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Abstract: The type-2 multi-objective integrated process planning and scheduling problem, as an
NP-hard problem, is required to deal with both process planning and job shop scheduling, and
to generate optimal schedules while planning optimal machining paths for the workpieces. For
the type-2 multi-objective integrated process planning and scheduling problem, a mathematical
model with the minimization objectives of makespan, total machine load, and critical machine load
is developed. A multi-objective mayfly optimization algorithm with decomposition and adaptive
neighborhood search is designed to solve this problem. The algorithm uses two forms of encoding,
a transformation scheme designed to allow the two codes to switch between each other during
evolution, and a hybrid population initialization strategy designed to improve the quality of the
initial solution while taking into account diversity. In addition, an adaptive neighborhood search
cycle based on the average distance of the Pareto optimal set to the ideal point is designed to improve
the algorithm’s merit-seeking ability while maintaining the diversity of the population. The proposed
encoding and decoding scheme can better transform the continuous optimization algorithm to apply
to the combinatorial optimization problem. Finally, it is experimentally verified that the proposed
algorithm achieves better experimental results and can effectively deal with type-2 MOIPPS.

Keywords: multi-objective optimization; process planning; shop scheduling; neighborhood structure
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1. Introduction

Process planning and shop scheduling are two critical aspects of a manufacturing
system, and traditional manufacturing systems consider these two aspects independently,
but as manufacturing grows, this model often fails to meet production needs [1,2]. By com-
bining the two into one, the integrated process planning and scheduling problem (IPPS) is
able to improve responsiveness to meet production needs. According to the differences
in the approach of process planning, IPPS can be divided into two categories [3]. The first
category (type-1 IPPS) deals with process planning and shop scheduling in turn, i.e., it first
optimizes the processing path for each job and then carries out scheduling optimization; the
second category (type-2 IPPS) optimizes both parts at the same time, taking into account the
intrinsic connection between process planning and shop scheduling, which is more suitable
for actual production and increases the difficulty of problem solving. Real-life optimization
problems often involve multiple optimization goals, such as people often hoping to obtain
more benefits at a lower cost. The solution of a multi-objective optimization problem (MOP)
differs significantly from that of a single-objective optimization problem due to the fact
that it is difficult to reach a solution that is optimal for each objective value in an MOP,
and often a compromise set of solutions is obtained. The type-2 multi-objective integrated
process planning and scheduling problem (type-2 MOIPPS) is more practically relevant,
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and in addition, it is very important to make scheduling decisions for the Pareto front of
type-2 MOIPPS in real production.

Research on IPPS began in the mid-1980s [4]; Jin et al. [3] divided IPPS problems into
two categories based on differences in the treatment of the process planning, and pro-
posed several hybrid 0-1 integer planning models for type-2 IPPS. The common benchmark
instance for type-2 IPPS was proposed by Kim et al. [5], which contains 18 jobs and
15 machines, which can be divided into 24 cases of different sizes according to different
degrees of process planning flexibility. For type-2 IPPS problems, there are mainly exact
algorithms and intelligent algorithms. The research in Bahman et al. [6] first proposed a
constraint planning model for type-2 IPPS and developed a logic-based Benders decompo-
sition method for solving it with good results. The research in Ausaf et al. [7] proposed a
priority-based heuristic algorithm to optimize the maximum completion time with good
results. The research in Huang et al. [8] proposed a quadratic description method based on
OR subgraphs and used the ant colony algorithm to solve them. The research in Zhang and
Wong [9] constructed a multi-intelligence system based on the ant colony algorithm to solve
them. The research in Wu and Li [10] proposed a hierarchical algorithm fusing harmony
search and genetic algorithm to solve type-2 IPPS. For MOIPPS, Xuan et al. [11] proposed a
hybrid algorithm for solving it by integrating the operation of clustering algorithm, differ-
ential evolution algorithm, and genetic algorithm, which maintains the diversity of feasible
solutions and effectively optimizes the process planning and scheduling scheme, but the
algorithm is designed for type-1 IPPS. The research in Li et al. [12] solves MOIPPS based
on game theory. The research in Mohapatra et al. [13] treats MOIPPS as a multi-objective
optimization problem in a reconfigurable manufacturing environment with NSGA-2 pro-
cessing. The research in Shokouhi [14] solves MOIPPS with completion time, total machine
load, and critical machine load as the objectives in a weighted manner. The research in Wen
et al. [15] considers the robustness of the system as well as machine failures to optimize
MOIPPS for rescheduling. In summary, there is relatively little research on type-2 MOIPPS.
The above literature analysis shows that the solution of type-2 IPPS is mainly focused
on intelligent algorithm, and the crossover and mutation operations of genetic algorithm
are usually applied in the iterative process of intelligent algorithm, which is determined
by its encoding and decoding scheme. How to further apply continuous optimization
algorithms to discrete problems remains to be studied. For type-2 IPPS, Table 1 summarizes
the proposed algorithms from the literature.

Table 1. The available literature on the type-2 IPPS.

