.e., the share price times the
number of ordinary shares in circulation at the initial time; B is the value of the interests
and money to be paid at time T; r is the risk-free interest rate, representing the volatility of
the firm’s assets (which are assumed homoscedastic). Furthermore, σE is the volatility of
the shareholders’ equity, φ(*) is the standard normal cumulative distribution function, and
T is the debt’s due date.

According to this model, the current value of the debt equals the difference between
V0 and E0, and the risk-neutral default probability can be computed as φ(−d2). Knowing
the market value of all the company assets and their volatility is necessary to add this
probability. Unfortunately, these values are not directly observable or present in a firm’s
financial reports. However, if the firm is public, the market value can be computed by
multiplying the number of shares by the market value per share, and its volatility can also
be calculated.

In this paper, we estimate the volatility using the GJR-GARCH model of [43], extending
the traditional GARCH process by including asymmetries in the volatility. The following
equation shows the relationship between a firm’s asset value volatility (σV) and its equity
volatility (σE):

σEE0 =
∂E
∂V

σVV0, (7)

σE =

(
V0

E0

)
N (d 1)σV . (8)

Solving the nonlinear Equations (4) and (8) simultaneously provides the value V0 and
the volatility (σV). The credit spread can be computed with these values, following the
procedure in [22], as follows:

Credit spread =
1
T

ln
[
φ

(
d2 +

V0

Be−rT Φ(d1)

)]
. (9)

3.2. Brownian Motion (BM) and Power Law Brownian Motion Models
3.2.1. An Introduction at Brownian Model

Before explaining the BM and PLBM models, it is essential to detail the calculation of
parameters used by both models, such as, among others, the annualized default risk-neutral
probability, the recovery rate, and the credit spread.

Under an argument like that used in the valuation of financial options, Denzler
et al. [14] calculated the risk-neutral probability of default if one has invested in a coupon
base risk-free F and the other risk F, both with a maturity date of Tj. In the case of the
risk-free bond, the flow to maturity is equal to the expected value of the flows of the
risky bond multiplied by the risk-neutral probability of default and the recovery rate as
shown below:

E[F] = qjiRF +
(
1− qji

)
F. (10)

where E[F] is the expected value of F, a riskless bond at maturity; qji is the risk-neutral
probability of default at time t1 with maturity at Tj; and R is the recovery rate.

As expressed by Denzler et al. [14], the essence of pricing under risk neutrality is that
both investments offer the same return, such that the expected value under the risk-neutral
probability of default of a risky zero-coupon bond with maturity at Tj discounted at a
market rate free of credit risk (Y ji) is equal to the value of a risky bond discounted at a
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rate that includes default risk (Yji) (Equation (11)). Substituting Equation (10) into (11) and
doing some algebra, we arrive at Expressions (12) and (13):

F(
1 + Yj,i

)Tj
=

E[F](
1 + Y j,i

)Tj
(11)

(
1 + Yj,i

)−Tj =
[

R + (1− R)
(
1− qj,i

)(
1 + Y j,i

)−Tj
]

(12)

qji =
1

1− R

1−
(

1 + Yj,i

1 + Y j,i

)−Tj
. (13)

It should be noted that qj,i represents the risk-neutral probability of default during the
remaining term to maturity of the debt instrument, which in some cases can be greater or
less than one year. Therefore, to perform some analyses, in [2], they suggest annualizing
this probability as shown in Equation (14); the credit spread can be obtained with the
neutral probability of default as shown in (15):

∼
q j,i = 1−

(
1− qj,i

) 1
Tj , (14)

sj,i = Yj,i −Y j,i ≥ 0,

sj,i =
1 + Y j,i[

R + (1− R)
∼
q j,i

]1/Tj
−Y j,i. (15)

where, sj,i represents the base credit spread plus the credit risk-free rate.
The actual risk-neutral probability of default can be derived if the recovery rate (R)

is known. Hull [44] defined a bond’s recovery rate as the bond’s market value imme-
diately after default as a percentage of face value. In general terms, a generic value of
40% is assumed for all instruments based on empirical studies by Frye [35], Altman and
Kishore [45], Acharya [46], and Hamilton [47]. Despite this, imposing a fixed recovery
rate is different from reality since there is evidence that this recovery rate has significant
variations concerning the average loan rate [47].

Hull [44], for his part, stated that recovery rates were negatively correlated with
default rates. In fact, in [47], they performed an analysis with data on U.S. bonds for the
period from 1983 to 2004, and arrived at the following linear relationship:

Average recovery rate 0.52 (–) 6.9 (Average default rate). (16)

The most appropriate way to calculate the credit spread would be to obtain the real
recovery rate for Mexican entities according to the type of loan (senior or junior) or the
credit rating; however, since this information was not available, the recovery rate was
calculated using the conditional default probabilities.

According to Hull [44], the conditional probabilities of default represent the possibility
that an entity will not pay in a period of time ∆t, given that if it paid in t. This probability
is called the default intensity at time t, where λ represents the average default intensity
between 0 and t. If we denoted the default probability at time t as Q(t), we obtained the
default intensity using Equation (17).

Q(t) = 1− e−λt, (17)

If we denote the EDF as P(t) and assume that P(t) = Q(t), then, on the one hand, we
can define λ as shown in Equation (18). On the other hand, Hull [44] proposed another
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way to calculate the neutral probability of conditional default per year, given that the
entity did not default previously. This approach starts from the premise that the only
reason a corporate bond can be sold at a lower price than a risk-free bond with the same
characteristics is because of the possibility of default in the payment of the former. Therefore,
this probability of default would be calculated as shown in Equation (19):

λ = λp −
ln(1− P(t))

t
= − ln(1− EDF)

t
, (18)

λ =
s

1− R
(19)

where s is the corporate bond yield spread over the risk-free instrument and R is the
expected recovery rate. Now, if we consider the one-year EDF, as well as the definitions of
λ given by Equations (18) and (19), we can arrive at the following approximation of R (20):

R = 1− s
λp
(
1 + Y j,i + s

) . (20)

The probability of default and the consequent credit spread cannot be readily de-
termined for companies not listed on stock exchanges. Hence, Denzler et al. [14] sug-
gested two models for calculating them, i.e., the Brownian motion (BM) model and the
power law Brownian motion (PLBM) model, which will be briefly explained below. These
models, as mentioned by the authors, incorporate characteristics of the structural and
reduced-form models.

