
Citation: Borisov, A.; Ivanov, A.

Stochastic Time Complexity Surfaces

of Computing Node. Mathematics

2023, 11, 4379. https://doi.org/

10.3390/math11204379

Academic Editor: Davide Valenti

Received: 19 September 2023

Revised: 18 October 2023

Accepted: 19 October 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Stochastic Time Complexity Surfaces of Computing Node
Andrey Borisov * and Alexey Ivanov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44/2 Vavilova Str.,
119333 Moscow, Russia; aivanov@frccsc.ru
* Correspondence: aborisov@frccsc.ru

Abstract: The paper is devoted to the formal description of the running time of the user task on
some virtual nodes in the computing network. Based on the probability theory framework, this time
represents a random value with a finite mean and variance. For any class of user task, these moments
are the functions of the node resources, task numerical characteristics, and the parameters of the
current node state. These functions of the vector arguments can be treated as some surfaces in the
multidimensional Euclidean spaces, so the proposed models are called the stochastic time complexity
surfaces. The paper also presents a class of functions suitable for the description of both the mean
and variance. They contain unknown parameters which should be estimated. The article includes
the statement of the parameter identification problem given the statistical results of the node stress
testing, recommendations concerning the test planning, and preprocessing of the raw experiment
data. To illustrate the performance of the proposed model, the authors design it for an actual database
application—the prototype of the passengers’ personal data anonymization system. Its application
functions are classified into two user task classes: the data anonymization procedures and fulfillment
of the statistical queries. The authors identify the stochastic time complexity surfaces for both task
types. The additional testing experiments confirm the high performance of the suggested model and
its applicability to the solution of the practical providers’ problems.

Keywords: stochastic model; nonlinear regression; M-estimate; parameter identification; stress testing

MSC: 68Q87; 68M20

1. Introduction

The forthcoming perspective of implementing the reliable high-speed 5G/6G cellular net-
work standards provides permanent access to unbounded computational resources regardless
of their possession and geographic location. This tendency appears in the areas of cloud [1,2],
and edge [3,4] computing, computing power networks and synonims [5–9], and other systems
of distributive computations. The providers have to develop the corresponding services
under the conditions of

– the high creation, ownership, and operating costs,
– the high user requirements stated in the Service Level Agreements (SLA),
– the high requirements for the reaction time and efficiency of the computing resource

management,
– the high competition between the rival providers.

All the conditions lead to the design of adequate and effective mathematical models
of the computing networks, their components, and virtual computing nodes, in particular.

There is a fundamental gap between the user requirements fixed in the SLA and
the instruments of their realization utilized by the service providers. Usually, the SLA
determines the maximal admissible runtime for the user task. To meet the requirements,
the provider has to create the virtual computing node [10–12] and allocate to it with a certain
amount of hardware resources: processor cores, random access memory (RAM), and disk

Mathematics 2023, 11, 4379. https://doi.org/10.3390/math11204379 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204379
https://doi.org/10.3390/math11204379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3124-2147
https://orcid.org/0000-0001-7811-7645
https://doi.org/10.3390/math11204379
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204379?type=check_update&version=2

Mathematics 2023, 11, 4379 2 of 26

storage. The extensive enlargement of the hardware resources does not always lead to the
required computing performance [13]. Hence, the adequate mathematical description of
the relations between the runtime of the user task and the node resources represents one of
the actual applied problems. Using this model, the provider would manage the resources
efficiently, satisfying the Quality of Service (QoS) indicators and optimizing the overall
resource utilization.

There is extensive literature on the general computational complexity theory [14–17]
and the detailed complexity estimates for the most common computational algorithms.
However, this information is insufficient to estimate the running time of each program
realization of a known algorithm due to the specific organization of execution parallelism,
usage of the cache, and RAM in general. The problem, which is the closest but not identical
to the investigated one, is a characterization of the time complexity of the user compu-
tational tasks. According to the commonly accepted definition [18], the time complexity
determines the algorithm running time as a function of the processed input length. The ver-
sion of the problem statement is rather academic and does not consider the essential facts.
The characteristic of the user task does not often represent a scalar but a vector. For ex-
ample, the Hidden Markov Model (HMM) parameter identification problem [19] can be
characterized by

– the dimensionality of the HMM,
– the dimensionality of the available observations,
– the length of the observations,
– the termination conditions of the iterative identification procedure.

In addition to the vector characterizing the user task, one should consider the number
of hardware resources allocated for the virtual node. Therefore, in the presentation below,
we refer to the functions of the vector argument, describing the dependency of the user
task runtime and task parameters as the time complexity surfaces.

The next issue that complicates the design of a mathematical model is the heteroge-
neous uncertainty in the runtime.

1. The application software installed on the node to carry out the user task is usually
proprietary. Hence, the information concerning the chosen algorithm and its program
realization is unavailable to neither the user nor the service provider. Furthermore,
almost any software uses an intricate combination of known and original algorithms,
which complicates estimating the total runtime. Finally, the abstract estimates of the
computational complexity of the algorithms do not consider specific conditions of
the software functioning on the computational node equipped with some hardware
resources. For example, the runtime increases significantly under a RAM shortage
because of the intensive usage of the swapping mechanism. By contrast, the time may
decrease when the node has multiple processor cores, and the program realization
admits the effective algorithm parallelization. Finally, the user and service provider
have only general information concerning the algorithms used in the node software.

2. Any special software that fulfills the user task can not work without a system
platform, which includes: a host and guest operation systems (OS), hypervisors, var-
ious drivers, and firmware. This software is also generally proprietary, and the cor-
responding algorithms are unavailable for complexity analysis. The uncertainty
caused by this type of software appears in the uncontrollable usage of the hardware
and virtual resources generated by the periodic software update, backup operations,
and optimization of the disc storage room. At the same time, the uncertainty can
manifest positively via the effective processing parallelization in the databases [20,21]
and acceleration of calculations by the speculative execution technique [22–24].

3. The whole variety of the hardware versions is an additional source of uncertainty in
the time complexity of the user tasks. The variability of the execution time can be
affected by all the various hardware models and chipsets.

4. The most investigated uncertainty type is caused by input data in the user tasks. First,
it appears as a dispersion of the data volume under processing. Second, it would take

Mathematics 2023, 11, 4379 3 of 26

place in the output volume. Third, the execution time may vary due to the nature of
the user task.

The main object of the recent investigations was regarding the uncertainty of the
fourth type [25], although all these are hardly separable in practice. Uncertainty is one
of the barriers to using the traditional mathematical frameworks of [26]. To take it into
account, one can use a guaranteeing approach: for this type of algorithm, it is necessary
to find the worst input data [27,28], leading to the maximum execution time. This way is
practically ineffective because of its significant computational expenses and unnecessarily
conservative results.