Publication Algorithms

[3] Exact algorithm
[6] Logic-based Benders decomposition method
[7] Priority-based heuristic algorithm
[8] Quadratic description method based on OR subgraphs
[9] Multi-intelligence system based on the ant colony algorithm
[10] Hierarchical algorithm fusing harmony search and genetic algorithm

The mayfly optimization algorithm (MA) [16], as a novel metaheuristic optimization
algorithm, combines the main advantages of genetic algorithm, particle swarm optimization
algorithm, and firefly algorithm, and is widely used in various optimization problems.
There are some examples. The research in Awei et al. [17] proposed a fusion algorithm
combining an improved mayfly optimization algorithm and dynamic windowing method
to solve the robot path planning problem. The research in Dong et al. [18] proposed an
optimal siting and capacity determination method for distribution networks, and designed
an improved multi-objective mayfly algorithm to solve it. The research in Damin et al. [19]
proposed a resource allocation algorithm with improved discrete mayfly algorithm for
cognitive heterogeneous cellular networks for the optimization of the uplink resource
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allocation problem in cognitive heterogeneous cellular networks, but the algorithm has not
been applied to the solution of type-2 MOIPPS.

Lastly, we conclude that solving type-2 MOIPPS has several key problems, as follows:

• One problem is how to deal with the process planning and shop scheduling aspects in
IPPS at the same time.

• Solving MOP not only requires the solution set to be close to the true Pareto front,
but also makes the solution set uniformly distributed on the Pareto front [20], so the
convergence and distribution of the solution need to be considered at the same time.
This raises the question of how to balance the convergence and distribution of the
solution set.

• Lastly, we have the question of how to decide the solutions in the Pareto optimal set.

To address the above aspects, the main contributions of this paper are as follows:

(1) We develop a mathematical model for type-2 MOIPPS based on the AND/OR directed
graph.

(2) We extend the mayfly optimization algorithm for the first time for solving this multi-
objective optimization problem.

(3) In the coding section, we use two coding methods to better apply the sequential
optimization algorithm to this combinatorial optimization problem.

(4) We improve the neighborhood structure of the moving process to adapt to the solution
of this problem, forming a dual population structure of internal population and
external archive, which effectively balances the convergence of the algorithm and
the diversity of the populations, and encourages the Pareto solution set to uniformly
approximate the true Pareto front.

The remainder of this paper is organized as follows. Section 2 describes how the
problem is described and mathematically models it based on AND/OR directed graphs.
Section 3 describes the fundamentals of the mayfly algorithm. Section 4 proposes an
encoding scheme, a decoding scheme, and a population initialization strategy. Section 5
describes the use of the proposed algorithm for solving the type-2 MOIPPS. Finally, Section 6
presents an experimental validation of the proposed algorithm. We conclude the paper in
Section 7.

2. Problem Description and Mathematical Modeling
2.1. Basic Definitions of MOP

An MOP often contains multiple conflicting optimization objectives, which can be
mathematically defined as follows:

min f (x) =
(

f1(x), f2(x), . . . , fp(x)
)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , k
hj(x) = 0, j = 1, 2, . . . , l

(1)

where x = (x1, x2, . . . , xn) ∈ D is a decision variable vector from the decision space D,
f (·) denotes p objectives to be optimized, gi(·) is the inequality constraint, and hi(·) is the
equation constraint.

Definition 1 (Pareto dominate). Given decision variable vectors x ∈ D, y ∈ D if ∀i =
1, 2, . . . , p, fi(x) ≤ fi(y), and ∃j ∈ {1, 2, . . . , p}, f j(x) < f j(y), we say that x dominates y,
noted as x ≺ y.

Definition 2 (Absolute optimal solution). The decision variable vector x∗ ∈ D, if ∀x ∈ D,
fi(x∗) ≤ fi(x), ∀i = 1, 2, . . . , p, so x∗ is said to be the absolute optimal solution.

Definition 3 (Pareto optimal). The decision variable vector x∗ ∈ D is said to be a Pareto optimal
solution (non-dominated solution) if @x ∈ D and x ≺ x∗.
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Definition 4 (Pareto set). PS = {x ∈ D | @y ∈ D, y ≺ x}.

Definition 5 (Pareto front). PF = { f (x) | x ∈ PS}.

2.2. Problem Description

Let J = {J1, J2, . . . , Jn} be a set of jobs; ∀Ji, i = 1, 2, . . . n requires a set of operations
Ji = {Oi,1, Oi,2, . . . Oi,ni} for completion. Let M = {M1, M2, . . . , Mm} be a set of machines;
∀Oi,j, i = 1, 2, . . . , n, j = 1, 2, . . . ni can be processed on several different machines Mi,j ⊂M,
with different processing times for different operations on different machines. The process
planning of the job is represented by an AND/OR directed graph, as illustrated in Figure 1a.
Solving the problem requires determining the processing path of each job, determining
the processing machine for each operation, and determining the processing order of the
operations on each machine to satisfy optimization objectives.
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Figure 1. AND/OR directed graph.

In the AND/OR directed graph, each node represents one operation, the directed
edges link two adjacent operations, and the direction of the directed edges indicates the
processing order of the operations. The process flexibility of the job is represented by the
AND node and the OR node. The AND node means that to complete the job, the operations
under the AND node need to be processed, but there is no sequential constraint between
these operations; the OR node means that to complete the job, only one path under the OR
node needs to be selected. The number in the middle bracket indicates the number of the
machine available for this operation, and the number in the curly brackets indicates the
processing time of this operation on the corresponding machine. The AND/OR directed
graph shown in Figure 1 has four machining paths (Figure1b).

The type-2 MPIPPS is also subject to the following assumptions:

1. All machines are available from moment 0.
2. All jobs are available to be machined from moment 0.
3. Each job cannot be stopped until machining is complete.
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4. There are no priority constraints between jobs.
5. One job can only be machined in one process at the same moment.
6. Only one job can be processed by one machine at the same moment.
7. The transportation time of the jobs is ignored.