3.2.2. Brownian Motion (BM) Model

The BM model takes as its basis the valuation of debt instruments with the theory of
financial options proposed by Black–Scholes [41] and Merton [13], as well as the migration
models of credit ratings and credit transition probabilities (Markov chains). Denzler
et al. [14] modeled the credit rating, as well as the distance to default (Xt) as a general
Brownian motion, with an initial level equal to x0, such that x0 > 0, i.e.:

Xt = x0 + σXWt0. (21)

where σX is the volatility of the process X and Wt is a Wiener process.
In [2], they also assumed a minimum barrier corresponding to the default level d; once

a company reaches this level, it cannot recover. To facilitate the calculation, this level is
defined as zero (d = 0), and consequently, the initial level of x0 is transferred. They also
believed that the process X, never touched the level d during the entire instrument life.
According to the formal development made by Karatzas and Shreve [48], Harrison [49], as
well as Janeblanc and Rutkowsky [50], the following propositions are established:

Proposition 1. The probability of touching the default barrier during the interval [0,T] starting at
t0 is as follows:

p(t) = 2
[

1− φ

(
x0

σx
√

T

)]
Inverting the above equation, the initial value of the process x0 would be equal to:

x0 = σX
√

Tφ−1
(

1− p(T)
2

)
.

where T is the maturity date of the debt instrument, p(T) is the probability or frequency of default
(EDF) at maturity T, φ(∗) is the cumulative standard normal distribution, and φ−1(∗) is the
inverse cumulative standard normal distribution.
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Proposition 2. The actual probability of default at Tj is equal to:

p(Tj) = 2
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p(T1)
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where p(T1), is the expected default frequency (EDF) with maturity in one year and, is the expected
default frequency (EDF) with maturity in Tj.

In [2], they assumed that the actual probability would be transformed to the neutral
probability default qj,i. Since their objective was to derive the neutral default frequency,
they obtained that this probability could be calculated as follows.

qj,i = 2φ

[√
T1

Tj
φ−1

( pi
2

)]
. (22)

where pi corresponds to the expected annual default frequency (EDF) and qj,i is the neutral
probability of default until maturity of the instrument at Tj. This probability can be
annualized by applying Equation (14).

Considering these deficiencies, in [14], they developed another model that consid-
ered the possibility of sudden changes in credit quality through a Gaussian diffusion
model called the power law Brownian motion (PLBM) model, which is explained in the
following section.

3.2.3. Power Law Brownian Motion (PLBM) Model

This model considers the possibility of sudden instrument degradation and credit
rating asymmetry. The PLBM model includes additional parameters to the previous
equation arriving at (23):

∼
q j,i = 2φ

[
ci

(
T1

Tj

)αi

φ−1
( pi

2

)]
. (23)

where αi and ci ∈ R are to be estimated and, at each point in time, 0 < αi < 1 describes the
empirical behavior of firms in the market. It mainly captures all movements (including
explosive scaling law movements) of neutral probabilities. Concerned due date, ci ∈ R
describes the total expected level of default probabilities for the whole market; it can be
interpreted as the market premium for credit risk.

In [14], they estimated both parameters at each point in time ti by running the following
linear regression, considering all maturities of the instruments. Such that, ln

(
T1/Tj

)
is

used as the independent variable and ln
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where ε j is an independent random variable with E
(
ε j
)
= 0 and Var

(
ε j
)
= σ2

ej
.

It is important to note that this formula directly calculates the risk-neutral probability
of annual default, whereby the credit spread would be obtained by substituting the value

of this probability into Equation (24) sj,i =
1+Y j,i[

R+(1−R)
∼
q j,i

]1/Tj
−Y j,i.
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3.3. The Bloomberg Corporate Default Risk Model (DRSK) for Public Firms

The DRSK is a hybrid model combining a statistical approach with structural models.
Bondolini et al. [51] used logistic regression to estimate the probability of default events
based on factors that best capture credit risk.

As mentioned in the previous paragraph, the DRSK estimates real-world default proba-
bilities (DP) using a logistic regression of historically realized defaults against the structural
model DD and additional risk factors such as profitability and insolvency. Specifically, the
real-world default probabilities for a firm F at tenor t can be modeled as:

DP = p(B(F, t)) =
1

1 + exp(− f (B(F, t)))
, (25)

f (B(F, t)) = βt
0 + βt

1DD(F, t) + ∑
i

βt
i βi. (26)

where iε{Return on Assets− Per f orming loans, DD, Interest coverage}.
The model is calibrated by logistic regression of the model’s factors against the default

indicator operation set. Using marginal DPs from the logistic regression, one can obtain
cumulative DPs for each tenorε{0.25, 0.5, 0.75, 1, 2, 3, 4, 5} in the years as follows in [51]. In
the same way, annualized DP′ can be obtained as follows in Equations (27) and (28):

DPcumulative
i = 1−

i

∏
j=3m

(
1− DPmarginal

j

)
, (27)

DPannualized
i = 1−

(
1− DPcumulative

i

) 1
t . (28)

The cumulative and annualized DPs are used by [4] to evaluate a firm’s default
probability per different horizons. They help compare and validate stylized facts between
samples within different grades of credit quality.

The DRSK is calibrated to historical financials over a 20 year period containing records
for over 65,000 firms. The models achieve high-performance levels in adjusted pseudo-R
squared (e.g., between 34% and 47%) [51]. The model DP is predictive of credit events up
to a horizon of five years and tracks the realized default rates closely over time. According
to Bondoli et al. [51], the model is responsive to market conditions; default probabilities
drop during economic expansions and rise during economic contractions.

3.4. Modified Merton Model
3.4.1. Fractional and Conformable Derivatives

Fractional derivatives arise from a concern to generalize the derivate exponent n to a
real or complex function.

Khalil, Al Horani, Yousef, and Sababheh [52] presented a new definition of the frac-
tional derivative whose objective was to facilitate the calculations; additionally, they stated
that the fractional derivatives for 0 < α < 1, were local by nature. They also stated that given
a function f : [0, ∞)→ R and t > 0, the conformable fractional derivative of f of order α

can be defined as Tα( f )(t) = limε→0
f (t+εt1−α)− f (t)

ε for all t > 0, and dny
dxn of order “n” from

an integer to a non-integer, where “n” can be a fraction, an irrational, or a complex.
Khalil et al. [52] presented a new definition of a fractional derivative whose goal

was to facilitate calculations. Additionally, they stated that fractional derivatives for
0 < α < 1 were local by nature. They also stated that given a function f : [0, ∞)→ R
and t > 0, the conformable fractional derivative of order α was found to be defined as

Tα( f )(t) = limε→0
f (t+εt1−α)− f (t)

ε for all t > 0 and αε(0, 1). If f was α-differentiable in some
(0, a), a > 0, and the limt→0+ f α(t) there exist, it is defined as f (α)(0) = limt→0+ f (α)(t).
Similarly, Anderson, Camrud, and Ulness [53], mentioned that if the conformable fractional
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derivative, denoted as f α(t) or Tα( f )(t), existed, it was said to be α-differentiable, derived
from which they presented the following theorem:

Theorem 1. If a function f : [0, ∞)→ R f is α-differentiable in, t0 > 0 α ∈ (0, 1], then
Tα( f )(t) = t1−α ∂ f

∂t (t).

To analyze the equivalence between conformable and fractional derivatives,
Anderson et al. [54] applied only a change of variable, such that u = xα

α reached the same
result as Khalil et al. [52], as presented in Equations (32) and (33).

