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1. Introduction

The Bank of Mexico’s position after the economic contraction generated by the health
measures to tackle the COVID-19 pandemic to encourage consumption and investment
would be to lower its monetary policy to complement the liquidity implemented in the
financial system to stimulate the economy through the credit channel. To do so, it is
necessary to know how much the Bank of Mexico could reduce this rate without negatively
affecting inflationary dynamics (Sanchez and Lopez-Herrera [1]).

In addition, as pointed out by Ozili and Arun [2], due to the pressures derived from
the trade war between the latter country and Brexit, economic forecasts in 2019 were for
moderate growth in the world economy by 2020. The immediate consequences in the
affected countries were already apparent, as reported by Nicola et al. [3], including job
losses and a drop in demand for manufacturing companies and other goods, in contrast to
an increase in demand for medical supplies.

According to Gopinath [4], during the pandemic, there were shocks to aggregate
supply due to a decrease in production level, while on the aggregate demand side, the
shocks were due to the reluctance of consumers and businesses to spend.

Decreased consumption in the more developed countries implied a sharp decrease
in the prices of their export products for Latin America, producing exchange losses and
recessionary effects given the economy’s sensitivity to those prices, as pointed out by
Schimtt-Grohé and Uribe [5].

Furman and Summers [6], Odendahl and Sprinford [7], as well as Gall [8] pointed
out various possible risks, including financial risks such as corporate bankruptcies, lack of
liquidity, and bank insolvency.
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Sénchez and Lopez-Herrera [1] stated that the COVID-19 effect added to the economic
contraction that had been occurring in Mexico. They pointed out that the nominal interest
rate went from 8.3% during the first quarter of 2019 to 7.4% in 2020. Meanwhile, inflation
remained at low levels. They also stated that the real interest rate had a downward trend,
which showed that the Bank of Mexico decided to reduce interest rates to reduce the fall in
economic activity and lessen the effects of the financial crisis experienced at that time.

It should be noted that although there has already been a substantial increase in interest
rates, to this day in Mexico, there is a large gap between lending rates and borrowing rates
at which both banks and extensive corporations finance, which is why there is a financial
gain at the expense of the liquidity of the end customer.

According to Article 81 Bis of the Mexican Law on Credit Institutions [9], credit insti-
tutions must have guidelines and policies for knowing information about their customers.
According to their profile, they set the interest rate and credit spread that the institution
considers appropriate so that there is no concordance between the credit risk calculated by
a credit rating agency and that determined by a credit institution. In addition, there is no
independence between large corporations and credit institutions, as members of corporate
boards of directors also serve as directors of lending institutions. So, there is an imbalance
between the credit spread they lend and the risk of default.

As Xi and Jiang [10] pointed out, the COVID-19 pandemic has led to the collapse of
global economic activity, people have remained highly uncertain, and the economy still
faces downward risks such as the COVID-19 persistence, financial turmoil, and further
disruption of the global trade and supply chains.

Xi and Jiang [10] stated that many governments have resorted to unconventional
economic stimulus measures to mitigate the negative impact of economic uncertainty
(Hu and Liu [11]), such as a negative interest rate policy (NIRP). According to the Bank for
International Settlements (BIS), major economies have made interest rate cuts mandatory to
reduce the corporate debt burden, to ensure the security of the capital chain, and to mitigate
the impact of uncertainty on economic and financial operations. Economic uncertainty
has resulted in the introduction of extraordinary monetary policies (Ulate [12]). Therefore,
central banks in many countries have introduced outstanding monetary policies, including
NIRP, and have used monetary and interest rate policy tools to stimulate economic growth.

It is important to emphasize that the analysis we carried out in this research is financial
microeconomics, not macroeconomics, which is why we have yet to study sovereign debt
or the political impact of the country’s indebtedness and the effects of monetary policy.

Analyzing a firm’s financial performance requires thoroughly evaluating its financial
health and knowing its strengths and weaknesses. This, in turn, leads to adequate decision
making and adaptability to the ever-changing business environment. According to [5],
firms must be willing to pay the market price for whatever goods and services they employ
in their economic activities, irrespective of their sector. All these expenses, in turn, must
be finance balanced, allowing for present performance and future development. As is
well known, there are three primary sources of financial resources, i.e., inner resources
generated by a firm during its activities, cash inflows coming from stakeholders, and
financial resources obtained using debt, be it short or long term. As a rule, the debt ratios
of a firm depend not only on the goods and services it produces or distributes but also on
the stage of the business development plan, the type of market within which it operates,
and legal and fiscal restrictions, among others.