2.3. Process Planning Approach

Before building the mathematical model, the methodology used in this paper for
treatment process planning is first introduced. As seen in the AND/OR directed graph,
the process planning of a job consists of two parts—the selection of the operations to be
processed and the ranking of the selected operations.

For the first problem, this paper uses the approach proposed by [6] to determine the
operation of processing. For each job Ji, i = 1, 2, . . . , n, a decision variable si,v is assigned to
each OR node Qi,v, v = 1, 2, . . . , nqi of the job (nqi denotes the number of OR nodes of the
job Ji), si,v = 0 if that OR node chooses the path on the left, and si,v = 1 otherwise. Then
two sets, F0

i,j, F1
i,j, are assigned to each operation Oi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , ni, where

the elements in F0
i,j are the OR nodes that select the left-hand path making the operation

required to be processed, and the elements in F1
i,j are the OR nodes that select the right-hand

path, making the operation required to be processed, so that the sufficient conditions for
the operation of the job to be selected can be obtained as follows:

Theorem 1 (A sufficient condition for the operation to be selected). The operation Oi,j, i =
1, 2, . . . , n, j = 1, 2, . . . , ni is performed if and only if ∑v∈F0

i,j
si,v + ∑v∈F1

i,j
(1− si,v) = 0.

For the second problem, a priority constraint matrix Ai =
(
aj,r
)

ni
is assigned to each

job Ji, i = 1, 2, . . . , n, with aj,r = 1 when operation Oi,j is processed before operation Oi,r and
aj,r = 0 otherwise. The priority of the two operations will be determined by this matrix.

2.4. Mathematical Model

Objectives

• Makespan (MK): The makespan indicates the completion time of the last job to leave
the machining system, reflects the efficiency of machine utilization, and is the most
widely used evaluation indicator in scheduling problems.

f1 = min max
i∈J,j∈Ji

(
ci,j
)

(2)

• Total machine load (TL): The total machine load represents the sum of the time spent
on all machine processes and reflects the total consumption cost of the machine.

f2 = min ∑
i∈J

∑
j∈Ji

∑
k∈Mi,j

yi,j,k pi,j,k (3)

• Key machine load (KL): Since the processing time of the same process varies on
different machines, the selection of machines may lead to machine load imbalance,
and the maximum machine load is used to measure the machine load balance.

f3 = min max
k∈M

(
∑
i∈J

∑
j∈Ji

yi,j,k pi,j,k

)
(4)

Constrains
∑

k∈Mi,j

yi,j,k ≤ 1, ∀i ∈ J, j ∈ Ji (5)
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∑
k∈Mi,j

yi,j,k ≥ 1−

 ∑
v∈F0

i,j

si,v + ∑
v∈F1

i,j

(1− si,v)

, ∀i ∈ J, j ∈ Ji (6)

ci,j ≥ 0, ∀i ∈ J, j ∈ Ji (7)

ci,j ≤ L ·

1−

 ∑
v∈F0

i,j

si,v + ∑
v∈F1

i,j

(1− si,v)


, ∀i ∈ J, j ∈ Ji (8)

cl,r ≥ ci,j + yi,j,k pi,j,k − L · (1− zij,lr,k),

∀i, l ∈ J, j ∈ Ji, r ∈ Jl , k ∈Mi,j ∩Ml,r (9)

aj,r + ar,j = 1, ∀i ∈ J, j, r ∈ Ji, aj,r = 0∧ ar,j = 0 (10)

ci,r ≥ ci,j + ∑
k∈Mi,j

yi,j,k pi,j,k, ∀i ∈ J, j, r ∈ Ji, aj,r = 1 (11)

Constraints (5) and (6) assign a unique machine to each selected operation. Constraint
(7) ensures that the completion time of each operation is not less than 0. Constraint (8) sets
the completion time for operations that are not processed to 0. Constraint (9) processes
the scheduling of operations on the same machine. Constraints (10) and (11) process the
scheduling of operations for the same job.

Indices and sets:
i, l Index for jobs
j, r Index for operations
k, u Index for machines
v Index for OR nodes
Ji The set of all operations of job Ji
Mi,j The set of machines for Oi,j
Parameters:
pi,j,k The processing time of Oi,j on machine k
ci,j Completion time of Oi,j
L A sufficiently large positive real number
Decision variables:
si,v si,v = 1 if OR node chooses right path, and 0 otherwise
aj,r aj,r = 1 if Oi,j precedes Oi,r, otherwise aj,r = 0
yi,j,k yi,j,k = 1 if Oi,j is processed on Mk, and 0 otherwise
zij,lr,k zij,lr,k = 1 if the Oi,j precedes Ol,r, and 0 otherwise

3. Overview of Mayfly Optimization Algorithm

Mayfly optimization algorithm (MA) was proposed by [16], which can be seen as an
improvement of particle swarm algorithm with the advantages of particle swarm algorithm,
genetic algorithm, and firefly algorithm, with the process of finding the optimal male mayfly
move, female mayfly move, and male and female mayfly cross.