In [54], have the following properties, this definition yields the following results (from
Theorem 2, 3 of Katugampola [43]):

• Dα[a f + bg] = aDα[ f ] + bDα[g], linearity;
• Dα[ f g] = f Dα[g] + gDα[ f ], product rule;

• Dα[ f (g)] = d f
dg Dα[g], chain rule.

Dα[ f ] = x1−α f ′, where f ′ =
d f
dx

According to [54], to see the equivalence of the conformable derivate and considering
the change of variable u = xα

α the direct substitution and then applying the chain rule in+:

Dα[ f ] = x1−α d f
dx

(29)

x1−α d f
dx

= x1−α d f (u)
du

du
dx

= x1−α d f (u)
du

xα−1 =
d f (u)

du
(30)

The steps followed by Morales-Bañuelos et al. [55] and Anderson et al. [54] to transform
a traditional second-order linear differential equation, known by its acronym SOLDE
(second order linear differential equation) into a conformable equation, by changing the
variable are the following: Equation (30) in [3,29] obtained the expression shown in (34).
Finally, they stated the second order linear conformable differential equation as follows:

p(u)
d2y(u)

du2 + q(u)
dy(u)

du
+ r(u)y(u) = s(u) (31)

Now, let
u = xα

α and du
dx = xα−1, so du = xα−1dx, [40,55] calculated the second derivative of

∂2y(u)
∂u and obtained:

d2y(u)
du = d

du

(
dy(u)

du

)
= d

du

(
dy
(

xα

α

)
dx · dx

du

)
= d2y(u)

dx2

(
dx
du

)2
+

dy
(

xα

α

)
dx

(
d2x
du2

)
= x2−2α d2y(u)

dx2 + dy(u)
dx ·

d2x
du2 = x2−2α d2y(u)

dx2 + (1− α)x−αx1−α dy(u)
dx

= Ĉ2αy
(

xα

α

)
,

(32)

Ĉ2αy
(

xα

α

)
= x2−2α d2y(u)

dx2 + (1− α)x1−2α dy(u)
dx

, (33)

Therefore, Equation (34) becomes:

p
(

xα

α

)
Ĉ2αy

(
xα

α

)
+ q
(

xα

α

)
Dα

xy
(

xα

α

)
+ r
(

xα

α

)
y
(

xα

α

)
= s
(

xα

α

)
. (34)

The interpretation of the conformable derivative is a change of variable xα

α , which
generates a dependence in the form of the power of the independent variable x, where the
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exponent α is the order of the derivative. This transformation is locally differentiable, and
its inverse is also locally differentiable in the independent variable x. Its dominion is in the
strictly positive real numbers (see [53]).

3.4.2. Proposed Model

As mentioned above, the objective of this work is to solve the Black, Scholes, and
Merton (BSM) partial differential equation [13,41] taking as a reference the change of
variable proposed by Anderson et al. [54] to obtain an equation with which to calculate the
credit spread, incorporating the conformable derivative in the firm value parameter.

Solving the Black, Scholes, and Merton Equation by Conformable Derivatives

Following the proposal of Morales-Bañuelos et al. [55], for the purpose of solving the
traditional BSM partial differential equation [13,41], we performed the change of variable
in the signature value parameter, such that u = Vα

α and ∂u
∂V = Vα−1 → ∂u = Vα−1∂V , such

that 0 < α ≤ 1, and the first derivative of the function of u with respect to u is equal to
Equation (35).

∂ f (u)
∂u

=
∂ f
(

Vα

α

)
∂V

·∂V
∂u

= V1−α ∂ f (u)
∂V

= Dα f (V). (35)

Subsequently, the second derivative of the function of u, concerning u, was calculated,
again incorporating the change of variable u = Vα

α , and we arrived at Equation (36). If
these derivatives are substituted into the original equation developed by Black, Scholes,
and Merton [13,41], the partial differential equation would be represented as shown in
(37) and (38). According to [54], Equation (36) is a parabolic partial differential equation
for u = Vα/α, which must be satisfied by any security whose value can be written as a
function of the value of the firm and time, like in this case:

∂2 f (u)
∂u2 = ∂

∂u

(
∂ f (u)

∂u

)
= ∂

∂u

(
∂ f (u)

∂V ·
∂V
∂u

)
=

∂2 f
(

Vα

α

)
∂V2 ·

(
∂V
∂u

)2
+

∂ f
(

Vα

α

)
∂V .

= ∂2 f (u)
∂u2 + ∂ f (u)

∂u ·
∂2V
∂u2

= V2−2α ∂2 f (u)
∂S2

+(1− α)V1−2α ∂ f (u)
∂V

(36)

∂ f
∂t

+ rV
(

V1−α ∂(u)
∂V

)
+

1
2

σ2V2
(

V2−2α ∂2 f (u)
∂V2 + (1− α)V1−2α ∂ f (u)

∂V

)
− r f = 0 (37)

∂ f
∂t

+ rV
(

∂ f (u)
∂u

)
+

1
2

σ2V2
(

∂2 f (u)
∂u2

)
− r f = 0 (38)

Similarly, we examined a simple case of corporate debt pricing, i.e., a single class of
debt and residual claim equity. We suppose in the same way as [13] that the indenture of
the bond issue contains the following provisions and restrictions: (1) The firm promises to
pay a total of F (face value antes previously denoted as B) to the bondholders on a specific
calendar date T. (2) In the event this payment is not met, the bondholders immediately
take over the company (and the shareholders receive nothing). (3) The firm can not issue
any new senior (or of equivalent rank) claims on the firm nor can it pay cash dividends or
do share repurchase before the maturity of the debt. We have the constraint presented in
Equation (39).

F(0, T) = E(0, T) = 0 (39)

Clearly at time T, the firm will pay the bondholders if V(T)− F > 0 and the equity
value will be the difference; otherwise, the shareholders receive nothing. So, the final
condition is E(V, 0) = Max (0, V − B), As mentioned by [1], there is an isomorphic price
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relationship between levered equity of the firm and call option, and we can solve the
equation as Black and Scholes [42] did, but including the parameter and variable changes:
V̂ =

(
Vα

α

)
. The solution to the modified differential equation is shown in Equations

(40)–(42) and Equations (43) and (44) show the solution to parameters d1 and d2, with the
change of variable:

E(0, T) = V̂N(d1)− Fe−rtN(d2) (40)

d1 =

 ln
(

V̂
F

)
+

(
r +

σ2
V̂
2 (T − t)

)
σV
√
(T − t)

 (41)

d2 = d1 − σV
√

T − t (42)

d1 =

 ln
(

V̂α

αF

)
+

(
r +

σ2
V̂
2 (T − t)

)
σV
√
(T − t)

 (43)

d2 = d1 − σV
√

T − t (44)

3.4.3. Test Parameter

In order to evaluate the fit of these models and to be able to subsequently perform
inference, with the one that gives the best results, Denzler et al. [14] defined a parameter
denoted as G. Let n ∈ N and Z = (Z1 . . . . . . Zn) is a random vector, with realization
z = (z1 . . . . . . zn) ∈ Rn, we denote the estimator of z as ẑ = (ẑ1 . . . . . . ẑn ) ∈ Rn and the
parameter evaluating the goodness-of-fit as presented in Equation (45). This parameter
approaches one when the true credit spread and those calculated under each model are
very similar. Very large deviations result in very small or even negative G values.