The probabilistic approach is more accepted: one can treat the task execution time as
a random value, and its randomness is generated by the input data choice endowed by
some probability distribution. Specifically, the average execution time [29] is characteristic
of the time complexity. This paradigm has some weaknesses. First, the recent results do
not consider the influence of the node hardware resources. Second, the usage of only
averaged complexity does not provide the required precision of the solution for some
practical problems. In fact, the knowledge of the averaged execution time and the Markov
inequality [30] allows us to find the estimate from above for the probability of the SLA
violation, i.e., the probability that random runtime exceeds some maximum allowable
threshold. However, the estimate, based on the Markov inequality, is too conservative and
might be useless in practice.

The aim of the paper is to present a new concept of the time complexity surface
describing the running time of a user task at the virtual computing node, along with
information technology of the parameter identification of this model.

The paper is organized as follows. Section 2 presents the actual problems arising before
the computing network providers. The first problem consists of estimating the probability
of the SLA requirement violation when the task runtime exceeds the maximal admissible
threshold. The second (related) problem is to determine a conservative threshold value,
such that the chance for the runtime to exceed it is not greater than some fixed confidence
level. The problems illustrate the importance of efficient model choice. Section 3 is a key
point of the paper and introduces a new stochastic model of the time complexity surfaces.
We treat the running time of the user task as a random value with finite moments up to the
second order. Both the average and the variance of the runtime are the functions of

– the resource characteristics of the computing node,
– the parameters of the user task,
– the vector of the current node state.

The section also presents the natural properties of the average and variance of the
runtime and some variants to describe them. The proposed stochastic model permits the
proper solution to the applied problems introduced in the previous section.

The average and variance surface functions contain unknown parameters. Section 4
presents the problem statements for the model parameter identification given the avail-
able statistical information. The section also includes recommendations concerning the
organization of stress testing as an information base for parameter identification.

Section 5 is an illustrative one. It contains the extended numerical analysis of the time
complexity surface model for the passengers’ personal data anonymization system [31].
Section 5.1 describes the hardware and software platform of the virtual node. The most
attention is paid to the description of the application software. Its functions are classified
into two parts, which define the user tasks. Section 5.2 is devoted to the stochastic model
of user task No. 1, realizing a complex procedure of data anonymization. The section
describes this procedure, the obtained stochastic model, and an analysis of its performance.
Section 5.3 contains the analogous information concerning user task No. 2, which represents
the calculation of the sample statistical characteristics of the data. Section 5.4 presents
the results of the final tests, which confirm the model applicability for the solution to the
providers’ problems, introduced in Section 2. It also includes remarks concerning the

Mathematics 2023, 11, 4379 4 of 26

configuration of a virtual node for this tested software. Section 6 contains some concluding
remarks and the prospects for further research.

2. An Applied Problem: Estimating the Chance of SLA Violation

To illustrate the importance of the mean and variance knowledge and to prepare
the introduction of the stochastic time complexity surfaces, we investigate the following
applied problems for the computing network providers.

Let us consider a computing node deployed on a fixed hardware, i.e., workstation,
server, mainframe, etc. The node represents the virtual machine with the known hardware
resources allocated to it in the monopolistic mode. The owner has installed both the system
and application software to provide the execution of the user tasks on the node.

The user tasks processed on the node belong to a fixed class. Any task is characterized
by some parameter vector y. Its components include a processed data volume, number of
procedure iterations, quality characteristics of data processing, etc. We use the probabilistic
paradigm and assume that any user task contains stochastic uncertainty. The running
times τ(ω|y) for all tasks are mutually independent and have partially known conditional
distribution Pτ(dω|y) given the value y. The uncertainty generated by the variability of
the task parameters has a probabilistic nature: each time, the user chooses the parameters
Y(ω) independently according to the known distribution PY(dy).

Usually, the SLA approves the maximal admissible execution time T for the task of
the considered type. There are two applied problems connected with the violation of SLA.

Problem 1. Given the threshold value T it is necessary to estimate from above the probability for
the task runtime τ(ω) to exceed T, i.e., P

{
τ(ω) > T

}
.

Problem 2. Given the admissible SLA confidence level P it is necessary to find a threshold T, which
guarantees that P

{
τ(ω) > T

}
6 P.

The solution to Problem 1 is necessary when the threshold T is already fixed. In this
case, the provider has to estimate from above the probability of violating the SLA condition
and the probable penalties.

The solution to Problem 2 is necessary when the provider fixes the allowable probabil-
ity P of the SLA violation, so he/she needs to determine the corresponding threshold T.

Below, we consider the following a priori information concerning the distribution
Pτ(dω|y). All solutions, presented in this section, are based on the inequalities accumulated
in [30].

(A) The available information represents the dependencyM(y) of the average runtime
on the task parameters, i.e., the conditional expectation

M(y) = E{τ(ω)|Y(ω) = y}.

(B) The available information includes the dependency of the meanM(y) and variance
D(y) of τ(ω) given the task parameters:

M(y) = E{τ(ω)|Y(ω) = y}, D(y) = E
{
(τ(ω)−M(y))2|Y(ω) = y

}
.

(C) BothM(y) and D(y) are given; for all y the distribution of τ is unimodal on [0,+∞).
(D) BothM(y) and D(y) are given; for all y the distribution of τ is concave on [0,+∞).

We present the solution for Problems 1 and 2 under conditions A–D in a unified
manner. First, we solve Problem 1 given the condition Y(ω) = y and apply the formula of
the total probability. Second, we solve Problem 2 using the solution to Problem 1.

Mathematics 2023, 11, 4379 5 of 26

Condition A is typical for the traditional average-case complexity approach. Using
the formula of the total probability, we calculate the mean runtime corresponding to the
task parameter distribution PY(dy)

M , E{τ(ω)} =
∫
[0,+∞)

E{τ(ω)|Y(ω) = y}PY(dy) =
∫
[0,+∞)

M(y)PY(dy). (1)

The solution to Problem 1 represents the usage of the Markov inequality

P
{

τ(ω) > T
}
6

M
T

. (2)

Note, that in the case T 6 M inequality (2) becomes useless:

P
{

τ(ω) > T
}
6 1,

so further we consider only the case T > M.
From inequality (2) it follows, that

P = P
{

τ(ω) > T
}
6

M
T

,

and the solution to Problem 2 is
T =

M
P

. (3)

To solve the problems under conditions B–D, we have to calculate the unconditional
variance of τ(ω)

D = E
{
(τ(ω)−M)2

}
= E

{
E
{
((τ(ω)−M(Y)) + (M(Y)−M))2|Y

}}
= E

{
E
{
(τ(ω)−M(Y))2|Y

}}
+ E

{
E
{
(M(Y)−M)2|Y

}}
+ 2E

{
E
{(

τ(ω)−M(Y)
)
(M(Y)−M)|Y

}}
=
∫
D(y)PY(dy) +

∫
(M(y)−M)2PY(dy)

=
∫
D(y)PY(dy) +

∫
M2(y)PY(dy)−M2. (4)

If Condition B is valid, the solution to Problem 1 can be obtained from one-sided
Cantelli’s inequality

P
{

τ(ω) > T
}
6

D
D + (T −M)2

, (5)

and the solution to Problem 2 follows from the inequality P 6 D
D+(T−M)2 :

T = M +

√
D
(

1
P
− 1
)

. (6)

In some cases, the additional information concerning the distribution of τ(ω) can
significantly improve the performance of the solutions to Problem 1 and Problem 2.
If Condition C is valid, the solution to Problem 1 can be obtained from a corollary of
Cantelli’s inequality

P
{

τ(ω) > T
}
6

3D−(T−M)2

3(D+(T−M)2)
, if M 6 T 6 M +

√
5
3 D,

4
9

D
D+(T−M)2 , if M +

√
5
3 D < T,

(7)

Mathematics 2023, 11, 4379 6 of 26

and the solution to Problem 2 is expressed by the formula

T =

M +

√
3D(1−P)

3P+1
, if M 6 T 6 M +

√
5
3 D,

M +

√
D
(

4
9P
− 1
)

, if M +
√

5
3 D < T.