The interest rate governing such debts is often determined using credit scores from
rating agencies such as Moody’s Investor Service (henceforth Moody’s). Often, this score
will also define the yield a bond emitted by the company should offer. Nonetheless, credit
ratings are usually restricted to public companies with greater purchasing power, which
leaves smaller firms with the complicated task of evaluating the real opportunity cost of
debt. This is the case for many Mexican firms. The overall proportion of public firms in
the Mexican market is relatively small. Further complicating this matter is a debt between
peers, which can hardly be graded or rated, and a credit spread could be fixed outside the
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scope of the market value principle. Consequently, methodologies must show that the cost
of debt is directly proportional to the risk of default.

Merton’s model in [13] can be used to directly estimate the risk-neutral default prob-
abilities and the credit spreads to be added to the base interest rate. Also, the Brownian
Motion (BM) model and the Power Law Brownian Motion (PLBM) model of [14] allow
estimation of the risk-neutral default probability; and thus, the credit spreads using the
default frequencies. These models both share features with structural and reduced-form
settings. In this work, we use these three models to estimate the cost of debt in different
loans. Moreover, we propose a novel, modified Merton’s model to the same end and
analyze and compare all four models. Our application focuses on Mexican firms. It is worth
noting that there is no secondary corporate debt market in Mexico and no public data on
loan recovery rates or credit ratings. To establish this comparison, we follow the definitions
in [6] to estimate the rate of loan recovery where needed.

The modification we propose to Merton’s model consists of incorporating the con-
formable derivatives in the company’s market value into the partial differential equation,
effecting a change in variables, and then solving the equation to arrive at the traditional
Black-Scholes and Merton solution.

The rest of the paper is organized as follows: Section 2 reviews the existing literature.
Section 3 gives a theoretical presentation of all the models used in the analysis and intro-
duces the modified Merton’s model. Section 4 presents the results of our empirical study of
Mexican firms. Finally, in Section 5, we offer our conclusions.

2. Literature Review

Ballester et al. [15] systematically reviewed the literature worldwide. They found
that most of the indexed and refereed articles referring to the role of corporate gover-
nance mechanisms on credit risk have been developed for the United States, followed by
some cases for China and developed economies such as Japan, Korea, Canada, Australia,
and the United Kingdom, In particular, studies are scarce for non-developed economies
(Switzer et al. [16]) and there are practically nonexistent references to Latin America and
even less for Colombia specifically, or at least in journals of high international prestige.

The literature on this topic is scarce for emerging markets, which has resulted in a bar-
rier in the analysis of literature reviewed previously, so there are still exciting opportunities
for more in-depth study. From the literature review conducted, the case studies described
below stand out.

One of the first articles that studied the topic in question is that of Daily and Dal-
ton [17] who analyzed whether there was an impact on the probability of bankruptcy
when considering the structure and composition of the Board of Directors above. They
compared the results of 57 bankrupt companies and 57 surviving companies. For the sur-
viving companies, they found that the results suggested a relationship between governance
structure and the probability of bankruptcy, since 37.5% had dual ownership structures;
however, for the bankrupt companies, this value rose to 59.5%. It should be clarified that
the authors recognized that these results should be taken with caution and that it was also
confirmed that for the companies analyzed that had gone bankrupt, the financial indicators
of one year before the event allowed 95% of the cases to be sure that the situation would
arise, so that intervention on the ownership structure at that time could do little to change
these results.

In addition, Ashbaugh-Skaife et al. [18] investigated whether firms with strong corpo-
rate governance obtained higher credit ratings than those with weaker authority. Using a
sample of U.S. firms, they identified that credit ratings were negatively associated with the
number of shareholders and also with the power of the chief executive officer (management)
and positively related to takeover defenses, board independence, and board experience.
They found that going from the bottom quartile to the top quartile in the corporate gov-
ernance variables doubled the probability of a company obtaining an investment grade
rating, going from 0.46 to 0.93.
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Also noteworthy is the work of Manzaneque et al. [19], who analyzed the impact
of some corporate governance mechanisms (ownership and board characteristics) on the
probability of business failure for firms listed on the Spanish stock exchange through a
study of 308 observations of bankrupt and non-bankrupt firms. They found a negative
relationship between board size and the probability of bankruptcy; however, they did not
identify significant effects of ownership concentration on the probability of default in the
Spanish case.

Similarly, Switzer et al. [16] investigated Canadian entities and found that the corporate
governance structure impacted financial and non-financial firms differently.

Focusing only on non-financial companies in Colombia, the authors found that, for
non-financial companies, more independent boards of directors were associated with
lower credit risk; however, they did not find a significant relationship between ownership
structure (institutional shareholders and majority shareholders) and default risk.

For the Latin American case, we highlight the work of Esparza and Soto [20], who
considered a sample of family firms in Mexico for the period 2012-2016. By applying a mod-
ified Altman Z-Score indeX, they found that “the size of the board of directors significantly
influences a higher probability of incurring insolvency risk, as well as a differentiation
by sector”. Ballester et al. [15] systematically reviewed the literature worldwide. They
found that most of the indexed and refereed articles referring to the role of corporate
governance mechanisms on credit risk have been developed for the United States, followed
by some cases for China and developed economies such as Japan, Korea, Canada, Aus-
tralia, and the United Kingdom, being particularly scarce for non-developed economies
(Switzer et al. [15]), and practically nonexistent references to Latin America at least in
journals of high international prestige.