1. Movement of male mayflies. Male mayflies will adjust their position based on their
experience and their neighbors with the following formula for speed update and
position update.

vt+1
i = vt

i + a1e−βr2
p
(

pbesti − xt
i
)
+ a2e−βr2

g
(

gbesti − xt
i
)

(12)
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xt+1
i = xt

i + vt+1
i (13)

2. Movement of female mayflies. Female mayflies are attracted to male mayflies and
the algorithm models this attraction process as a deterministic model where the
better male individual attracts the better female individual, and the female individual
velocity update and position update equations are as follows.

vt+1
i =

{
vt

i + a2e−βr2
m
(
xt

i − yt
i
)
, f (yi) > f (xi)

vt
i + l f l · r, otherwise

(14)

yt+1
i = yt

i + vt+1
i (15)

3. Mating of mayflies. Sires are selected in the same way as male and female mayflies
are attracted, with the better males crossing over with the better females and males.

o f f 1 =a3 · P1 + (1− a3) · P2

o f f 2 =(1− a3) · P1 + a3 · P2 (16)

where vt
i denotes the velocity of the ith individual in the tth generation, xt

i , yt
i sub-

tables denote the positions of male and female mayflies in the tth generation, pbesti,
gbseti denote the historical optimal position and global optimal position of male
mayflies, rp, rg, rm denote the distance of the individual from pbesti.gbesti and the
corresponding male individual, d represents the dance coefficient, r ∈ [−1, 1] is the
random number, β denotes the visibility coefficient, and l f l is the random wandering
coefficient. a1, a2 are the number of attraction for male mayflies to move and a3 is the
random number satisfying the Gaussian distribution.

4. Encoding, Decoding, and Population Initialization
4.1. Encoding

The type-2 IPPS contains two subproblems, process planning and shop scheduling,
where the shop scheduling part can be regarded as a flexible job–shop scheduling problem
(FJSP). For this subproblem, this paper uses the two-part coding scheme, which is commonly
used by FJSP [21]; it encodes operation sequencing and machine selection with OS strings
and MS strings, respectively. Unlike FJSP, the operation number cannot be represented by
the number of occurrences of the job number in the OS string because of the uncertainty of
the operation order in the type-2 IPPS problem, so two integers are used to represent an
operation in OS, and they represent the job number and the operation number, respectively.
For the process planning subproblem, this paper deals with the operation selection problem
in the encoding process, and the encoding indicates the si,v values of each OR node of the
job J1, J2, . . . , Jn from left to right; for the operation ordering problem of the same job, it is
dealt with in the decoding. In summary, the particle coding consists of three parts, namely
operation ordering, machine selection, and OR node selection, and the coding length is
L = 2×∑n

i=1 ni + ∑n
i=1 nqi, where ni, nqi denote the number of operations and OR nodes

of Ji, respectively, and Figure 2 is an example of coding.
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21 11 22 13 12 23 2 1 2 1 1 30 1

OR Node Selection Operator Sequence Machine Selection

0.33 0.83 0.67 0.17 0.50 1.00 0.33 0.50 0.50 0.50 0.33 1.000.50 1.00

0

0.50

1

1.00

M1, M3, M4

Figure 2. Coding example.

The above three-part integer coding can better represent the solution of type-2 IPPS,
but it is not suitable for the operation of MA. In this paper, different parts of the cod-
ing are mapped into real numbers of the interval [0, 1] in different ways; for the opera-
tion ordering part, the purpose of this part of the coding is to determine the processing
order of the operation, and the index of each position can indicate the priority of the
process it represents, as shown in Figure 2. The operations are processed in the order
O2,1, O1,1, O2,2, O1,3, O1,2, O2,3, and their indexes are normalized and reordered in the order
O1,1, O1,2, O1,3, O2,1, O2,2, and the new encoding can still represent the processing order of
each operation; for the machine selection and OR node selection parts, the interval [0, 1]
is equipartitioned and the corresponding equipartition points can be removed, so that
the trivial integer encoding is mapped to a real vector on [0, 1], and these two encoding
methods are noted as CHR1, CHR2. Since they have their own advantages, this paper will
use both schemes and apply them to different parts of the algorithm.

4.2. Decoding

The decoding process in this paper is performed for CHR1, and for CHR2, it is trans-
formed into CHR1 and then decoded. The process planning part of CHR1 only solves the
determination problem of the operation to be processed. For the second problem, operation
ordering of the same job, it is only necessary to generate a binary tree based on the priority
constraint matrix of the job, and finally traverse this binary search tree in the middle order
to obtain the correct process ordering.

The main steps of decoding are as follows:

1. Pre-processing. First determine the selection of each operation based on the OR node
selection part, and then determine the correct operation processing order for each job
based on the job priority constraint matrix.

2. Determine the processing machine for the operation. The machine selection part of
the code is read in turn to determine the processing machine for each operation and
to obtain the corresponding processing time for each operation.

3. Generate feasible scheduling. According to the operation sequencing part of the code,
the processing order and start time of each operation on the corresponding machine
are obtained. In this paper, we use the greedy interpolation method [21] to shorten the
processing time of the job, i.e., we traverse all the free time windows of that machine
during the decoding process and assign the process to the time window that can be
processed earlier.

4.3. Population Initialization

The quality of the initial solution has an impact on the solving ability of the intelli-
gent algorithm [22,23]. In order to improve the quality of the initial solution under the
condition of ensuring the distributivity of the initial solution, this paper adopts a hybrid
initialization strategy to generate the initial solution, and mainly adopts the following three
initial strategies.
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• Global minimum machine load strategy. The load of each machine is recorded in
the process of coding, and the machine with the minimum current load in the set of
optional machines is assigned to the process.

• Maximum remaining processing time strategy. Prioritize operations with longer
processing times.

• Shortest machining path strategy. It is easy to see that the processing path length of
a job is determined by the selection of OR nodes, and the processing path of the job
is shorter when the OR nodes select the decision variables with fewer occurrences in
F0, F1. In this paper, the shortest machining path strategy is proposed based on the
above analysis.