G := 1− ∑n
i=1(zi − ẑi)

2

∑n
i=1(zi − zi)

2 ∞ < G ≤ 1 (45)

z =
1
n

n

∑
i=1

zi (46)

4. Empirical Results
Data Collection

For this study, we obtained financial information, credit ratings from Bloomberg
platform [56], KMV Moody’s platform [57] EDFs, and the annual reports issued by Mexican
companies listed on the Mexican Stock Exchange during the year 2022. We evaluated the
information of the 92 non-financial companies listed during the year under analysis. The
requirement to include a company in the sample was that they had debts referenced to
prime rates free of credit risk, and on them, a credit spread was added; we eliminated
convertible debts, those issued in foreign currency, and leases of any category.

This filter resulted in a total of 64 companies with 304 debt instruments. Most of the
liabilities analyzed were bank loans, stock certificates, unsecured loans, mortgage loans,
mortgage loans, secured loans, lines of credit, medium- and long-term notes, syndicated
loans, and bonds. We only worked with 64 companies because they represented all the
Mexican companies listed on the Mexican Stock Exchange that met all the requirements;
for this reason, we could not expand the sample.

Another critical factor we considered for selecting loans was that they were made
with third parties to establish credit spreads that compled with the market value principle.
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Groupings by sector were not made because there was only one company in some cases,
such as the energy sector. In contrast, in other cases, such as the industrial and manu-
facturing sectors, there were more than 20 firms. Table 1 shows the companies analyzed,
grouped by industry according to the categories used by the Mexican Stock Exchange (Bolsa
Mexicana de Valores, from now on BMV), the total amount of their debts, the number of
liabilities analyzed for each company, the denomination, the weighted average duration,
the prime rate, and the weighted average credit spread.

Table 1. Companies analyzed by sector during 2022. Millions of Mexican Currency.

Company Sector
Total

Amount
of Debt

Weighted
Average
Duration

Number of
Liabilities

Base
Rate

Weighted
Average

Credit Spread

Vista Oil & Gas, S.A.B. de C.V. Energy 374 1.56 1 1.29% plus 4.50%

Accel, S.A.B. de C.V. Industrial 779 5.66 3 1.29% plus 2.04%

Acosta Verde, S.A.B. de C.V. Industrial 3056 7.34 17 4.63% plus 2.50%

Aleatica, S.A.B. de C.V. Industrial 6318 5.57 1 1.29% plus 2.62%

Alfa, S.A.B. de C.V. Industrial 50 2.36 1 4.63% plus 1.75%

Consorcio Ara, S.A.B. de C.V. Industrial 507 5.49 7 4.63% plus 2.26%

Consorcio Aristos, S.A.B. de C.V. Industrial 62 4.89 7 4.63% plus 5.25%

Corpovael S.A.B. de C.V. Industrial 3092 1.59 22 4.63% plus 3.06%

Dine, S.A.B. de C.V. Industrial 210 2.08 1 4.63% plus 3.60%

Gméxico Transportes, S.A.B. de C.V. Industrial 64 0.76 3 4.63% plus 0.20%

Grupo Aeroportuario Del Centro Norte,
S.A.B. de C.V. Industrial 2700 1.91 3 4.63% plus 0.89%

Grupo Aeroportuario Del Pacifico,
S.A.B.de C.V. Industrial 13,800 2.88 6 4.63% plus 0.39%

Grupo Aeroportuario Del Sureste,
S.A.B. de C.V. Industrial 5 4.57 2 4.63% plus 1.32%

Grupo Gicsa, S.A.B. de C.V. Industrial 4429 4.7 6 4.63% plus 4.37%

Grupo Mexicano de Desarrollo, S.A.B. Industrial 65,974 1.46 5 4.63% plus 3.05%

Grupo TMM, S.A. Industrial 80 0.53 5 4.63% plus 5.10%

Grupo Traxión S.A.B de C.V. Industrial 3781 0.51 8 4.63% plus 1.94%

Impulsora Del Desarrollo Y El Empleo En
America Latina, S.A.B. de C.V. Industrial 12,794 8.94 7 4.63% plus 3.67%

Orbia Advance Corporation, S.A.B. de C.V. Industrial 986 0.5 1 4.63% plus 0.55%

Promotora Ambiental, S.A.B. de C.V. Industrial 2255 0.48 4 4.63% plus 1.44%

Servicios Corporativos Javer, S.A.B. de C.V. Industrial 2521 2.49 1 4.63% plus 7.75%

Cemex, S.A.B. de C.V. Materials 1481 3.76 4 4.63% plus 2.23%

Compañia Minera Autlan, S.A.B. de C. V. Materials 3 5.29 4 4.63% plus 4.32%

Convertidora Industrial, S.A.B. de C.V. Materials 365 1.7 16 4.63% plus 2.75%

Cydsa, S.A.B. de C.V. Materials 2751 10.19 1 4.66% plus 2.50%

G Collado, S.A.B. de C.V. Materials 174 0.11 1 4.63% plus 4.36%

Grupo Carso, S.A.B. de C.V. Materials 3500 2.25 1 4.63% plus 0.22%

Grupo Kuo, S.A.B. de C.V. Materials 711 1.59 2 4.66% plus 1.60%

Grupo Pochteca, S.A.B. de C.V. Materials 1975 2.46 2 4.63% plus 3.67%

Minera Frisco, S.A.B. de C.V. Materials 7350 2.81 1 4.66% plus 2.56%

Proteak Uno, S.A.B. de C.V. Materials 775 1.39 3 1.29% plus 4.59%
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Table 1. Cont.