According to [21], the development in advanced economies indicates that successful
business management can increase a firm’s performance. Also, following [22], corporate
performance bears a causal link with the results of a firm, but an exact formula to compare
the success of a corporate firm, be it with its past results or those of other firms, does not
exist. For this reason, financial ratios, including debt indicators [23], are primary tools for
assessing a firm as they help to assess financial health [24]. Debt ratios can determine the
extent that external and internal resources are financing a firm and can help to evaluate the
risk of default.

The probability of default is determined by several factors, including the size of the
firm, its industrial sector, whether it pays dividends, the fiscal policy in the country where it
operates, the inflation rate, interest rates, exchange rates, and the overall economic outlook,
among others. According to [25], models that employ data to predict the occurrence of a
default event have evolved into three distinct types: structural, reduced form, and mixed.
The first group, pioneered by Merton [13], base their calculations on a firm’s market value.
A structural model uses the Black-Scholes option pricing model to approximate a firm’s
market value. It then uses this information to develop a default model and compare how
likely it is that a firm will default.

Reduced-form models do not explicitly include the default and firm characteristics
relationships. A default is viewed as an accidental, unanticipated event that can result
from diverse situations in the financial and economic markets. In this way, an exogenous
factor is included to help model default. This exogenous factor is often modeled as a jump
process or is driven by some underlying stochastic process [25].

Research on the relation between the probability of default and credit spread includes
that of Eberhart [26]. The author studied the models by Merton [13], Leland [27], and
Anderson et al. [28] and concluded that Merton’s model strongly and consistently underes-
timated the credit spread. In contrast, the other two models offered a better fit for accurate
data on credit spreads. On the one hand, Ericsson and Reneby [29] also concluded that
the risk of default and the liquidity premium were correlated with significant variations in
credit spreads. The authors see this relation as causal. On the other hand, more minor vari-
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ations in credit spread did not seem to be highly correlated with the probability of default.
They mostly considered the effect of unknown and unmodeled factors, i.e., statistical noise.

Eom et al. [30] tested and compared five models that are conventionally used to
price bonds and corporate firms, namely, those by Merton [1], Geske [31], Longstaff and
Schwartz [32], Leland and Toft [33], and Collin-Dufresne and Goldstein [34]. The authors
showed that using stochastic interest rates in the models did not significantly affect their
valuations” accuracies. They also argued that all the proposed models were prone to
substantial prediction errors, but the errors varied in magnitude and sign among the
models. More specifically, when used on safer bonds (low leverage and volatility), all the
models underestimated credit spread, and the opposite was true for riskier bonds. It is
worth noting that Geske’s model outperformed Merton’s model by including different
types of debt. Additionally, Leland and Toft’s model overestimated credit spread, and
this phenomenon did not seem solvable by parameter variation. Finally, it was seen that
the assumptions on the recovery rates may strongly affect the prediction variance for
credit spreads.

Another study by Teixeira [35] showed that Merton’s model overestimated bond prices
by approximately 11% and underestimated credit spreads by 76%.

Heynderickx, Carboni, Schoutens and Smits [36] empirically quantified the relation-
ship between default probabilities under the risk-neutral measure (Q) and the actual
measure (P) for European corporates. They concluded that, in general, the ratio between
PDs under Q and P, which they called the coverage ratio, was larger than one. For average
credit quality (Aa-Baa), the coverage ratio was between two and five before the financial
and sovereign crises. For highly distress bonds (high actual intensity or PD) it converged
toward one. The credit risk premium is a decreasing function of credit quality, i.e., the
higher the credit quality, the higher the coverage ratio.

Coval, Jurek, and Stafford [37] analyzed a structural model to investigate investment-
grade credit risk pricing during financial crises. Their analysis suggested that the dramatic
recent widening of credit spreads is highly consistent with the declining equity market,
its volatility increase, and an improved investor appreciation of the risks embedded in
structured products.

Anderson and Sundaresan [28] studied reduced-form models, and highlighted some
limitations. They argued that such models (i) strongly depended on the functional form
chosen and (ii) did not consider other firms. Specifically, market risk and how it correlated
to any given firm was separate from the model compared to the reduced form and struc-
tural models shown in [28]. The authors argued that by treating default as an accidental,
unexpected event, reduced-form models lose focus on s firm’s structure, balance sheet,
etc. Focused on computing the default and probability rates using observed market credit
spreads, these models neither depend upon nor provide economic or financial insight
regarding default.

The PLBM model has been seen to better approximate credit spread in an empirical
study by Denzler et al. [14]. Model accuracy and quality were evaluated by comparing the
results obtained using each model with the observed spread through a measure henceforth
denoted by G.