The combination of the above three strategies and the random initialization strategy
can be used to improve the quality of the initial solution in an effective way, and the
selection probabilities of the above three strategies in this paper are 0.78, 0.6, and 0.2,
respectively.

5. Improved Mayfly Optimization Algorithm for Type-2 MOIPPS

The mayfly algorithm has a strong optimization-seeking capability, but the global
exploitation capability is poor and easily falls into a local optimum. Secondly, the mayfly
algorithm is an optimization algorithm designed for single-objective optimization problems,
which is not suitable for solving multi-objective optimization problems. First, this paper
introduces the decomposition idea in the mayfly algorithm to deal with the convergence
and distribution of balanced solutions for multi-objective problems, making the solution
set uniformly close to the true Pareto front, and using an external archive to store non-
dominated solutions. Then, the neighborhood structure is improved to adapt it to the
multi-objective optimization problem. The adaptive neighborhood search cycle is designed
based on the average distance from the non-dominated solution set to the ideal point,
which further improves the algorithm’s search capability on the one hand and considers
the diversity of the equilibrium population on the other.

5.1. MA with Decomposition Idea

In order to balance the convergence and distributivity of the solution, this paper
introduces the decomposition idea in MA to make the solution uniformly close to the real
Pareto front. In this paper, the penalty-based boundary intersection (PBI) [24] is used to
perform the decomposition, which is calculated as follows:

min g(pbi)(x | ω, z∗) = d1 + θd2

s.t. x ∈ D (17)

where ω is a weight vector, z∗ is the ideal point, d1 = ‖( f (x)−z∗)·ω‖
‖ω‖ , d2 = ‖ f (x) −(

z∗ + d1
ω
‖ω‖

)
‖.

Figure 3 explains the principle of the approach as an example of the dual-objective
minimization problem, which shows that d1 controls the convergence of the solution, d2
controls the distributivity of the solution, and θ ≥ 0 is a pre-set penalty parameter to
balance d1 and d2.
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Pareto Front Objective Space

Figure 3. Principle of PBI approach.

The specific steps of MA with the decomposition idea are as follows:

1. Initialization. First generate the initial population of size N and initialize the ideal
point as the current population ideal point z according to the hybrid initialization
strategy in Section 4.3. Then generate N weight vectors uniformly dividing the target
space and determine the neighborhood for each weight vector [25]. Next, associate a
weight vector to each individual, and finally initialize the external archive EP = ∅.

2. Update the mayfly position. Update the male mayfly position according to Equa-
tions (12) and (13) and the female mayfly position according to Equations (14) and (15).
And accept the new position according to Equation (17), and update the ideal point z
whenever the position of a mayfly is updated.

3. Crossover of male and female mayflies. For each female mayfly, randomly select a
weight vector from its associated neighbors of the weight vector, find its associated
male mayfly as the crossover object for crossover, and accept offspring individuals
according to Equation (17). The specific method of crossover is given in Section 5.3.

4. Update the external archive EP. For each individual generated in step 3, determine
whether it is dominated by an individual NDi in the EP; if NDi ≺ C, delete C, and
otherwise, add C to the EP and delete the individual dominated by C in the EP.

5.2. Matching Male and Female Mayflies

Matching operation is needed before the crossover operation of female and male
individuals, and the standard MA algorithm models this process as a deterministic one.
In this paper, matching will be performed based on the set of weight vectors, and the main
idea is to view the neighborhood of the weight vector associated with the current female
mayfly. A random selection from that domain picks a weight vector and uses the male
individual associated with it as the match. The specific steps of the process are as follows:

• Associate a weight vector for each female and male.
The population first needs to be normalized, and then a weight vector with the
shortest vertical distance is associated with each individual. Here we do not associate
an individual with each weight vector, which means that some weight vectors are
not used, because the PF of the type-2 MOIPPS is irregular, and the weight vectors
uniformly distributed in the target space cannot make the solution set uniformly
close to the PF. This approach can to a certain extent discard the weight vectors that
are sparsely distributed in the population, so that the solution set can be relatively
uniformly distributed on the PF.

• For each female mayfly, a male mayfly is matched.
First determine the weight vector w associated with this female mayfly, and then put
the male individuals associated with the weight vector in the w neighborhood into
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the candidate set C. A male individual from C is randomly selected as a match for
that female individual.

5.3. Mating of Mayflies

According to the characteristics of the type-2 MOIPPS, different crossover approaches
are used for each part in this paper. For the OR node selection and machine selection parts,
random-point preservation crossover (RPX) is used, and for the operation sequencing part,
improved precedence preserving order-based crossover (IPOX) [26] is used. The specific
processes of the two crossover approaches are as follows, and Figure 4 shows an example
of the crossover process.

21 11 22 13 12 23 2 1 2 1 1 30 101

11 12 22 13 21 23 1 3 2 2 3 21 110

22 11 21 13 12 23 2 3 2 1 3 21 111

11 12 21 13 22 23 1 1 2 2 1 30 100

Figure 4. Example of crossover approach.

RPX: For parents P 1, P2, first generate a set of random numbers R in [0, L]; then
the encoded positions of parents P1, P2 in R are are kept in the children C1, C2, and the
positions that are not in R are inserted into the empty positions of C2, C1 in turn.

IPOX: For the parents P1, P2, first divide the artifact set J into two non-empty comple-
mentary sets J1, J2 at random; then divide the parents P1, P1, P2 in the set J1 into C1, C2 in
their original position; then put the parent P1, P2 in the set J1 in the corresponding process
order; then put the parent P1, P2 in the set J2 into the empty spaces of C2 and C1 in order of
the corresponding process order of the artifacts.