Company Sector
Total

Amount
of Debt

Weighted
Average
Duration

Number of
Liabilities

Base
Rate

Weighted
Average

Credit Spread

Arca Continental
Products Of
Frequent
Consumption

12 3.23 9 4.65% plus 0.32%

Fomento Económico Mexicano, S.A.B. de C.V.
Products Of
Frequent
Consumption

5662 3.47 3 4.63% plus 0.11%

Gruma, S.A.B. de C.V.
Products Of
Frequent
Consumption

1050 0.54 2 4.63% plus 0.22%

Grupo Bimbo, S.A.B. de C.V.
Products Of
Frequent
Consumption

35,500 3.04 2 4.63% plus 0.95%

Grupo Comercial Chedraui, S.A.B. de C.V.
Products Of
Frequent
Consumption

17,568 3.25 6 4.63% plus 1.46%

Grupo Gigante, S.A.B. de C.V.
Products Of
Frequent
Consumption

9 4.86 6 4.63% plus 2.47%

Grupo Herdez, S.A.B. de C.V.
Products Of
Frequent
Consumption

3500 0.54 7 4.66% plus 1.23%

Grupo Minsa, S.A.B. de C.V.
Products Of
Frequent
Consumption

100 2.15 7 4.63% plus 2.77%

Industrias Bachoco, S.A.B. de C.V.
Products Of
Frequent
Consumption

1500 3.44 1 4.63% plus 0.31%

Kimberly-Clark De Mexico S.A.B. de C.V.
Products Of
Frequent
Consumption

6000 3.2 2 4.63% plus 0.37%

Organización Cultiba, S.A.B. de Cv
Products Of
Frequent
Consumption

752 2.95 6 4.63% plus 2.49%

Organizacion Soriana, S.A.B. de C.V.
Products Of
Frequent
Consumption

8538 1.82 4 4.63% plus 0.55%

Genomma Lab Internacional, S.A.B. de C.V. Health 97,790 2.01 20 4.63% plus 1.06%

Medica Sur, S.A.B. de C.V. Health 1200 1.6 2 4.63% plus 2.25%

El Puerto de Liverpool, S.A.B. de C.V.

Non-
Commodity
Goods and
Services

1500 0.67 1 4.63% plus 0.25%

Grupo Elektra, S.A.B. de C.V.

Non-
Commodity
Goods and
Services

13,080 0.75 10 4.63% plus 2.34%

Grupo Vasconia S.A.B.

Non-
Commodity
Goods and
Services

145 1.3 1 4.63% plus 2.90%

Grupe, S.A.B. de C.V.

Non-
Commodity
Goods and
Services

1365 7.32 3 4.63% plus 3.30%
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Table 1. Cont.

Company Sector
Total

Amount
of Debt

Weighted
Average
Duration

Number of
Liabilities

Base
Rate

Weighted
Average

Credit Spread

America Movil, S.A.B. de C.V. Telecommunications
Services 34,080 0.51 10 4.93% plus 0.32%

Axtel, S.A.B. de C.V. Telecommunications
Services 3205 5.5 2 4.63% plus 2.10%

Grupo Radio Centro, S.A.B. de C.V. Telecommunications
Services 711 5.45 6 4.63% plus 3.62%

Grupo Televisa, S.A.B. Telecommunications
Services 17,935 0.47 4 4.63% plus 1.26%

Megacable Holdings, S.A.B. de C.V. Telecommunications
Services 6823 0.58 4 4.63% plus 0.28%

Tv Azteca, S.A.B. de C.V. Telecommunications
Services 5708 3.22 4 4.63% plus 2.74%

Alsea, S.A.B. de C.V.

Non-
Commodity
Goods and
Services

565 1.95 2 4.63% plus 1.85%

CMR S.A.B. de C.V.

Non-
Commodity
Goods and
Services

1141 3.33 1 4.63% plus 4.30%

Corporacion Interamericana de
Entretenimiento, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

850 0.31 4 4.63% plus 2.66%

Grupo Famsa, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

4529 0.66 7 4.63% plus 2.83%

Grupo Hotelero Santa Fe, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

343 2.95 2 4.63% plus 3.00%

Grupo Palacio de Hierro, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

1 0.86 2 4.63% plus 0.02%

Grupo Sports World, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

2 0.76 2 4.63% plus 1.72%

Hoteles City Express, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

5101 3.42 18 4.63% plus 3.34%

Nemak, S.A.B. De C.V.

Non-
Commodity
Goods and
Services

3788 7.1 1 4.63% plus 2.70%

We should note that we used debt duration instead of time to maturity because it
represents the average maturity of that instrument’s cash flows or expresses how long it
will take to pay the debt cash flows annually, and we used the volatility of equity capital in
the Merton and modified Merton models to clear firm value and firm volatility.

According to the data presented in Table 1, the company with the largest liabilities
is Medica Sur, S.A.B. de C.V., which belongs to the health sector, although it has only two
liabilities. The company with the most extended duration is CYDSA, S.A.P.I. de C.V., with
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ten years and one month, while the company with the lowest weighted average period is
Grupo Collado, S.A.P.I. de C.V., with only 40 days. In addition, 97% of the liabilities have
as prime rate the 28-day Interbank Equilibrium Interest Rate (TIIE), 2% the 91-day TIIE,
and less than 1% the 3-month London Interbank Offered Rate (LIBOR). The highest credit
spread is paid by Servicios Corporativos Javier, at 7.75%. However, according to Bloomberg
and Moody’s, it is not the firm with the highest probability of default; in contrast, Grupo
Palacio de Hierro, S.A.B. de C.V. pays the smallest spread of 0.029% and is the lowest
risk, according to Bloomberg and KMV Moody’s EDFs. The average credit spread paid
by Mexican companies listed on the BMV in 2022 is 2.27%, and the average cost of debt is
6.69% per annum.

Table 2 shows no one hundred percent proportional relationship between the default
probabilities calculated by Bloomberg with the credit spreads determined through that plat-
form and the one-year EDF determined with the KMV Moody’s platform. The correlation
between the two probabilities of default is only 51%. More striking is the lack of consistency
between the likelihood of default and the cost of credit spread determined by Bloomberg,
as the correlation coefficient between the two series is only 20%. For example, as observed
in the table above, Servicios Corporativos Javier, S.A.P. I. de C.V. has a default risk of 0.00%
according to Bloomberg; however, KMV Moody’s issues the highest risk rating, which is
consistent with the credit spread. However, it should be noted that there still needs to be a
perfect correlation between credit rating and the cost of debt.

Table 2. Analysis of the DRSK, Bloomberg’s credit spread, and the EDF of KMV Moody’s.

Company DRSK 1 Year DRSK 2 Years Bloomberg
Credit Spread EDF 1 Year KMV Moody’s

Vista Oil & Gas, S.A.B. e C.V. 0.22% 0.97% 2.46% 3.02% B1

Accel, S.A.B. de C.V. 0.00% 0.00% 0.92% 3.02% B1

Acosta Verde, S.A.B. de C.V. 0.52% 1.40% 2.75% 1.98% Ba3

Aleatica, S.A.B. de C.V. 0.48% 2.11% 2.82% 1.67% Ba

Alfa, S.A.B. de C.V. 0.27% 0.99% 2.67% 2.02% Baa3

Consorcio Ara, S.A.B. de C.V. 0.03% 0.26% 2.24% 1.67% Ba2

Consorcio Aristos, S.A.B. de C.V. 1.55% 3.38% 3.15% 35.00% Caa-C

Corpovael S.A.B. de C.V. 1.66% 4.55% 3.27% 7.58% B3

Dine, S.A.B. de C.V. 0.00% 0.00% 0.71% 3.02% B1

Gméxico Transportes, S.A.B. de C.V. 0.79% 2.33% 2.76% 3.02% B1

Grupo Aeroportuario Del Centro
Norte, S.A.B. de C.V. 0.00% 0.05% 1.47% 6.71% B3

Grupo Aeroportuario Del Pacifico,
S.A.B. de C.V. 0.01% 0.17% 1.83% 0.37% Baa1

Grupo Aeroportuario Del Sureste,
S.A.B. de C.V. 0.00% 0.04% 1.56% 6.71% B3

Grupo Gicsa, S.A.B. de C.V. 3.71% 5.93% 3.31% 1.67% Ba2

Grupo Mexicano de Desarrollo,
S.A.B. 0.35% 1.16% 2.55% 3.02% B2

Grupo TMM, S.A. 0.58% 1.90% 2.56% 6.71% B3

Grupo Traxión S.A.B De C.V. 0.30% 1.18% 2.38% 3.02% B1

Impulsora Del Desarrollo y el Empleo
en America Latina, S.A.B. de C.V. 0.00% 0.12% 1.66% 4.35% B2
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Table 2. Cont.