(8)

If, in turn, Condition D is valid, the solution to Problem 1 can be obtained from the
one-sided Gauß inequality

P
{

τ(ω) > T
}
6

 1− T√
3(M2+D)

, if 0 6 T 6 2√
3

√
M2 + D,

4(M2+D)

9T2 , if 2√
3

√
M2 + D < T,

(9)

and the solution to Problem 2 is expressed by the formula

T =

 (1− P)
√

3(M2 + D), if 0 6 T 6 2√
3

√
M2 + D,

2
3

√
M2+D

P
, if 2√

3

√
M2 + D < T.

(10)

To illustrate both the advantages and limitations of a priori information B–D in com-
parison with traditional average case A, we consider two numerical problems.

Problem 3. Let the mean and variance of τ(ω) be known: M = 1, D = 0.01. It is necessary to
solve Problem 1 for the threshold value T = 1.5 and Problem 2 for the confidence level P = 0.01.
One should compare the solutions calculated given a priori information A–D with the case of the
test Erlang distribution, which has the parameters λ = 100 and n = 100.

Problem 4. Under the conditions of Problem 3, the variance value D = 0.0625. The task again is
to solve Problems 1 and 2 and compare the results obtained for a priori information A–D with the
case of the test Erlang distribution, which has the parameters λ = 16 and n = 16.

Note that the mathematical expectation equal to one is convenient to use as a unit
for measurements.

Table 1 contains the numerical results of Problems 3 and 4.

Table 1. Solution data for Problems 3 and 4.

Problem 3: D = 0.01 Cond. A Cond. B Cond. C Cond. D Erl (100,100)

P 0.667 0.038 0.017 0.200 3× 10−7

T 100 1.995 1.659 6.700 1.233

Problem 4: D = 0.0625 Cond. A Cond. B Cond. C Cond. D Erl (16,16)

P 0.667 0.200 0.089 0.210 0.023

T 100 3.487 2.648 6.872 1.582

By analyzing them, we can make the following conclusions. First, the solutions to
Problems 3 and 4 have inappropriate levels of precision in the case of a priori information
A. The point is that Markov inequality, used in this case, involves the average value M
of the running time τ(ω) only and provides results which are too conservative. Actually,
the estimate from the SLA violation probability P

{
τ(ω) > T

}
above, calculated in case

A, is equal to 0.667, though it can be reduced to 0.038 in case B, and even to 0.017 in
case C. In turn, for the test Erlang distribution, this value vanishes. At the same time,
the threshold T calculated via the Markov inequality is 100 times greater than the average

Mathematics 2023, 11, 4379 7 of 26

time M. If the provider includes this oversized time-out in the SLA, this choice could repel
potential clients.

Second, the precision of the solution to Problems 3 and 4 in case D occupies the
intermediate position between the ones obtained in cases A and B. The most precise
estimates can be obtained under a priori information C, and calculated by Cantelli’s
inequality. It is not surprising that the estimates use the most advanced information
including mean and variance knowledge, and the fact of the distribution unimodality.
In summary, cases B and C of a priori information are preferable for the solution to
Problems 3 and 4.

Third, the difference between Problem 3 and 4 is the ratio
√

D
M :

√
D

M = 0.1 for Problem

3 and
√

D
M :

√
D

M = 0.25 for Problem 4. Comparing the results, one can conclude that the

precision of the solution decreases when
√

D
M increases. If the value of the ratio is significant,

the estimate P of the SLA violation could be too pessimistic, meanwhile the calculated
value T of the SLA threshold could look unsavory for potential clients.

In spite of the apparent simplicity of Problems 3 and 4, their solution has significant
practical value. They establish the formal theoretical basis for the efficient allocation of the
hardware resources to the computing nodes to meet user requirements. At the same time,
the solution is a hint for the correct choice of the maximally admissible task running time
during the preparation of SLA materials: the promised maximal time should meet the real
potential of the computing node.

Obviously, both the mean and variance of the task running time are affected by many
factors, and the next section introduces a mathematical model to describe this dependency.

3. Proposed Model: Stochastic Time Complexity Surfaces

According to the chosen probabilistic paradigm, we treat the runtime of a fixed type
user task as a random value τ(ω) with a finite mathematical expectationM , E{τ(ω)}
and variance D , E

{
(τ(ω)−M)2}. Both these moment characteristics are unknown

functions of the arguments (X, Y) and parameters Z:

M =Mz(x, y), D = Dz(x, y).

The vector x = (x1, . . . , xN)
′ presents the available resources of the node, e.g.,

– x1 is a number of processor cores,
– x2 is an available RAM amount,
– x3 is an available storage amount,
– x4 is a storage amount reserved for swapping,
– x5 is a cache volume.

The vector y = (y1, . . . , yM)′ characterizes individual user tasks, used for processing
on the computing node. Both the dimensionality M and the meaning of each component
ym vary for different types of user tasks. For example, if the node is configured for scientific
calculations, say, for the numerical solution to partial differential equations, the vector y
could have the following structure:

– M = 2,
– y1 is an amount of the time layers of the solution,
– y2 is an amount of the mesh nodes in one time layer.

Another example: if the node is created as a database server, and the user task assumes
the data input/output and execution of a query, then

– M = 3,
– y1 is a volume of the input data,
– y2 is a volume of the output data,
– y3 is an amount of the queries in the task.

Mathematics 2023, 11, 4379 8 of 26

The vector z = (z1, . . . , zK)
′ accumulates the parameters of the current node state. For

example, for the node-database server, these parameters represent

– z1 is a maximal available RAM volume,
– z2 is a current volume of the database,
– z3 is a volume of the service data currently stored in the database: transaction log, etc.,
– z4 is an average RAM volume, assigned for the system software,
– z5 is an average RAM volume, assigned for the task execution.

Usually, researchers consider the task running time as a function of the single argument,
which is the length of the input under processing and does not consider the node hardware
configuration. Choosing the probabilistic approach, we suggest two moments, the mean
and the variance, to characterize the random nature of the runtime. Moreover, these
moments are the functions of the vector arguments x and y, and this makes them similar to
some surfaces in a multidimensional space. That is why below we refer to this model as the
stochastic time complexity surfaces.