5.4. Neighborhood Structure Based on Moving One Critical Operation

Since moving non-critical processes cannot reduce the makespan, the neighborhood
structure in this paper is constructed based on moving the critical operation. There are two
options for moving an operation: (1) moving an operation with the same machine, and
(2) moving an operation across machines. The three optimization objectives of makespan,
total machine load, and key machine load are considered simultaneously, and since the total
machine load or critical machine load cannot be changed by moving the operation with the
same machine, the neighborhood structure is constructed by moving the critical operation
across machines. To better describe this neighborhood structure, some necessary definitions
are first introduced. For operation w, rw, tw are the head time and tail time of w, which
denote the length of the longest path from S to w and the length of the longest path from
w to F in the parse diagram, respectively; the job precursors and job successors of w are
JP[w], JS[w], and the machine precursors and machine successors of w are MP[w], MS[w],
respectively; the earliest start time and the latest start time of w are ES(w), EC(w), and the
earliest completion time and the latest completion time of w are LS(w), LC(w), respectively.
The neighborhood structure of this paper is based on the following theorem [27]:

Theorem 2 (Conditions for generating an improved neighborhood solution). Move the
critical operation w to process between operations i, j on the optional machine m. The generated
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neighborhood solution is still feasible and has a shorter makespan or a smaller number of critical
paths if the following conditions are also satisfied:

1. ri < rJS[w] + pJS[w];
2. rj + pj > rJP[w];
3. min{LS(j), LS(JS[w])} −max{EC(i), EC(JP[w])} > pwm.

In the above, (1) nd (2) ensure that the neighborhood solution is feasible and (3) ensures
that the neighborhood solution is improved.

The following neighborhood structure is designed based on Theorem 2:

1. For a feasible schedule, calculate its critical path and find all insertable positions that
satisfy Theorem 2 for each critical operation and place them into set P [28].

2. For each critical operation, the positions in the set P are arranged in ascending order
of processing time.

3. For each critical operation, insert it into the first position in the sorted set P.

It can be seen that the above neighborhood structure can improve both the makespan
and the total machine load, especially the makespan, which is the most difficult objective
to optimize among the three objectives, and it has been shown that minimizing makespan
helps to optimize key machine load [29].

5.5. Adaptive Neighborhood Search Period

The improved neighborhood structure based on moving a critical operation can ef-
fectively improve the three optimization objectives of makespan, total machine load, and
critical machine load, and promote the convergence speed of the algorithm as well as the
search capability. As the number of iterations of the algorithm increases, the focus of the
algorithm will shift from fast convergence to solution diversity, and it is more appropriate
to set the local search period to a larger value at this time. In this paper, the adaptive local
search period is designed based on the average distance from the current external archive
EP to the ideal point z:

T = iter_num · e−
1
|EP| ∑x∈EP ‖ f (x)−z‖ (18)

where iter_num denotes the number of iterations and ‖ · ‖ denotes the Euclidean distance.

5.6. Game-Theoretic-Based Scheduling Decision

The Pareto front PF is obtained based on the improved algorithm for the type-2
MOIPPS solution. In real-life production, it is also necessary to make a satisfactory schedul-
ing solution from PF, and this paper will make a decision on PF based on game theory [30].
A complete game model consists of three parts: game party, game strategy, and benefit
function. In this paper, the three minimization objectives of the type-2 MOIPPS are regarded
as the game party, the variable space as the decision space, and the objective function as
the benefit function to establish the non-cooperative game model. Nash equilibrium, as an
important element of non-cooperative game theory, can make each objective value as close
to optimal as possible without compromising the interests of other objectives. In this paper,
the optimal Nash equilibrium solution is used as the decision result of the Pareto solution
set, which is defined as follows:

Nash = min
d∈PF

(
3

∑
i=1

fid − besti
besti

)
(19)

where besti denotes the optimal value of the ith objective in the PF.
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5.7. Algorithm Flow

The improved algorithm can be viewed as a two-population interactive evolution
process, where the internal population POP is updated iteratively using a mayfly algorithm
based on the decomposition idea, and the external population EP stores the non-dominated
solutions in the POP, which is updated using adaptive neighborhood search and influences
the internal population through the mayfly location update method, where the internal pop-
ulation POP has better diversity and the external population EP ensures faster convergence
of the algorithm. The overall flow of the algorithm is shown in Figure 5.

Start
Initialize populations,

weight vectors, ideal points,
external archive EP

Random classification of
populations into female and

male populations

Associate a weight vector
for each female individual,

male individual

Update the position of male individuals according to Eqs.
(12) and (13), update the position of female individuals

according to Eqs. (14) and (15) and update the ideal point

Crossover of male and female
individuals to generate
offspring populations

Update external
archive EPYes

No

Meet the stopping conditionsGame theory based
decision making

End Adaptive neighborhood
search

Output EP, Nash
solution

CHR2

CHR1

CHR1

Figure 5. Overall flow of the algorithm.

6. Experimental Analysis
6.1. Experimental Environment and Experimental Data

Experiments are programmed in Python 3.11.4 (Numpy 1.23.4, Matplotlib 3.6.1) and
run on an Arch Linux operating system with a CPU of 12th Gen Intel i9-12900H 4.900 GHz
and 16G of RAM. Experimental data 1 are from Shao et al. [31], which contains six jobs
and eight machines; experimental data 2 are presented by Kim et al. [5], which contains
eighteen jobs and fifteen machines and can be divided into 24 cases of different scales.
In this paper, Kim1, Kim11, Kim18, and Kim24 are selected as cases of different sizes.