Company DRSK 1 Year DRSK 2 Years Bloomberg
Credit Spread EDF 1 Year KMV Moody’s

Orbia Advance Corporation,
S.A.B. de C.V. 0.21% 0.87% 2.39% 0.98% Ba1

Promotora Ambiental, S.A.B. de C.V. 0.00% 0.03% 1.37% 1.67% Ba2

Servicios Corporativos Javer,
S.A.B. de C.V. 0.00% 0.00% 0.39% 35.00% Caa-C

Cemex, S.A.B. de C.V. 0.53% 1.75% 2.71% 0.93% Ba1

Compañia Minera Autlan,
S.A.B. de C. V. 0.01% 0.10% 1.87% 6.71% B3

Convertidora Industrial,
S.A.B. de C.V. 0.00% 0.00% 0.74% 0.37% Baa1

Cydsa, S.A.B. de C.V. 0.01% 0.19% 2.17% 3.52% Ba2

G Collado, S.A.B. de C.V. 0.04% 0.34% 2.33% 6.71% B3

Grupo Carso, S.A.B. de C.V. 0.03% 0.35% 2.20% 0.37% Baa1

Grupo Kuo, S.A.B. de C.V. 0.00% 0.01% 1.41% 0.98% Ba1

Grupo Pochteca, S.A.B. de C.V. 0.01% 0.19% 1.79% 3.02% B3

Minera Frisco, S.A.B. de C.V. 0.31% 1.13% 2.48% 0.37% Baa1

Proteak Uno, S.A.B. de C.V. 0.98% 2.79% 2.69% 6.71% B3

Arca Continental 0.00% 0.03% 1.66% 0.37% Baa1

Fomento Económico Mexicano,
S.A.B. de C.V. 0.00% 0.01% 1.42% 0.37% Baa1

Gruma, S.A.B. de C.V. 0.03% 0.35% 2.39% 0.37% Baa1

Grupo Bimbo, S.A.B. de C.V. 0.03% 0.29% 2.34% 0.38% Baa2

Grupo Comercial Chedraui,
S.A.B. de C.V. 0.01% 0.18% 2.18% 6.71% B3

Grupo Gigante, S.A.B. de C.V. 0.00% 0.05% 1.60% 3.02% B1

Grupo Herdez, S.A.B. de C.V. 0.14% 0.76% 2.71% 4.35% B2

Grupo Minsa, S.A.B. de C.V. 0.00% 0.04% 1.57% 1.98% Ba3

Industrias Bachoco, S.A.B. de C.V. 0.00% 0.01% 1.42% 0.37% Baa1

Kimberly-Clark de Mexico
S.A.B. de C.V. 0.00% 0.00% 1.08% 0.37% Baa1

Organización Cultiba, S.A.B. de C.V. 0.00% 0.07% 1.62% 0.37% Baa1

Organizacion Soriana, S.A.B. de C.V. 0.00% 0.08% 1.86% 0.98% Ba1

Genomma Lab Internacional,
S.A.B. de C.V. 0.04% 0.37% 2.23% 3.02% B1

Medica Sur, S.A.B. de C.V. 0.43% 1.71% 2.78% 4.35% B2

El Puerto de Liverpool, S.A.B. de C.V. 0.00% 0.00% 1.06% 0.37% Baa1

Grupo Elektra, S.A.B. de C.V. 0.00% 0.13% 1.50% 3.02% B1

Grupo Vasconia S.A.B. 2.41% 4.43% 3.21% 3.02% B1

Grupe, S.A.B. de C.V. 0.00% 0.00% 0.42% 1.98% Ba3

America Movil, S.A.B. de C.V. 0.01% 0.18% 1.49% 0.48% Baa2

Axtel, S.A.B. de C.V. 3.73% 6.51% 2.50% 4.35% B2
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Table 2. Cont.

Company DRSK 1 Year DRSK 2 Years Bloomberg
Credit Spread EDF 1 Year KMV Moody’s

Grupo Radio Centro, S.A.B. de C.V. 0.00% 0.00% 0.28% 6.71% B3

Grupo Televisa, S.A.B. 0.65% 2.29% 1.99% 1.98% Ba3

Megacable Holdings, S.A.B. de C.V. 0.01% 0.13% 1.32% 0.37% Baa1

Tv Azteca, S.A.B. de C.V. 4.08% 5.76% 2.50% 35.00% Caa-C

Alsea, S.A.B. de C.V. 0.20% 0.86% 2.70% 3.02% B1

CMR, S.A.B. de C.V. 1.80% 3.06% 3.13% 2.02% Baa3

Corporacion Interamericana de
Entretenimiento, S.A.B. de C.V. 0.00% 0.00% 0.91% 3.02% Baa3

Grupo Famsa, S.A.B. de C.V. 14.30% 16.07% 4.10% 35.00% Caa-C

Grupo Hotelero Santa Fe,
S.A.B. de C.V. 0.04% 0.34% 2.23% 3.02% B1

Grupo Palacio de Hierro,
S.A.B. de C.V. 0.00% 0.00% 0.38% 0.37% Baa1

Grupo Sports World, S.A.B. de C.V. 7.53% 10.55% 3.57% 3.20% B1

Hoteles City Express, S.A.B. de C.V. 0.58% 2.12% 2.89% 6.71% B3

Nemak, S.A.B. de C.V. 0.30% 1.00% 2.68% 3.20% B1

Max Bloomberg y Moody’s (Famsa) 14.30% 16.07% 4.10% 35.00%

Min Bloomberg y Moody’s (Palacio
de Hierro) 0.00% 0.00% 0.28% 0.37%

Average 0.77% 1.43% 2.05% 4.78%

Correlation Between DRSK 1 year vs.
EDF I Year 51%

Correlation Between EDF1 year and
Debt Cost calculated by Bloomberg 55%

Correlation Between DRSK 1 year
and Debt Cost calculated
by Bloomberg

20%

It is important to note that for the Merton and modified Merton models, loans and
duration were grouped by multiplying the proportion of each debt’s duration concerning
the total per company, obtaining a weighted debt and a weighted duration. It should
also be noted that the risk-free prime rate for the modified Merton model was estimated
over time with the Nelson and Siegel model [53]. With the GJR-GARCH model, the stock
price returns were calculated, and the value of the stockholders’ equity was obtained by
multiplying the stock price by the number of shares outstanding at the study date. These
calculations were performed because the EDF is used per firm, not per loan. The firm value
and firm volatility were calculated with the Excel Solver routine. The credit spreads per
firm were obtained by applying Equation (15).