The sense of the vectors x, y, and z is quite different. The vector x represents “a control’’
available for the provider. The vector y is “a control” available for the user. Both of x
and y vary independently during the stress testing or routine operation. By contrast,
the components of z can be determined neither by the user nor the provider but can be
observed directly or indirectly via the service queries or the log analysis.

The set A of admissible values (x, y) is bounded and, moreover, finite: the components
xn, n = 1, N and ym, m = 1, M can be chosen only from some finite sets. Without the loss
of generality, we suppose that the admissible set lies in a parallelepiped U = [x, x]× [y, y],
and on U the functionsMz(x, y) and Dz(x, y) have the following properties.

(i) Positivity:

Mz(x, y) > 0, Dz(x, y) > 0

for any (x, y, z). These inequalities are obvious: both the mean and variance of an
arbitrary nonnegative nonsingular random value are positive.

(ii) Local non-increase ofMz(·) in x: for any fixed z there exists a subset U ′ ⊆ U , such
that for any (x′, y∗), (x′′, y∗) ∈ U ′ : x′ 6 x′′ component-wise, and the inequality
Mz(x′, y∗) >Mz(x′′, y∗) is true.
The inequality implies the existence of a subset U ′, where the increase in the node
resources leads to the decrease in the mean task running time. It guarantees that a
resource extension makes sense.

(iii) Non-decrease ofMz(·) in y: fixing any z the components of y can be determined in such
a way that for all (x∗, y′), (x∗, y′′) ∈ U : y′ 6 y′′ component-wise, and the inequality
Mz(x∗, y′) 6Mz(x∗, y′′) is true.
The property implies that y can be organized, so that all its components play the role
of the task volume, and its increase leads to the one of the mean task runtime.

(iv) Continuity in y: for any fixed x and z the functionsMz(x, y) and Dz(x, y) are contin-
uous in y. The property means that small perturbations of the user task parameters
generate small variations in the moment characteristics of the task runtime.

The local character of theMz(·) non-increase in x (Property ii) has a very transparent
explanation. First, this feature is known for the queueing systems (see an example of a
congested network [13]). Second, the synchronous growth of the node resources and non-
decrease, even an increase in the running time, can be partially explained by the distinction
of the usage intensity of the different resources. We consider the whole functioning of
the application as a collection of conveyors, which have different rates and share the
common node resources. Among the conveyors, there is one with the lowest rate, called a
bottleneck. When some resource consumption exceeds a threshold, the bottleneck stops the
regular service of the increased input data flow, which leads to their queuing or even losses
with the necessity of reprocessing. Moreover, the part of resources can be taken by more

Mathematics 2023, 11, 4379 9 of 26

productive conveyors from the bottleneck, which reduces the processing rate of the latter
one even more.

To illustrate Property iii, we consider a user task representing the numerical solution
to a partial differential equation. Roughly speaking, the mean of the task running time is
an increasing function of the total amount of the mesh covering the solution area. We can
form the set of the task parameters in the following way:

– y1 is a step of the space variable,
– y2 is a step of the time,
– y3 is a lower boundary of the space area,
– y4 is an upper boundary of the space area,
– y5 is an upper limit of the time.

The proposed parameter collection, just y1 and y2, violates Property iii. However,
previously mentioned in the paper, we present a correct set of the parameters in this task,
which preserves Property iii.

To describe both the meanMz(·) and variance Dz(·) we choose a unified function of
the following form

g(x, y, ρ) = a + b

{
N

∏
n=1

x−cn
n (1 + dnxen

n)

}[
M

∏
m=1

y fm
m

]
, (11)

where

ρ , vec
(

a, b, {cn}n=1,N , {dn}n=1,N , {en}n=1,N , { fm}m=1,M

)
is a (3N + M + 2) -dimensional vector of nonnegative model parameters, which should
be identified. There is an additional constraint, connecting the parameters {cn}n=1,N and
{en}n=1,N :

cn 6 en, n = 1, N. (12)

First, we argue the chosen class of functions (11) describes the mean task runtime. In gen-
eral, the time could be determined as a ratio of the operation number V and the productivity
rate R: T = V/R. In some cases (see, e.g., the neural network learning process [32]), the
operation number is a simple product of the y components, i.e., V = ∏m

m=1 ym. The square
bracket ∏M

m=1 y fm
m in (11) generalizes the coordinate-wise product and corresponds to the

fact that most of the contemporary algorithms realized in computers have a power-like
complexity [27].

Further, the product in the figure brackets of (11) can be rewritten in the form

∏N
n=1

(
dnx−(en−cn)

n + x−cn
n

)
, where en − cn > 0. Note, that the product ∏N

n=1 xcn
n is the

well-known Kobb-Douglas productivity function used here as a productivity rate. Hence,
the formula

T =

{
N

∏
n=1

x−cn
n

}[
M

∏
m=1

y fm
m

]
(13)

corresponds to the ratio T = V/R completely, and also represents a specific case of (11)
with the following parameter values: a = 0, b = 1, dn ≡ 0.

Each multiplier in the figure brackets of (11) can be rewritten in the form (x−cn
n + dnxen−cn

n).
Note that due to (12), the power of the second summand is nonnegative. This fact guaran-
tees Property ii: each multiplier in the figure brackets decreases locally for a while and then
starts to increase with asymptotic dnxen−cn

n .
As for the choice of (11) to describe the variance, the proposed formula contradicts

neither Property i nor iv. Moreover,

T2 =

{
N

∏
n=1

x−2cn
n

}[
M

∏
m=1

y2 fm
m

]

Mathematics 2023, 11, 4379 10 of 26

and belongs to the class of (11) with different parameters.
Model (11) can be extended up to the piecewise case. To do this, we suppose the

existence of the partition family {Uj(z)}j=1,J of the set U , parametrized by the parameter
vector z. The class of admissible functions describing bothM and D takes the form

hz(x, y, ρ) =
J

∑
j=1

IUj(z)(x, y)

(
aj + bj

N

∏
n=1

x
−cnj
n

(
1 + dnjx

enj
n

) M

∏
m=1

y
fmj
m

)
, (14)

where IUj(z)(x, y) is the indicator function of the set Uj(z). The J(3N + M + 2)-dimensional
vector of the nonnegative model parameters

ρ , vec

(
{aj}j=1,J , {bj}j=1,J , {cnj} n=1,N,

j=1,J
, {dnj} n=1,N,

j=1,J
, {enj} n=1,N,

j=1,J
, { fmj}m=1,M,

j=1,J

)

with additional constraints

cnj 6 enj, n = 1, N, j = 1, J (15)

should be identified. Note, that the partition {Uj(z)}j=1,J of the set U forms additional
constraints of the vector ρ: it should satisfy Property iv.

We illustrate the sense of the parameters z and their role in the formation of the
partition family {Uj(z)}j=1,J in the next section.

4. Parameter Identification of Stochastic Time Complexity Surfaces

In spite of the similarity of models (11) and (14), processes of their parameter identifi-
cation have significant distinctions: the structure of the statistical data collected during the
stress testing differs for these cases, and the parameter identification procedures themselves
are different for the models.