The existing literature is consistent in its conclusions. However, it must be considered
that these studies have primarily been based on fully developed and stable economies and
financial markets. The problem of evaluating these models in emerging economies is still
open. This paper addresses this problem and includes a novel model based on Merton’s
model of [13] and conformable calculus.

Although our research aims to carry out an analysis from a non-macroeconomic
financial point of view, we analyze the debts of the Mexican companies listed on the stock
exchange; we do not analyze the sovereign debt. According to Xin and Jiang [10], due to the
economic crisis resulting from COVID-19, scholars have concluded that uncertainty shocks
can inhibit output growth, but how uncertainty affects inflation is yet to be completed.
Some scholars consider that the impact of uncertainty shocks on the economy is deflation.
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For example, using a calibrated stochastic general equilibrium (DSGE) model, Leduc and
Liu [38] showed that price stickiness led to economic deflations following uncertainty shock
with U.S. data. Haque and Magnusson [39] estimated a time-varying parameter VAR using
U.S. data and found the response of inflation to be negative in the post-World War II period.
Other scholars have argued that the uncertainty shock has no significant effect on inflation.
It is essential to point out that there are no analyses like the one conducted in this
research, much less in Latin America. There are macroeconomic analyses of sovereign debt
credit ratings, as well as the influence of corporate governance on corporate behavior. But
the added value of this analysis is that, from a financial point of view, the credit rating
per company is obtained, as well as the probability of default and its consequent credit
spread through different models. However, it should be noted that this paper’s objective is
not to study the correlation between default probabilities and Mexican or world economic
performance. The implication that financial markets lack efficiency is conclusive.

3. Methods

This section describes the theoretical models that estimate credit spread using default
probabilities as input. We describe the following models: the Merton’s and Vasicek and
Kealhofer’s (VK) model, the Brownian motion (BM) model, the power law Brownian motion
(PLBM) model, the corporate default risk model for public firms, and the modified Merton
model. Following financial theory, the cost of debt should be directly related, among other
factors, to the financial situation of the entity issuing it, the economic landscape of the
country in which it operates, and the features of the industry sector to which it belongs.
All these factors should, therefore, be reflected by the interest rate at which the debt
is bought.

Following Crosbie and Bohn [40], the risk of default is defined as the uncertainty that
a firm may not have the means to pay its debt. However, before the facts, there is no exact
way to determine if a given firm will or will not default in each period. Estimating default
probabilities becomes an important endeavor. It is well known that due to this uncertainty,
firms are compelled to offer a risk premium, i.e., an excess return as compared to a risk-free
interest rate, and that this risk premium is, broadly speaking, directly proportional to the
probability of default.

From an accounting point of view, the risk of default increases as the value of the assets
approaches the book value of the debt, since a firm defaults when the value of its assets is
less than the total debt. Nonetheless, Crosbie and Bohn [40] found that the actual moment
of default strongly depends on the ratio of short-term debt to long-term debt. According to
the authors, the probability of default is an increasing function of this ratio. To state this
differently, remember that the relevant net value of a firm (net market value) is obtained by
subtracting the point of default from the total market value of its assets. Then, a firm is in
default when its net market value is equal to zero. Thus, a measure of the risk involved is
the volatility of its assets or, more precisely, of the percentual change in its market price.

The former concepts can be combined into a single concept known as the distance to
default (DD) that compares the net market value of a firm to its volatility using the formula:

Market value of assets] — [Point of defaullt]

[
DD = .
[Market value of assets|[Volatilitu of assets]

)

The distance to default combines vital elements to estimate the risk of default, i.e., the
market value of a firm’s assets and their volatility, and indirectly, industry and firm risks,
geographical risks, company size, and other factors that can be correlated to the market
value of the assets. Using this measure, the probability of default can be estimated. Such
estimation depends upon the probability distribution of the price of the firm’s assets but
may also be derived from known empirical relations between default and the DD.
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3.1. Merton’s Model, Vasicek, and Kealhofer

Next, we briefly explain the model by Vasicek and Kealhofer in [21], hereafter ab-
breviated VK, which serves as a preamble to better understand Merton’s model in [13].
The authors of [41] extended the option valuation model initially developed in [13] to
compute default probabilities. Similar to Merton’s model, a firm’s equity is considered to
be a perpetual option in the VK model. The point of default acts as a barrier to the firm’s
value; if the value of equity attains this value, the firm will no longer be able to pay its
debts. Under this model, debt and equity are considered to be derivatives, with the firm’s
value as the underlying asset.

According to [41], default probability depends on six variables, namely, the current
value of a firm’s assets; the probability distribution of said assets at time t; the volatility
of the value of the assets, estimated using the VK model at time t; the point of default;
the book value of the debt; the expected growth rate for the asset’s worth; and the time
horizon. Also, according to [41], default probability represents the possibility that the value
of the assets is below the point of default, also known as the expected default frequency
and abbreviated as EDF.