In contrast, in the BM and PLBM models, credit spreads were obtained for debt, so
to compare the results shown in Figure 1, it was necessary to multiply each spread by the
proportion that each duration represented for each of the firms. We calculated the recovery
with Equations (21)–(23) for these models.
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Figure 1. Weighted average real credit spread vs. Merton’s model, the modified Merton model, and
the weighted average PLBM model.

Subsequently, the results were analyzed by model, and the test parameter values
were denoted as G. In the first instance, the comparison of the credit spread calculated by
Bloomberg vs. the actual spread for each loan is shown; with this, the G were estimated
(Equations (47) and (48)). The best fit is obtained when the value of G is close to 1; for
Bloomberg, the parameter’s value was −0.174, implying that the fundamental importance
of the spreads and the estimated ones are very far from each other, regardless of the actual
dispersion between them.

The results are shown in Table 3; as can be seen, the modified Merton model is the one
that provides the best fit between the actual and estimated credit spreads, with a statistic
of 0.767, followed by the PLBM model with 0.504. In contrast, the BM model is the one
that has the highest dispersion between the estimated and actual spreads with a G value
of −13.105.

Table 3. Results of the models applying the value of the fit parameter G.

Merton BM PLBM
Modified

Bloomberg Merton

G Value −0.17 −2.16 −13.105 0.50 0.77

As can be seen in Table 3, the traditional Merton’s model, in all cases, underestimates
the actual credit spread, as mentioned by Teixeira [35]. In contrast, the results obtained with
the BM and PLBM models agree with those shown by Denzler et al. [14]; the BM model
strongly overestimates the credit spreads and at other times, underestimates them to a
lesser degree, the PLBM model makes a reasonable adjustment; however, the results of the
model proposed in this paper make a better estimate. The estimates made by Bloomberg
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follow a pattern like that of the BM model; in some companies, it overestimates, and in
other cases, it underestimates credit spreads.

Figure 1 compares the real credit spreads with those of Merton’s. model, the modified
Merton model, and the weighted average PLBM model; in all cases, Merton’s model
underestimates the actual spread, agreeing with the results of Teixeira [35]; in contrast, the
modified Merton model is the best possible approximation. The PLBM model provides
an excellent approximation to the actual spread; however, in most cases, it overestimates
slightly, which is consistent with Morales-Bañuelos et al. [55].

A good statistic has good prediction accuracy, in other words, it has a minor
prediction error.

We calculated three fit statistics to validate which model provides the best fit. If Ŷ is a
vector of n predictions and Y is the vector of valid values, then the (estimated) MSE of the
predictor is:

MSE =
1
n

n

∑
i=1

(
Ŷ−Y

)2. (47)

• In an analogy to the standard deviation, taking the square root of the MSE yields the
root mean square error or root mean square deviation (RMSE or RMSD, respectively),
which has the same units as the square of the quantity being estimated; for an unbi-
ased estimator, the RMSE is the square root of the variance, known as the standard
deviation. √

MSE =
1
n

n

∑
i=1

(
Ŷ−Y

)2. (48)

• In statistics, the mean absolute error (MAE) is a measure of errors between paired
observations expressing the same phenomenon. For example, Y versus X include
comparisons of predicted versus observed. The MAE is calculated as the sum of
absolute errors ( ei) divided by the sample size:

MAE =
1
n

n

∑
i=1
|yi − xi| =

1
n

n

∑
i=1
deie (49)

Figure 2 compares the three statistics of predictive accuracy in the sample of real
company spreads, with the spreads calculated using Merton’s model, the weighted average
Brownian model, the weighted average power law Brownian motion model, and the
modified Merton model.

Table 4 shows the company’s values that we obtained with Merton’s model and
the modified Merton model; in 70% of the cases, the former underestimated the mar-
ket amount of the company and overestimated the volatility of the company. Figure 3
shows the α values of the conformable derivative, which were above 0.94 up to 0.98, and
which were obtained using the Excel Solver routine, which agrees with the results of
Morales-Bañuelos et al. [3].
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Table 4. Market value of companies. Million Mexican Currency.

Market Value of Equity
Multiplied by the

Proportion of Debts
Referenced to a Base Rate

Merton’s Modified
Model Value of Firm

Traditional Merton’s
Model Value of Firm

Vista Oil & Gas, S.A.B. de C.V. 3204 4094 4108

Accel, S.A.B. de C.V. 71 1515 1511

Acosta Verde, S.A.B. de C.V. 4174 5360 5391

Aleatica, S.A.B. de C.V. 4413 19,198 18,777

Alfa, S.A.B. de C.V. 17 83 76

Consorcio Ara, S.A.B. de C.V. 377 1216 1464

Consorcio Aristos, S.A.B. de C.V. 336 648 565

Corpovael S.A.B. de C.V. 5622 10,211 10,025

Dine, S.A.B. de C.V. 367 681 685

Gméxico Transportes, S.A.B. de C.V. 10 87 86

Grupo Aeroportuario Del Centro Norte,
S.A.B. de C.V. 1084 4714 4680

Grupo Aeroportuario Del Pacifico,
S.A.B. de C.V. 52,297 91,120 90,885

Grupo Aeroportuario Del Sureste,
S.A.B. de C.V. 27 51 51

Grupo Gicsa, S.A.B. de C.V. 2308 14,837 14,591
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Table 4. Cont.

Market Value of Equity
Multiplied by the

Proportion of Debts
Referenced to a Base Rate

Merton’s Modified
Model Value of Firm

Traditional Merton’s
Model Value of Firm

Grupo Mexicano de Desarrollo, S.A.B. 660 85,512 79,305

Grupo TMM, S.A. 12 149 119

Grupo Traxión S.A.B de C.V. 6750 16,585 12,409

Impulsora Del Desarrollo y e Empleo en
America Latina, S.A.B. De C.V. 74,219 210,948 202,277