First, we formulate the parameter identification problem for the model (11). Let
{(xr, yr)}r=1,R be a fixed collection of the variables (x, y), chosen for the stress testing. Its

result is processed into the set {M̃r, D̃r}r=1,R of the sample moments (i.e., means and
variances) for the runtime corresponding to the task with the parameters yr fulfilled on
the node with the resources xr. Let also the set {wr}r=1,R of positive observation weights,

expressing the individual significance of the tuple (xr, yr,M̃r, D̃r) be given. The value

∆Mr (ρ) , M̃r − g(xr, yr, ρ)

is the residual of the observed mean M̃r corresponding to the pair “resource parameters–task
parameters” (xr, yr), described by the model (11) with the parameters ρ. Similarly, the value

∆Dr (ρ) , D̃r − g(xr, yr, ρ)

is the residual of the observed variance D̃r corresponding to the pair (xr, yr), described
by (11) with the parameters ρ.

To compare the model performance subject to the parameters ρ we use a loss function
π(u) : R→ R, which has the following properties:

– π(0) = 0,
– π(u) > 0 for all u ∈ R,
– π(u) is non-increasing in u < 0, and non-decreasing in u > 0.

The parameter identification for both the mean and variance using the model (11) is a
particular case of the M-estimation one [33].

Mathematics 2023, 11, 4379 11 of 26

The identification problem for the mean, described by the model (11) is to find

ρ∗ ∈ Argmin
ρ∈R3N+M+2:

i)−iv)

R

∑
r=1

wrπ(∆Mr (ρ)). (16)

The identification problem for the variance, described by the model (11) looks similar and is
to find

ρ∗ ∈ Argmin
ρ∈R3N+M+2:

i), iv)

R

∑
r=1

wrπ(∆Dr (ρ)). (17)

The stress testing and subsequent data processing for the model (11) assume the
following steps.

1. For each pair (xr, yr) one executes T independent tasks (here, T is a sample size),
and registers the runtimes {sr

t}t=1,T .

2. The set {M̃r, D̃r}r=1,R is calculated by the well-known formulae

M̃r =
1
N

T

∑
t=1

sr
t , D̃r =

1
N − 1

T

∑
t=1

(
sr

t − M̃r
)2

.

Further, we formulate the parameter identification problem for the model (14). Let
{(xr, yr)}r=1,R be a fixed collection of the variables (x, y), chosen for the stress testing. Its

result is processed into the set {M̃r, D̃r}r=1,R of the sample moments, and the vector z̃,
estimating the node state parameters. Let also the set {wr}r=1,R of positive observation
weights be given. The value

δMr (ρ) , M̃r − hz̃(xr, yr, ρ)

is the residual of the observed mean M̃r corresponding to the triplet (xr, yr, z̃), described
by the model (14) with the parameters ρ. Similarly, the value

δDr (ρ) , D̃r − hz̃(xr, yr, ρ)

is the residual of the observed variance D̃r corresponding to the triplet (xr, yr, z̃), described
by the model (14) with the parameters ρ.

The identification problem for the mean, described by the model (14) is to find

ρ∗ ∈ Argmin
ρ∈RJ(3N+M+2) :

i)−v)

R

∑
r=1

wrπ(δMr (ρ)). (18)

The identification problem for the variance, described by the model (14), looks similar and is
to find

ρ∗ ∈ Argmin
ρ∈RJ(3N+M+2) :

i), iv)

R

∑
r=1

wrπ(δDr (ρ)). (19)

The stress testing and subsequent data processing for model (14) assume the follow-
ing steps.

Mathematics 2023, 11, 4379 12 of 26

1. For each pair (xr, yr) one executes T independent tasks (here, T is a sample size)
and registers the execution times {sr

t}t=1,T . In the process of each task execution,
one also registers the auxiliary data {ζr

t} t=1,T
r=1,R

which helps to recover the node state

parameters z.
2. One calculates the sample moments {M̃r, D̃r}r=1,R.
3. Using the collected data {sr

t} t=1,T
r=1,R

one obtains the exact value of the node state param-

eters, or some estimate z̃.

Let us remind the reader that the parameters z are responsible for the partition
{Uj(z)}j=1,J of the whole set U .

The structure of the data {ζr
t} t=1,T

r=1,R
and the procedure of the collection are individual

for each specific user task.
Usually, it is sufficient to periodically register the following parameters:

– percentage of the central processing unit (CPU) usage,
– the volume of RAM used,
– the volume of data read,
– the volume of data written,
– the total of swap memory used,
– the volume of swap read,
– the volume of swap written, etc.

In some cases, necessary information can be obtained by various diagnostic tools
provided by the OS, for example, System Monitor in Microsoft Windows.

To illustrate the procedure of the vector z restoration or estimation and its utilization
for the definition of the partition family {Uj(z)}j=1,J , we propose two simple examples.

The first example is devoted to the rendering of a 3D scene. There is only one resource
parameter x1: it defines an amount of the node RAM. Each user task is also defined by the
single parameter y1, which is the size of the file under processing. The current node state is
defined by the scalar z1, a RAM volume available for application usage. The application
attempts to load the whole 3D-scene file into the RAM and perform its visualization. If it
is conducted, the processing procedure is quick, otherwise, the processing time increases
significantly because of the swapping mechanism. In this simple situation, the initial set
U is partitioned into two subsets:

U1(z1) = {(x1, y1) ∈ U : z1 − y1 > 0}

which corresponds to the case of the swapping absence, and

U2(z1) = {(x1, y1) ∈ U : z1 − y1 < 0}

which corresponds to the swapping. The value z1 can be obtained precisely by diag-
nostic applications like Windows Task Manager (in the performance tab) or the function
virtual_memory() in the PSUTIL Python cross-platform library.

We emphasize that this is just a simple clarifying example: indeed, the RAM volume
available for the application purposes is not constant and depends on the total RAM size.
In addition, there are various factors that can reduce the available RAM size, such as the
startup of OS housekeeping processes, the growth in the size of non-paged areas as the
total amount of RAM, or the number of processor cores used increases.

The second example presents some information processing in a database. The local
distinctions of the task runtime lead to piece-wise model (14), which are also caused by the
swapping mechanism.

Each user task is defined by the single parameter y1, which is the number of database
records under processing. Again, the parameter z1 represents the RAM volume available for
the application usage. The dependency of the used RAM volume ζ1 on the task parameter
y1 is an affine one

Mathematics 2023, 11, 4379 13 of 26

ζ1(y1) = z2 + z3y1.

Here, z2 is a parameter defining a constant RAM expense during the task execution,
and z3 is the RAM unit expense per one processed record. One can collect the statistics
ζ1, using the function virtual_memory(), and calculate the estimates z̃2 and z̃3 as the param-
eters of the linear regression. Finally, in the example, the initial set U is partitioned into
two subsets:

U1(z1, z2, z3) = {(x1, y1) ∈ U : z1 − z2 − z3y1 > 0}

in the case of no swapping, and

U2(z1, z2, z3) = {(x1, y1) ∈ U : z1 − z2 − z3y1 < 0}

otherwise.
Again, we consider here a simplified situation. Indeed, the RAM volume available for

application purposes is not constant and depends on the whole RAM size and the number
of processing cores. The parameter z2 may also depend on the node resources.