The users from Moody’s system can obtain the EDF. The platform predicts the yearly
probability of default for the year to come. In Moody’s approach, the best grade for a firm
or instrument is Aaa, meaning an almost certain payment or a practically null probability
of default. Next are rates Aa, A, Baa, Ba, B, and Caa, each representing a greater risk than
its predecessor. To facilitate a finer analysis, each category has been segmented. We, thus,
have Aal, Aa2, Aa2, A1, A2, A3, and so on, until reaching the riskiest Caa.

Having determined the EDF, the next step is to mutate this probability into the credit
spread to be added to the risk-free rate, considering the risk particular to a firm. More
specifically, diverse methods exist to compute the credit spread, such as the Brownian mo-
tion model, the power law Brownian motion model, the modified Merton model (proposed
in this paper), and Merton’s model.

According to Merton [13], the valuation of financial options can be applied to corporate
instruments, such as actions and debt. In this scenario, the underlying asset corresponds to
the value of a firm'’s help, and the diffusion process to be used will be the Brownian motion
as follows:

AV = (p —q)Vdt + oydZ. (2)

where u represents the expected return on the firm’s investment; g is the rate of dividends,
coupons, and interests paid by the firm to stakeholders; oy is the volatility on the value of
the assets; and dZ represents integration concerning a traditional Wiener process.

Merton affirms, in [13], that a shareholder has a residual right on the economic flows
generated by a firm. If the debt is due on t = 0, they will receive the difference between the
free cash flow and the total amount of repayable debt. If a firm with assets of a value of V
and a nominal B debt satisfies V > B, the shareholders will obtain a total of E=V — B. On
the contrary, if B > V, the shareholder will not receive any cash flow since all of V will be
allocated to pay the debt. Finally, the shareholder gets nothing again if V = B and E = 0.
As can be inferred, the value of a firm at time T equals the sum of its debt B and its equity
capital E. Furthermore, equity can be compared to a call option on the value of the firm’s
assets V1 with an exercise price equal to B since:

Er = max(Vy — B,0). ©)]

It uses the Black-Scholes formula of [42] to evaluate European options. It takes as
the volatility the underlying variance of a company’s returns, and the market value of the
company must be cleared by forming a system of equations as follows:

Eo(V,T;B) = Vodp(dy) — Be "Top(dy), (4)
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v o
d1:1n<3);§; : )T, )
dz = dl — Uvﬁ. (6)

where V) is the total market value of the firm'’s assets at time ty and Vr represents the same
value at time T. E is the market value of the share capital, i.e., the share price times the
number of ordinary shares in circulation at the initial time; B is the value of the interests
and money to be paid at time T; r is the risk-free interest rate, representing the volatility of
the firm’s assets (which are assumed homoscedastic). Furthermore, o is the volatility of
the shareholders’ equity, ¢(*) is the standard normal cumulative distribution function, and
T is the debt’s due date.

According to this model, the current value of the debt equals the difference between
W and Ey, and the risk-neutral default probability can be computed as ¢(—d3). Knowing
the market value of all the company assets and their volatility is necessary to add this
probability. Unfortunately, these values are not directly observable or present in a firm’s
financial reports. However, if the firm is public, the market value can be computed by
multiplying the number of shares by the market value per share, and its volatility can also
be calculated.

In this paper, we estimate the volatility using the GJR-GARCH model of [43], extending
the traditional GARCH process by including asymmetries in the volatility. The following
equation shows the relationship between a firm’s asset value volatility (oy) and its equity
volatility (og):

oE
ogEp = W(TVVO/ (7)
\%
o = (EE)N(dl)aV. ®)

Solving the nonlinear Equations (4) and (8) simultaneously provides the value V; and
the volatility (oy). The credit spread can be computed with these values, following the
procedure in [22], as follows:

. 1 Yo
Credit spread = ?ln [cb (dz + BerTCD(dl))] . 9)

3.2. Brownian Motion (BM) and Power Law Brownian Motion Models
3.2.1. An Introduction at Brownian Model

Before explaining the BM and PLBM models, it is essential to detail the calculation of
parameters used by both models, such as, among others, the annualized default risk-neutral
probability, the recovery rate, and the credit spread.

Under an argument like that used in the valuation of financial options, Denzler
et al. [14] calculated the risk-neutral probability of default if one has invested in a coupon
base risk-free F and the other risk F, both with a maturity date of T;. In the case of the
risk-free bond, the flow to maturity is equal to the expected value of the flows of the
risky bond multiplied by the risk-neutral probability of default and the recovery rate as
shown below:

E[F] = q]‘iRF + (1 — q]l)F (10)

where E[F] is the expected value of F, a riskless bond at maturity; g;; is the risk-neutral
probability of default at time #; with maturity at T;; and R is the recovery rate.