Orbia Advance Corporation, S.A.B. de C.V. 13,675 15,381 15,392

Promotora Ambiental, S.A.B. de C.V. 1012 3884 3664

Servicios Corporativos Javer, S.A.B. de C.V. 1664 5510 5572

Cemex, S.A.B. de C.V. 9573 17,441 17,413

Compañia Minera Autlan, S.A.B. de C. V. 194 16,021 333

Convertidora Industrial, S.A.B. de C.V. 90 511 512

Cydsa, S.A.B. de C.V. 1262 12,891 12,522

G Collado, S.A.B. de C.V. 994 1179 1179

Grupo Carso, S.A.B. de C.V. 7265 16,021 16,021

Grupo Kuo, S.A.B. de C.V. 211 1364 1218

Grupo Pochteca, S.A.B. de C.V. 145 19,002 2778

Minera Frisco, S.A.B. de C.V. 5218 17,726 17,425

Proteak Uno, S.A.B. de C.V. 1630 3081 2977

Arca Continental 26 54 53

Fomento Económico Mexicano,
S.A.B. de C.V. 4845 14,962 14,695

Gruma, S.A.B. de C.V. 36,744 39,699 39,707

Grupo Bimbo, S.A.B. de C.V. 41,978 106,305 102,355

Grupo Comercial Chedraui, S.A.B. de C.V. 6614 34,077 34,134

Grupo Gigante, S.A.B. de C.V. 10 30 31

Grupo Herdez, S.A.B. de C.V. 5977 12,087 10,723

Grupo Minsa, S.A.B. de C.V. 173 329 322

Industrias Bachoco, S.A.B. de C.V. 3695 7326 7349

Kimberly-Clark De Mexico S.A.B. de C.V. 13,287 36,864 28,911

Organización Cultiba, S.A.B. de C.V. 389 1576 1563

Organizacion Soriana, S.A.B. de C.V. 1554 12,284 11,843

Genomma Lab Internacional, S.A.B. de C.V. 11,526 21,166 20,834

Medica Sur, S.A.B. de C.V. 3135 4943 4874

El Puerto De Liverpool, S.A.B. de C.V. 1751 3497 3498

Grupo Elektra, S.A.B. de C.V. 14,130 28,042 28,060

Grupo Vasconia S.A.B. 120 307 304

Grupe, S.A.B. de C.V. 875 4192 3827

Axtel, S.A.B. de C.V. 2605 12,247 12,107
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Table 4. Cont.

Market Value of Equity
Multiplied by the

Proportion of Debts
Referenced to a Base Rate

Merton’s Modified
Model Value of Firm

Traditional Merton’s
Model Value of Firm

Grupo Radio Centro, S.A.B. de C.V. 303 2224 1982

Grupo Televisa, S.A.B. 9937 29,043 30,865

Megacable Holdings, S.A.B. de C.V. 43,799 53,770 53,756

Tv Azteca, S.A.B. de C.V. 2 7854 7865

Alsea, S.A.B. de C.V. 236 909 966

CMR S.A.B. de C.V. 343 1899 1784

Corporacion Interamericana de
Entretenimiento, S.A.B. de C.V. 730 1629 1629

Grupo Famsa, S.A.B. de C.V. 137 9160 6937

Grupo Hotelero Santa Fe, S.A.B. de C.V. 210 1117 919

Grupo Palacio de Hierro, S.A.B. de C.V. 1 3 3

Grupo Sports World, S.A.B. de C.V. 10 14 13

Hoteles City Express, S.A.B. de C.V. 1383 10,006 9696

Nemak, S.A.B. de C.V. 1068 7028 8061
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5. Conclusions

It is very important to point out that there are no analyses like the one conducted in
this research, much less in Latin America. There are macroeconomic analyses of sovereign
debt credit ratings, as well as the influence of corporate governance on corporate behavior.
But the value added by this analysis is from the financial point of view, i.e., the credit
rating per company is obtained, as well as the probabilities of default and its consequent
credit spread through different models. However, it should be noted that it is not the
objective of this paper to study the correlation between default probabilities and Mexican
or world economic performance. The implication is conclusive about the lack of efficiency
of financial markets.

Another point that is important to highlight for the Mexican case, and which we high-
lighted after analyzing companies listed on the BMV, is that there is no directly proportional
relationship between the actual credit spread assigned to the instruments with the credit
rating obtained through the KMV Moody’s platform, which may be due to the lack of
pulverization, liquidity, and efficiency of the Mexican capital market.

In fact, according to Salas-Porras [58], in Mexico, “there is still a high concentration of
capital in a few families, who even today fear losing control of capital. Despite participating
in the stock market, the capital of the largest economic groups belongs to one family in
proportions of no less than 60–70%, in most cases”.

Likewise, ref. [58] comments that great financial needs force companies to be listed on
the stock markets and to circulate shares. This process is further accelerated by interacting
with increasingly complex governmental and international agencies with privileged infor-
mation networks. These corporate structures participate in the decision-making process,
with national and international competition, globalization, and international agreements of
different types. In the case of Mexico, this securitization process lags and needs to catch up
with that observed in industrialized countries.

Regarding the conclusions of the empirical analysis, according to the information on
the Mexican market, we concluded that the modified Merton model, which we developed
in this research, was the model that best approximates the actual credit spread. At the same
time, according to the analysis performed, the Brownian motion model is the model that
presented the worst fit and, additionally, turned out to be the least adequate. Similarly,
based on the results, we observed that the BM model’s test parameter (G) value frequently
depended on the average loan recovery rate (R).

Our empirical analysis suggests that the modified Merton model provides a better fit
to real credit spreads; according to Figure 2, the results of the power law Brownian motion
model are close. It should be noted that under all statistical and non-statistical tests, the
modified Merton model resulted in the best approximations. Also, it is essential to note
that the scale of the mean square error statistic results is tiny in contrast to the root mean
square error and the mean absolute error; however, all three statistics show the superiority
of the modified Merton model.

According to the results of parameter G and the MSE, RMSE, and MAE statistics,
according to Figure 2, the model that provides the worst fit is the Brownian motion model,
followed by Merton’s model, and those that provide a very close fit to the real value of
the credit spread are the PLBM model and the best model proposed in this research is the
modified Merton model.

This paper aims to find a model that Mexican entities can easily apply, because most
of them are small- and medium-sized companies that are not listed on stock exchanges,
through which they can establish an interest rate on their loans according to their level of
default risk. In particular, the results of this research are aimed at organizations that do not
have access to a credit rating. For this purpose, five models that could solve this problem
were evaluated.

We also conclude that R is not a constant; on the contrary, it is a stochastic variable
that depends on the instrument’s characteristics and the probability of default. Future
research can analyze a stochastic recovery rate and see how the results change. Another
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line for future research, since there are no studies in Latin America, would be to analyze
sovereign credit ratings and their effects on financial macroeconomic variables, as was
done by Athari, et al. For example, it is suggested to compare Mexico with Argentina,
Chile, Uruguay, and Brazil, since they are the most similar countries. The aim would be to
analyze sovereign credit ratings and their effects on financial macroeconomic variables, as
Athari et al. did [59]. According to Athari et al. [59], credit ratings are not only important
for investors, but they are also crucial for each country’s rating for political decision makers.
It is important to investigate the repercussions in emerging Latin American countries of
how changes in country-level credit ratings affect future macroeconomic actions. In fact,
when credit ratings are downgraded, it can cause an increase in the yield to maturity
of sovereign debt; an imbalance in global portfolios, which varies the flow of capital
between countries; as well as increases in volatility that destabilize the financial markets of
different countries.
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