The section below illustrates the usage of the proposed time complexity surfaces.

5. Numerical Study of Time Complexity Surfaces for Personal Data
Anonymization System
5.1. Synopsis of Anonymization System Prototype

To illustrate the applicability of the proposed stochastic time complexity surfaces
describing task running time, we choose an application that is a prototype of the passengers’
personal data anonymization system [31]. The virtual computing node is deployed on
the host computer with the following characteristics: Intel(R) Xeon(R) CPU E5-2683 v4
@ 2.1 GHz, 64 Gb RAM, 256 Gb SSD, Windows Server 2016 Standard operating system,
Microsoft Hyper-V hypervisor. The guest software of the node consists of

– the system software: Windows Server 2012 R2 Standard operating system, Microsoft(R)
SQL Server(R) 2012 relational database management system,

– the application software, including a database with approximately 26 million records
and program components, realizing the graphic interface and anonymization tem-
plates created in the Microsoft Visual Studio 2017 development environment.

The vector of the node resources x = (x1, x2) includes the following components:

– x1, which is the number of processing cores (up to 16),
– x2, which is a RAM volume (up to 16 Gb).

The tested anonymization software provides the fulfillment of the functions below:

1. the choice of the personal data bulk by the filter system for the subsequent processing,
2. anonymization of the chosen data by the various templates: exclusion, grouping,

random permutation, noise adding, and the artificial data synthesis,
3. calculation of the anonymity level for the chosen combination of the fields,
4. calculation of the sample correlation of the chosen fields,
5. utility level calculation for the chosen combination of the fields,
6. histogram drawing for the chosen numerical field.

In spite of the possible variety of user tasks, which could be solved by the application
software, we investigate two types of tasks:

1. combination of functions 1 and 2, i.e., choosing the personal data bulk with subse-
quent anonymization of all “sensetive” fields in the records; the task is completely
characterized by the scalar y1, which is the number of personal data records;

2. combination of the functions 1 and 4, i.e., choosing the personal data bulk and the
pair of numerical fields among them with subsequent calculation of some statistics;
the task is completely characterized by the scalar y1, which is the sample size.

Mathematics 2023, 11, 4379 14 of 26

First, a user applies function 1 in most cases. Indeed, he/she processes only some subset
of the personal data extracted by the filters. Second, from the algorithmic point of view, one
can separate functions 2–6 into two subsets. The first one contains functions 2 and 5, realized
by some sequential “linear” algorithms. The second subset includes functions 3, 4, and 6,
realized by the standard optimized database procedures. For a demonstration of the high
performance of the stochastic time complexity surfaces approach in practice, we choose
one function from each subset.

To automate the data selection for the subsequent processing in the stress testing, we
choose a range of personal data by its offset and length for subsequent processing (all
records are numbered in ascending order starting from 1).

5.2. Time Complexity Surfaces for Anonymization Procedure

The anonymization procedure represents the selection of the initial personal data from
the database and its further transformation by the anonymization templates by saving the
results in the database. All records are processed in the RAM, which results in considerable
strain on the RAM volume. The templates are applied sequentially. That is why the
additional CPU cores do not give a time advantage.

The initial data contains

– the primary key integer field “Serial number”,
– the integer field “Age”,
– the date/time fields “Start Date” and “Finish Date”,
– the real fields “Result 1”–“Result 3”,
– categorical fields “Category 1”–“Category 4”, “Airport” and “Company”.

There is an allotment of the anonymization templates applied to the fields above:

– the exclusion template— to the field “Serial number”,
– the grouping template—to the field “Age”,
– the noise adding template—to the combination of the fields “Start Date”, “Finish

Date”, “Result 1”–“Result 3”, “Category 1”–“Category 4”,
– the synthesis template—to the combination of the fields “Airport” and “Company”.

We fulfill the stress testing to collect the statistical data for the parameter identification.
The experiment plan is defined by the set of triplets {(xr

1, xr
2, yr

1)}. Here, the first parameter
x1—the number of the processor cores—varies from 1 to 16 by doubling. The second
parameter x2—the RAM volume—varies from 2 to 16 Gb with steps of 2 Gb. The third
parameter y1—the number of the processed records—varies in the following way: 10,000,
50,000, and further with steps of 50,000 up to 500,000. To calculate the sample mean and
variance, we repeat each experiment 20 times.

Before the long process of stress testing, we perform auxiliary statistical study to com-
pare the influence of the soft/hardware functioning fluctuations with one of the datasets
chosen for the processing. We configure a virtual node with 8 Gb RAM and two processor
cores to anonymize 50,000 personal data records. We produce 1000 experiments with these
tasks. They differ from each other only by the chosen processed data:

– Each of 1000 tasks processes the same set of the 50,000 sequential personal database
records with fixed offset #1,

– Each of 1000 tasks processes the same set of the 50,000 sequential personal database
records with fixed offset #2,

– Each of 1000 tasks processes 50,000 sequential personal database records with a
random uniformly distributed offset.

Figure 1 contains Parzen estimates of the runtime probability density function (pdf),
corresponding to the experiments outlined above.

Mathematics 2023, 11, 4379 15 of 26

Figure 1. Anonymization procedure: Parzen estimates of time pdf for various processed data.

One can see that the range of the sample corresponding to the fixed offsets # 1 and 2
constitute just 6–8% of the sample range with the uniformly distributed offset. So, the major
source of the statistical uncertainty in the task execution time is formed by the processed
data choice. Note that in the case of the uniformly distributed offset the pdf estimate has a
fat right tail.

During the stress testing, we register some auxiliary statistical data (see Section 4)
containing indirect information concerning the stable operation of each specific node
configuration. In particular, we log the data volume read/written in the swap memory
during the user task execution. This data is drawn in Figure 2.

Figure 2. Anonymization procedure: volumes of swap read and written.

From the figure, one can conclude that the configurations with 2 Gb RAM are prone to
intensive swap read/write operations. Evidently, swapping as a routine part of the user
task processing can not be considered as an effective technique, realizing the anonymization
procedure. Hence, we exclude all “poor” node configurations with 2 Gb RAM from the
area of the model parameter identification.

Mathematics 2023, 11, 4379 16 of 26

Figures 3 and 4 contain the available sample mean and variance, drawn by color
bullets for one, two, four and eight processor cores. Here and below in the paper, the case
of 16 cores is omitted in the figures because it looks similar to the case of eight cores.

Figure 3. Anonymization procedure: stress testing results and mean model surface.

Figure 4. Anonymization procedure: stress testing results and variance model surface.

Note that the excluded configurations with 2 Gb RAM demonstrate an inappropriately
high mean execution time. The data chosen for the model identification look smooth,
and we use the simple model g(·) (11) to describe both the mean and variance.