As expressed by Denzler et al. [14], the essence of pricing under risk neutrality is that
both investments offer the same return, such that the expected value under the risk-neutral
probability of default of a risky zero-coupon bond with maturity at T; discounted at a

market rate free of credit risk (in) is equal to the value of a risky bond discounted at a
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rate that includes default risk (Yj;) (Equation (11)). Substituting Equation (10) into (11) and
doing some algebra, we arrive at Expressions (12) and (13):

= 11
(1+%)"  (1+Y;,)" "
(14+Y) 7 = [R+ (1= R)(1 =) (1 +7;) "] (12)
T
1 1 +Yj,i
9ji 1R[1_<1+Yﬂ> 13)

It should be noted that g;; represents the risk-neutral probability of default during the
remaining term to maturity of the debt instrument, which in some cases can be greater or
less than one year. Therefore, to perform some analyses, in [2], they suggest annualizing
this probability as shown in Equation (14); the credit spread can be obtained with the
neutral probability of default as shown in (15):

1

5]‘,1' =1-(1—g,)7, (14)
sji=Yji—Y;; >0,
14+Y; —
Sj,i = ]L /T, — Yj,l" (15)
[R+(1-R)q, ]

where, s; ; represents the base credit spread plus the credit risk-free rate.

The actual risk-neutral probability of default can be derived if the recovery rate (R)
is known. Hull [44] defined a bond’s recovery rate as the bond’s market value imme-
diately after default as a percentage of face value. In general terms, a generic value of
40% is assumed for all instruments based on empirical studies by Frye [35], Altman and
Kishore [45], Acharya [46], and Hamilton [47]. Despite this, imposing a fixed recovery
rate is different from reality since there is evidence that this recovery rate has significant
variations concerning the average loan rate [47].

Hull [44], for his part, stated that recovery rates were negatively correlated with
default rates. In fact, in [47], they performed an analysis with data on U.S. bonds for the
period from 1983 to 2004, and arrived at the following linear relationship:

Average recovery rate 0.52 (-) 6.9 (Average default rate). (16)

The most appropriate way to calculate the credit spread would be to obtain the real
recovery rate for Mexican entities according to the type of loan (senior or junior) or the
credit rating; however, since this information was not available, the recovery rate was
calculated using the conditional default probabilities.

According to Hull [44], the conditional probabilities of default represent the possibility
that an entity will not pay in a period of time At, given that if it paid in t. This probability
is called the default intensity at time f, where A represents the average default intensity
between 0 and ¢. If we denoted the default probability at time t as Q(t), we obtained the
default intensity using Equation (17).

Q(t)y=1—eM, (17)

If we denote the EDF as P(t) and assume that P(t) = Q(t), then, on the one hand, we
can define A as shown in Equation (18). On the other hand, Hull [44] proposed another
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way to calculate the neutral probability of conditional default per year, given that the
entity did not default previously. This approach starts from the premise that the only
reason a corporate bond can be sold at a lower price than a risk-free bond with the same
characteristics is because of the possibility of default in the payment of the former. Therefore,
this probability of default would be calculated as shown in Equation (19):

—  In(1-P(1)) In(1 — EDF)

A=A, t == (18)

s
1-R
where s is the corporate bond yield spread over the risk-free instrument and R is the
expected recovery rate. Now, if we consider the one-year EDEF, as well as the definitions of
A given by Equations (18) and (19), we can arrive at the following approximation of R (20):

X:

(19)

S
R=1-——r——. 20
)\p(l +Yj,,‘ +S) (20)

The probability of default and the consequent credit spread cannot be readily de-
termined for companies not listed on stock exchanges. Hence, Denzler et al. [14] sug-
gested two models for calculating them, i.e., the Brownian motion (BM) model and the
power law Brownian motion (PLBM) model, which will be briefly explained below. These
models, as mentioned by the authors, incorporate characteristics of the structural and
reduced-form models.

3.2.2. Brownian Motion (BM) Model

The BM model takes as its basis the valuation of debt instruments with the theory of
financial options proposed by Black-Scholes [41] and Merton [13], as well as the migration
models of credit ratings and credit transition probabilities (Markov chains). Denzler
et al. [14] modeled the credit rating, as well as the distance to default (X;) as a general
Brownian motion, with an initial level equal to x, such that xy > 0, i.e.:

Xy = xo + oxWy. (21)

where o is the volatility of the process X and W; is a Wiener process.