In order to verify the feasibility and effectiveness of the algorithm, this paper will
compare both single-objective and multi-objective aspects. Since minimizing makespan is
a common optimization metric for studying scheduling problems and is more difficult to
optimize than other metrics, this objective is selected for the comparison of single-objective
experimental results. For the comparison of multi-objective optimization results, this paper
compares the scheduling decision results and the Pareto optimal solution ratio, which is
described in Section 6.3.

6.2. Experimental Parameter Setting

After several experiments and comparisons, the parameters in this paper are set as
follows: β = 2, a1 = 1.2, a2 = 1.6, l f l = 1, θ = 5.

The main parameter settings, which are the same as those of NSGA-2 and MOEA/D
algorithms, are shown in Table 2.

Table 2. Experimental parameter setting.

Instance Population Size Maximum Number of Iterations Number of Weight Vector Neighbors

6× 8 100 100 10

Kim1 100 100 10
Kim11 200 200 20
Kim18 300 300 20
Kim24 500 500 20

6.3. Evaluation Indicator

In order to compare the goodness of the Pareto front computed by each algorithm, this
paper uses the Pareto optimal solution ratio (AR) [32] as the evaluation index of MOP.
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AR denotes the proportion of the new PFs produced by merging the PFs of two
algorithms that are occupied by the non-dominated solutions of the original PF. In general,
a larger value of AR indicates a better performance of the algorithm, which is calculated as
follows:

ARPF1 =
|PF1 − {x ∈ PF1|∃y ∈ PF2 : y ≺ x}|

|PF1|
(20)

6.4. Comparison of Single-Objective Experimental Results

Experiment 1 (6× 8)

The scheduling decision solution of IMOMA is compared with the ACO-MPP algo-
rithm proposed by Huang et al. [8], and the Modified GA proposed by Shao et al. [31]. The
comparison of the experimental results is shown in Table 3.

Table 3. Comparison of experimental (6× 8) results.

Algorithm Modified GA ACO-MPP IMOMA

MK 162 145 131

It can be seen that the results of IMOMA are 19.1% lower than those of Modified GA
and 9.7% lower than those of ACO-MPP. Figure 6 shows the optimization of 6× 8 using
the IMOMA algorithm. The scheduling Gantt chart is obtained from the experiment.
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Figure 6. Experiment 6× 8 scheduling Gantt chart.

Experiment 2 (18× 15)

The Nash solution obtained by the algorithm IMOMA in this paper is compared with
the THA algorithm proposed by Wen et al. [33], the ACO algorithm proposed by Zhang and
Wong [34], and the ACO-MPP algorithm proposed by Huang et al. [8]. The experimental
results are as follows (Table 4).

Table 4. Comparison of experimental (18× 15) results.

Instance Number of Jobs ACO THA ACO-MPP IMOMA

Kim1 6 427 427 N/A 427
Kim11 9 364 365 N/A 347
Kim18 12 378 353 N/A 342
Kim 24 18 525 511 522 492
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From the experimental results, it can be seen that IMOMA can achieve better results in
medium-scale cases compared to other algorithms, and also has a better finding ability in
medium- and large-scale cases.

6.5. Comparison of Multi-Objective Experimental Results

To verify the effectiveness of this paper’s algorithm, IMOMA, for optimizing the type-
2 MOIPPS, IMOMA is compared with NSGA-2 [35], MOEA/D, and MOMA algorithms,
where NSGA-2 and MOEA/D are representative algorithms for solving MOP, which
represent two main ideas for solving MOP. Based on Pareto domination and based on
the decomposition idea, the MOMA algorithm is formed by extending the MA algorithm
to MOP, i.e., the IMOMA algorithm does not use the decomposition idea and improved
neighborhood structure. The main parameters of each algorithm are set as the same.

The scheduling decision schemes for each case are given in Table 5. From the table,
it can be seen that the IMOMA algorithm is able to generate relatively better solutions,
although some solutions do not dominate each other. It can be seen that the results obtained
by IMOMA are able to achieve better results in more than two objectives compared to
other algorithms. As in the case Kim24, the scheduling solution obtained by IMOMA
computation can dominate the results of the NSGA-2 algorithm, and for MOEA/D and
MOMA algorithms, the results of the IMOMA algorithm are more advantageous in the
optimization of MK.

Table 5. Comparison of decision results by algorithms.

Instance NSGA-2 MOEA/D MOMA IMOMA

MK TL KL MK TL KL MK TL KL MK TL KL

6× 8 137 612 90 136 616 95 142 602 111 131 611 109

Kim1 428 1858 152 430 1837 154 428 1872 173 427 1864 163
Kim11 396 2507 221 403 2486 269 409 2507 201 347 2459 200
Kim18 386 3034 245 375 3089 229 378 3076 258 342 3034 221
Kim24 497 5224 397 520 5143 396 519 5199 372 492 5159 386

Table 6 shows the results of comparing the AR values of IMOMA and each algorithm. It
can be seen that in small- and medium-scale cases, multi-objective optimization algorithms
such as NSGA-2 and MOEA/D have certain advantages, and the IMOMA algorithm
has better results for solving medium- and large-scale cases. To further illustrate the
effectiveness of the IMOMA algorithm in this paper, Figures 7 and 8 show the Pareto front
comparison of the IMOMA algorithm with the NSGA-2 algorithm, MOEA/D algorithm,
and MOMA algorithm, and the scheduling Gantt chart obtained from solving the Kim24
case using the IMOMA algorithm, respectively. From Figure 7, it can be seen that the Pareto
frontier obtained by the IMOMA algorithm is superior compared to the other algorithms.
The machining path for each job of Kim24 is shown as follows (Table 7).