To provide robustness for the estimates of the model parameters, we choose the error
absolute value as the loss function π(u) = |u|. The obtained stochastic time complexity
surfaces for the mean and variance and the corresponding coefficients of determination
have the form:

M(x1, x2, y1) = 5.700 + 6.880× 10−5 × x−0.043
1 x−0.014

2 y1.174
1 , R2

M = 0.995,

and

Mathematics 2023, 11, 4379 17 of 26

D(x1, x2, y1) = 3.470× 10−8 × x0.001
1 x−0.062

2 y1.625
1 , R2

D = 0.827.

For the visual comparative analysis, Figures 3 and 4 also contain the proposed models.
One can draw the following conclusions. First, the visual similarity of the available obser-
vations and the calculated surfaces confirms the high performance of the proposed model
for this type of user task. The high determination coefficient also approves this deduction.

Second, the choice of smooth simple model g (11) is reasonable: in this case, it is
sufficient for the estimation with the appropriate quality.

Third, the proposed sketch of the anonymization algorithm as a one-thread consecutive
process seems true. As the available RAM volume is enough to allocate all processed data,
the further RAM extension and the rise in the number of cores does not affect the moment
characteristics of the task runtime. The small powers of the variables x1 and x2 represent
numerical confirmation of this fact.

Fourth, the proposed model (11) is redundant in this case: some of the parameters
equal zero: d1 = d2 = 0 for the mean time, and a = d1 = d2 = 0 for the variance surface.
This is one more confirmation that after the RAM volume is enough to allocate all the
processed records, the further RAM extension does not move the mean and variance to
smaller or greater values.

5.3. Time Complexity Surfaces for Statistical Queries

The statistical query under testing represents the selection of the initial personal data
records from the database with subsequent calculation of the sample covariance of the
chosen fields. That is mainly standard procedure, fulfilled by the optimized database
routines. One can expect high parallelism, so enlargement of the processor core number
could give an advantage in the task running time. Minimal time is attained when all
processed data is located in the file cache of the OS, so the RAM volume plays a key
role again.

In the investigated case, we calculate the sample covariance between the fields “Start
Date” and “Finish Date” of the initial personal data. The field values belong to the “Date-
Time” type, so before the processing, they are converted into real numbers.

Again, before the stress testing, we fulfill auxiliary statistical research to compare the
influence of the soft/hardware functioning fluctuations with one of the data chosen for the
processing. We use a virtual node with 8 Gb RAM and two processor cores to calculate the
covariance by the sample of size 12,500,000. We produce 1000 experiments with these tasks.
We choose the processed data by analogy with Section 5.2. Figure 5 contains Parzen esti-
mates of the task execution time pdf, corresponding to the abovementioned experiments.

By contrast with the anonymization procedure, the range of the sample corresponding
to the fixed offsets # 1 and 2 constitute just 14–24% of the sample range with the uniformly
distributed offset. All the pdf estimates demonstrate the polymodal character, and have no
fat tails.

To collect the statistical data for the parameter identification we perform stress testing.
The experiments are defined by the triplets {(xr

1, xr
2, yr

1)}. Here, x1 is a number of processor
cores, and x2 is the RAM volume. The set of virtual node configurations for the statistical
query stress testing coincides with the one for the anonymization procedure. The third
parameter—y1—represents the sample size and varies from 2,000,000 to 20,000,000 with
steps of 2,000,000. To calculate the sample mean and variance, we repeat each experiment
50 times.

During the stress testing, we register the auxiliary statistical data, in particular, the vol-
ume of the used swap memory during the user task execution. The collected observations
are presented in Figure 6.

Mathematics 2023, 11, 4379 18 of 26

Figure 5. Statistical queries: Parzen estimates of time pdf for various processed data.

Figure 6. Statistical queries: volumes of swap used.

We can see that the configurations with 2 Gb RAM are accompanied by the swap usage.
By contrast with the anonymization procedure, these are not the read/write processes but
the static occupation of some part in the swap file. Quite possibly, this is the data that the
OS does not need to run the testing software. We consider this technique as a compulsory
measure and assume that similar configurations should be avoided. Hence, we exclude all
“poor” node configurations with 2 Gb RAM from the model parameter identification.

Figures 7 and 8 contain the available sample mean and variance along with the calcu-
lated complexity surfaces. The observations, corresponding to the excluded configurations
with 2Gb RAM, demonstrate an inappropriately high mean runtime.

Mathematics 2023, 11, 4379 19 of 26

Figure 7. Statistical queries: stress testing results and mean model surface.

Figure 8. Statistical queries: stress testing results and variance model surface.

Again, we choose the error absolute value as the loss function π(u) = |u|, and the
simple model g(·) (11). The obtained stochastic time complexity surfaces and the corre-
sponding coefficients of determination have the form:

M(x1, x2, y1) = 4.4346 + 2.767× 10−4 × x−0.941
1 x−0.272

2 (1 + 0.061x0.89
2)y0.697

1 , R2
M = 0.991, (20)

and

D(x1, x2, y1) = 1.100× 10−7 + 1.786× x−0.163
1 x−2.0

2 y0.023
1 , R2

D = −0.158. (21)

One can draw the following conclusions. First, the comparison of the available
observations and constructed stochastic time complexity surface demonstrates the quality
of the proposed model for the mean time. The high determination coefficient also confirms
this deduction. Visually, model (11) describes the variance moderately. The negative
determination coefficient does not contradict logic: the estimate of the least absolute values
can have an error with the L2-norm greater than the sample mean. Briefly, the sample

Mathematics 2023, 11, 4379 20 of 26

variance observations oscillate actively, and the oscillation intensity is maximal for two
processor cores.

Second, the assumption concerning the optimization of the standard statistical calcula-
tions by Microsoft SQL Server and their high parallelization seems true: in the mean time
model, the power of the variable x1 equals −0.941, i.e., the mean value is almost in inverse
proportion with the number of processor cores.

Third, after some volume, the further RAM extension does not lead to the mean task
running time and, moreover, it demonstrates weak growth.

5.4. Inferences and Recommendations after Stress Testing of Anonymization System

The stress testing with the subsequent design of the stochastic time complexity surfaces
is not a final goal in itself. The obtained model is an informational support for the planning
of the virtual computing nodes and a tool for solutions to Problems 1 and 2, which are
real for the provider. As an illustrative example, we demonstrate the model possibilities in
application to the tested personal data anonymization system.

First, the provider should avoid the node configurations with a RAM volume of
less than or equal to 2 Gb to provide a relatively stable node operating environment
while it processes a user task. Second, to solve Problems 1 and 2, the provider has to
use Formulas (5) and (6): the time distributions of both task types are neither unimodal
nor concave. Third, the proposed conservative estimates are reasonable in practice for a
small ratio

√
D

M , not more than, say, 0.2. This small ratio guarantees for Problem 2 that
the conservative threshold T is comparable with the mean time and does not exceed it by
orders of magnitude.