In [2], they also assumed a minimum barrier corresponding to the default level 4; once
a company reaches this level, it cannot recover. To facilitate the calculation, this level is
defined as zero (d = 0), and consequently, the initial level of x is transferred. They also
believed that the process X, never touched the level d during the entire instrument life.
According to the formal development made by Karatzas and Shreve [48], Harrison [49], as
well as Janeblanc and Rutkowsky [50], the following propositions are established:

Proposition 1. The probability of touching the default barrier during the interval [0,T] starting at
to is as follows:
X

S Es)

Inverting the above equation, the initial value of the process xo would be equal to:

xo = oxVTp~? <1 - ”(ZT)>

where T is the maturity date of the debt instrument, p(T) is the probability or frequency of default
(EDF) at maturity T, ¢p(*) is the cumulative standard normal distribution, and ¢~ () is the
inverse cumulative standard normal distribution.
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Proposition 2. The actual probability of default at Tj is equal to:

where p(Ty), is the expected default frequency (EDF) with maturity in one year and, is the expected
default frequency (EDF) with maturity in T;.

p(T)) =20

In [2], they assumed that the actual probability would be transformed to the neutral
probability default g;;. Since their objective was to derive the neutral default frequency,
they obtained that this probability could be calculated as follows.

9ji = 2<P[ %4)‘1 (pzl)] (22)

]

where p; corresponds to the expected annual default frequency (EDF) and g; ; is the neutral
probability of default until maturity of the instrument at T;. This probability can be
annualized by applying Equation (14).

Considering these deficiencies, in [14], they developed another model that consid-
ered the possibility of sudden changes in credit quality through a Gaussian diffusion
model called the power law Brownian motion (PLBM) model, which is explained in the
following section.

3.2.3. Power Law Brownian Motion (PLBM) Model

This model considers the possibility of sudden instrument degradation and credit
rating asymmetry. The PLBM model includes additional parameters to the previous
equation arriving at (23):

LS
q;; = 2¢ [ci (%) ! (7;1)1 (23)
where «; and ¢; € R are to be estimated and, at each point in time, 0 < &; < 1 describes the
empirical behavior of firms in the market. It mainly captures all movements (including
explosive scaling law movements) of neutral probabilities. Concerned due date, ¢; € R
describes the total expected level of default probabilities for the whole market; it can be
interpreted as the market premium for credit risk.

In [14], they estimated both parameters at each point in time ¢; by running the following
linear regression, considering all maturities of the instruments. Such that, ln(Tl / T]) is

(1)
used as the independent variable and In | —3—+-| as dependent variable:

(%)

1

o (%)
In|——+% :lnc,-+aciln<?> + €. (24)

g
2
o1(%)

]

where ¢; is an independent random variable with E(¢;) = 0 and Var(g;) = 07,
i

It is important to note that this formula directly calculates the risk-neutral probability
of annual default, whereby the credit spread would be obtained by substituting the value
1+Y]',,‘ V3

of this probability into Equation (24) s;; = [R+(1 R ]1 7T~ Y
—R)4qji
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3.3. The Bloomberg Corporate Default Risk Model (DRSK) for Public Firms

The DRSK is a hybrid model combining a statistical approach with structural models.
Bondolini et al. [51] used logistic regression to estimate the probability of default events
based on factors that best capture credit risk.

As mentioned in the previous paragraph, the DRSK estimates real-world default proba-
bilities (DP) using a logistic regression of historically realized defaults against the structural
model DD and additional risk factors such as profitability and insolvency. Specifically, the
real-world default probabilities for a firm F at tenor f can be modeled as:

DP = p(B(F,1)) (25)

1
~ 1+exp(—f(B(F 1))’

F(B(E, 1)) = Bb+ BiDD(E, t) + Y Bip:. (26)

where ie{Return on Assets — Per forming loans, DD, Interest coverage}.

The model is calibrated by logistic regression of the model’s factors against the default
indicator operation set. Using marginal DPs from the logistic regression, one can obtain
cumulative DPs for each tenore{0.25,0.5,0.75,1,2,3,4,5} in the years as follows in [51]. In
the same way, annualized DP/ can be obtained as follows in Equations (27) and (28):

DP;:umulutive -1— IL[ (1 . DP;nurginal), (27)
j=3m

1

t

Dpzimnualized -1— (1 . DP?Mmulutive) (28)

The cumulative and annualized DPs are used by [4] to evaluate a firm’s default
probability per different horizons. They help compare and validate stylized facts between
samples within different grades of credit quality.

The DRSK is calibrated to historical financials over a 20 year period containing records
for over 65,000 firms. The models achieve high-performance levels in adjusted pseudo-R
squared (e.g., between 34% and 47%) [51]. The model DP is predictive of credit events up
to a horizon of five years and tracks the realized default rates closely over time. According
to Bondoli et al. [51], the model is responsive to market conditions; default probabilities
drop during economic expansions and rise during economic contractions.

3.4. Modified Merton Model
3.4.1. Fractional and Conformable Derivatives

Fractional derivatives arise from a concern to generalize the derivate exponent 7 to a
real or complex function.

Khalil, Al Horani, Yousef, and Sababheh [52] presented a new definition of the frac-
tional derivative whose objective was to facilitate the calculations; additionally, they stated
that the fractional derivatives for 0 < @ < 1, were local by nature. They also stated that given
a function f : [0,00) — R and t > 0, the conformable fractional derivative of f of order «
can be defined as T, (f)(t) = limgﬁow forallt > 0,and 5’7},{ of order “n” from
an integer to a non-integer, where “n” can be a fraction, an irrational, or a complex.