Table 6. Comparison of the AR value of each algorithm.

Instance NSGA-2 IMOMA MOEA/D IMOMA MOMA IMOMA

6× 8 0.46 0.83 0.50 0.76 0.35 1.00

Kim1 0.23 0.75 0.42 0.81 0.54 0.93
Kim11 0.18 0.91 0.21 1.00 0.19 1.00
Kim18 0.12 1.00 0.04 1.00 0.02 1.00
Kim24 0.06 0.92 0.03 1.00 0.02 1.00
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Figure 7. Comparison of different algorithms for the case Kim24 Pareto front.

Table 7. The machining path for each job of Kim24.

J1 O1,1 → O1,2 → O1,3 → O1,4 → O1,5 → O1,6 → O1,7 → O1,8
J2 O2,1 → O2,4 → O2,2 → O2,3 → O2,5 → O2,7 → O2,8 → O2,12 → O2,13 → O2,14 → O2,6
J3 O3,16 → O3,7 → O3,13 → O3,14 → O3,15 → O3,17 → O3,18 → O3,19 → O3,1 → O3,5 → O3,6 → O3,8 → O3,9 → O3,10 → O3,11 → O3,12 → O3,2 → O3,3 → O3,4
J4 O4,13 → O4,16 → O4,1 → O4,5 → O4,6 → O4,7 → O4,8 → O4,9 → O4,10 → O4,11 → O4,12
J5 O5,14 → O5,15 → O5,16 → O5,1 → O5,10 → O5,11 → O5,12 → O5,13 → O5,17 → O5,18
J6 O6,5 → O6,6 → O6,7 → O6,15 → O6,17 → O6,18 → O6,16 → O6,19 → O6,20 → O6,1 → O6,2 → O6,3 → O6,4 → O6,10 → O6,9 → O6,14
J7 O7,1 → O7,7 → O7,19 → O7,20 → O7,21 → O7,8 → O7,9 → O7,10 → O7,11 → O7,12 → O7,13 → O7,18
J8 O8,1 → O8,2 → O8,3 → O8,4 → O8,5 → O8,7 → O8,8 → O8,10 → O8,11 → O8,17 → O8,19 → O8,20
J9 O9,1 → O9,2 → O9,13 → O9,4 → O9,5 → O9,6 → O9,14 → O9,15 → O9,16 → O9,18 → O9,19 → O9,20 → O9,7 → O9,10 → O9,11 → O9,12
J10 O10,1 → O10,2 → O10,3 → O10,4 → O10,5 → O10,6 → O10,9 → O10,10 → O10,11
J11 O11,8 → O11,9 → O11,6 → O11,7 → O11,1 → O11,2 → O11,3 → O11,4 → O11,5
J12 O12,1 → O12,5 → O12,2 → O12,3 → O12,4 → O12,8 → O12,9 → O12,10 → O12,11 → O12,12 → O12,6 → O12,7 → O12,13 → O12,14 → O12,15 → O12,18
J13 O13,17 → O13,18 → O13,1 → O13,12 → O13,13 → O13,14 → O13,15 → O13,16
J14 O14,9 → O14,10 → O14,11 → O14,12 → O14,13 → O14,1 → O14,2 → O14,3 → O14,5 → O14,6 → O14,8
J15 O15,1 → O15,3 → O15,12 → O15,14 → O15,13 → O15,7 → O15,15 → O15,8 → O15,9 → O15,4 → O15,5 → O15,6 → O15,11
J16 O16,1 → O16,6 → O16,7 → O16,8 → O16,9 → O16,10 → O16,11 → O16,15 → O16,16 → O16,17 → O16,18 → O16,20 → O16,21
J17 O17,18 → O17,19 → O17,20 → O17,22 → O17,1 → O17,2 → O17,3 → O17,4 → O17,5 → O17,7 → O17,12 → O17,13 → O17,15 → O17,16 → O17,17
J18 O18,12 → O18,1 → O18,4 → O18,7 → O18,5 → O18,6 → O18,8 → O18,10 → O18,11 → O18,14 → O18,15 → O18,16 → O18,17
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Figure 8. Kim24 scheduling Gantt chart.



Mathematics 2023, 11, 4384 18 of 19

7. Conclusions

In this paper, a mixed-integer programming model is developed for the type-2
MOIPPS, and a conversion strategy for two coding schemes is designed so that the two
schemes can be transformed into each other during the evolution of the algorithm, and a
mixed population initial strategy is designed to improve the initial solution quality con-
sidering the diversity of initial solutions. The mayfly algorithm is extended to solve the
MOP problem, and the decomposition idea is introduced to balance the distribution and
convergence of the non-dominated solution set. The neighborhood structure based on the
mobile key process is improved to fit the three optimization objectives selected in this paper,
and the adaptive local search cycle is designed based on the average distance between the
non-dominated solution set and the ideal point to improve the algorithm’s ability to find
the best while considering the diversity of solutions.

The type-2 MOIPPS studied in this paper is a deterministic scheduling problem,
which is often accompanied by many uncertainties in the actual production process, such
as machine failure, emergency order insertion, etc. In addition, workers have a large
impact on the actual production. The authors will further explore the type-2 dynamic
multi-objective integrated process planning and scheduling problem under dual resource
constraints based on the research in this paper and analyze the convergence and complexity
of the proposed algorithm.
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