Khalil et al. [52] presented a new definition of a fractional derivative whose goal
was to facilitate calculations. Additionally, they stated that fractional derivatives for
0 < a < 1 were local by nature. They also stated that given a function f:[0,00) — R

and t > 0, the conformable fractional derivative of order & was found to be defined as
T—a)_

Tu(f)(t) = limgﬁow forall t > 0 and we(0,1). If f was a-differentiable in some

(0,a), a > 0, and the lim,_,o+ f(t) there exist, it is defined as f(*)(0) = lim,_,o+ f@W (t).

Similarly, Anderson, Camrud, and Ulness [53], mentioned that if the conformable fractional



Mathematics 2023, 11, 4397

13 of 30

derivative, denoted as f*(t) or T, (f)(t), existed, it was said to be x-differentiable, derived
from which they presented the following theorem:

Theorem 1. If a function f:[0,00) — R fis a-differentiable in, to > 0« € (0,1], then
To()(t) = £ 75 (1).

To analyze the equivalence between conformable and fractional derivatives,
Anderson et al. [54] applied only a change of variable, such that u = % reached the same
result as Khalil et al. [52], as presented in Equations (32) and (33).

In [54], have the following properties, this definition yields the following results (from
Theorem 2, 3 of Katugampola [43]):

e  DY[af +bg] = aD*|f] + bD"[g], linearity;
e D“[fg] = fD*[g] + gD"[f], product rule;
o DYf(9)] = %D“[g}, chain rule.

D*(f] = x'7*f', where f' = %

According to [54], to see the equivalence of the conformable derivate and considering
the change of variable u = % the direct substitution and then applying the chain rule in+:

® _ 17adf

D*[f] =x ar (29)
df  adf)du g df() o df(n)
Sl N TR A e S (30)

The steps followed by Morales-Bafiuelos et al. [55] and Anderson et al. [54] to transform
a traditional second-order linear differential equation, known by its acronym SOLDE
(second order linear differential equation) into a conformable equation, by changing the
variable are the following: Equation (30) in [3,29] obtained the expression shown in (34).
Finally, they stated the second order linear conformable differential equation as follows:

d*y(u) dy(u) _
P(”)W + Q(“)W +r(u)y(u) =s(u) (31)
Now, let
u= % and % = x*1 gsodu = x* ldx, [40,55] calculated the second derivative of

azg iu) and obtained:

P _ g () _ g (dy(a) d> _ Py (g)z L () (£)
du du du du dx du dx2? du dx du?

2 dzdyx(;t) I dyd(;l) _% — 22 d";iyx(zu) 4 (1—a)xaxle dzl(xu) (32)
- széy(%>/

A Xi _ .2-2a dzy(”) . 1-20 4y (1)

C2ay( . ) =X 2 +(1—a)x v (33)

Therefore, Equation (34) becomes:

()l o) (W) D) oo

The interpretation of the conformable derivative is a change of variable "7&, which
generates a dependence in the form of the power of the independent variable x, where the
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exponent « is the order of the derivative. This transformation is locally differentiable, and
its inverse is also locally differentiable in the independent variable x. Its dominion is in the
strictly positive real numbers (see [53]).

3.4.2. Proposed Model

As mentioned above, the objective of this work is to solve the Black, Scholes, and
Merton (BSM) partial differential equation [13,41] taking as a reference the change of
variable proposed by Anderson et al. [54] to obtain an equation with which to calculate the
credit spread, incorporating the conformable derivative in the firm value parameter.

Solving the Black, Scholes, and Merton Equation by Conformable Derivatives

Following the proposal of Morales-Bariuelos et al. [55], for the purpose of solving the
traditional BSM partial differential equation [13,41], we performed the change of variable
in the signature value parameter, such that u = V% and g—“} = V1 - 9u = V*~ 19V, such
that 0 < « < 1, and the first derivative of the function of u with respect to u is equal to
Equation (35).

orw (%) v arw .

w ~ v oV v - PV 9)

Subsequently, the second derivative of the function of #, concerning u, was calculated,

again incorporating the change of variable u = VTDC, and we arrived at Equation (36). If

these derivatives are substituted into the original equation developed by Black, Scholes,

and Merton [13,41], the partial differential equation would be represented as shown in

(37) and (38). According to [54], Equation (36) is a parabolic partial differential equation

for u = V*/a, which must be satisfied by any security whose value can be written as a
function of the value of the firm and time, like in this case:

" " " 2f( % 2 af (%
- 404 - 240 1) - L (7 4R
_ 9% f(w) | 3f(w) RV
ou? du  Ju? (36)
2
_ Vz—zaag‘s(?)

_oxof(u
+(17“)V1