Figure 9 demonstrates the surfaces of this ratio, calculated for the anonymization
procedure. One can see that it does not exceed 0.18.

Figure 9. Anonymization procedure:
√

D
M -ratio.

Figure 10 contains the solution to Problem 2 for the data anonymization procedure
of 500,000 records: dependency of the threshold value T on the cores number (1, 2, 4,
8, 16) given the fixed RAM volume 4, 8 and 16 Gb. The confidence level is 0.01. We
include in the figure the model values of the mean task execution timeM, provided by the
identified model.

Mathematics 2023, 11, 4379 21 of 26

Figure 10. Anonymization of 500,000 records: solution T to Problem 2.

Comparing the corresponding values, we can conclude that T are more thanM at
most at 70%: this gap looks significant but not excessive. Also, we can see that neither RAM
extension nor the growth of the CPU core number leads to the reduction in the threshold
T. From the provider’s point of view, if the user task represents anonymization of at most
500,000 records, then it is economically reasonable to equip the virtual computing node
with the minimal number of processor cores (say, 1–2) and minimal RAM volume (at least
4 Gb), and set SLA threshold to be equal to 550 s.

Figure 11 demonstrates the surfaces of the ratio
√

D
M , calculated for the statistical query

calculation. One can see that it does not exceed 0.12.

Figure 11. Statistical queries:
√

D
M -ratio.

Figure 12 contains the solution to Problem 2 for the statistical query calculation over
the sample of 20,000,000 records: dependency of the threshold value T on the core number
(1, 2, 4, 8, 16) given the fixed RAM volume 4, 8 and 16 Gb. Again, the confidence level is
0.01. We include in the figure the values of the mean task running timeM, provided by the
identified model. Comparing the corresponding values, we can conclude that the values of
T are more thanM at most at 10%.

Mathematics 2023, 11, 4379 22 of 26

Figure 12. Statistical query for 20,000,000 records: solution T to Problem 2.

By analogy with the case of the anonymization procedure, the RAM extension does
not affect the value T. By contrast, the growth of the processor cores number is almost
inversely proportional to T. So, if the user task represents the calculation of the statistical
characteristics given the sample of the length no more than 20,000,000, then it is econom-
ically reasonable to equip the virtual node with four processor cores and minimal RAM
volume (at least 4 Gb) and set the SLA threshold T to be equal to 15 s. The growth of the
core number from one until four facilitates the reduction of T by more than twice.

To verify the performance of the proposed model and its applicability to the solution
for Problems 1 and 2 once more, we fulfill additional experiments with the statistical queries:

– the node with two cores and 8 Gb RAM is used for the calculation of the covariance
given the sample of the size 12,500,000; we repeat this test 1000 times,

– the node with two cores and 4 Gb RAM is used for the calculation of the covariance
given the sample of the size 20,000,000, we repeat this test 500 times.

That is quite a new statistic, and we do not use it in the model identification procedure.
The processed data is chosen randomly and independently: in each experiment, the offset
is uniformly distributed. For both configurations, we solve Problem 2, i.e., calculate the
threshold T with the confidence level 0.01, using models (20) and (21). For the experiments,
we are interested in the number of outcomes, which exceed the corresponding thresholds T.

Table 2 presents the experiment results: for both configuration it contains

– the mean M̃ calculated by the tested sample,
– the variance D̃ calculated by the tested sample,
– the sample minimum T,
– the sample maximum T,
– the meanM, calculated by model (20),
– the variance D, calculated by model (21),
– the solution T to Problem 2, calculated by models (20) and (21),
– the number N of outcomes, which exceed T.

Mathematics 2023, 11, 4379 23 of 26

Table 2. Results of validation tests.

M̃ D̃ T T M D T N

Configuration 1 14.056 0.730 13.071 15.713 14.484 0.036 15.739 0

Configuration 2 18.582 0.999 17.317 25.403 19.104 0.147 21.629 2

The provided tests seem challenging. First, all configurations with two cores demon-
strate a high oscillating sample variance. Second, the sample size 12,500,000 is not used in
the stress testing, this is an “intermediate” value. Third, 20,000,000 is the maximal sample
size in the stress testing process.

As is expected, model (21) underestimates the variance, comparing with the corre-
sponding sample values. Nevertheless, the guaranteeing threshold T plays its role perfectly:
none of the 1000 observations corresponding to the first configuration exceed T. In the
second configuration, only two observations out of 500 exceed T.

6. Conclusions

The running time of a user task is very complicated to formally describe, particularly in
terms of probability theory. The polymodality of the distribution, fat tails, and dependence
on the unobservable current node state complicate the development of the mathematical
models for the solution to the collection of applied providers’ problems. From this point of
view, the proposed stochastic time complexity surfaces look rather efficient. For the solution
to Problems 1 and 2, the model is better than the well-known average-case complexity one
because the obtained guaranteeing thresholds are less conservative. Furthermore, the set
of stress testing experiments for the identification of the average-case complexity model
coincides with the one for the stochastic time complexity surfaces, but one has to register
an extended set of statistical data. The offered families of the functions, g, (11), h, (14),
look acceptable to describe these surfaces. In general, the runtime τ(ω, x, y) represents the
whole family of the random values, parameterized by the amount of the node resource
variables x and user task ones y. Hence, the mean valueM and variance D of the runtime
have to be functions of the pair (x, y), and these functions are just the time complexity
surfaces. The description of the runtime by the proposed model is equivalent to the one of
a random value by its mean and variance. The stochastic surfaces model allows us to solve
the same class of applied problems as the knowledge of two first moments of a random
value.

The current version of the suggested time complexity model and the parameter identi-
fication methodology seems quite applicable for the solution to the provider’s planning
problems. However, there are several heterogeneous limitations to the proposed approach.
The reasons for this are the theoretical and numerical complexity of the parameter iden-
tification problem and the high resource and time costs for the stress testing process. All
the issues seem transparent, and below we focus on their solutions, indicating the prospec-
tive areas of investigation that can enhance the model, the performance of its parameter
identification, and stress testing efficiency.

1. The improvement of stress test planning. Even during the stress testing of “the toy”
anonymization system, it becomes clear that the testing is a very costly process that
should be optimized. The automatic extensive growth of the plan points (xr, yr) along
with the sample size T is not the correct way to increase the identification performance.
In fact, the corresponding formal justified assertions in the experiment planning
are in demand. The assertions should characterize the estimation accuracy and
consistency and indicate the ways to reduce the test experiment volume. Furthermore,
the provider should use the available a priori information about the distribution in the
experiment planning. As is shown in the applied part of the paper, this distribution is
a crucial factor that affects the model parameters. Finally, one should develop adaptive

Mathematics 2023, 11, 4379 24 of 26

versions of the identification procedure to use novel statistical data registered during
the routine operation of the node.

2. The improvement of the raw data preprocessing and the parameter identification procedures.
It is important to understand the technical details to formally describe the intercon-
nection between the task running time and the current node state. It could help to
explain the polymodality of the time distribution: clustering of the runtime can be
caused by the parallel activities of some OS services like backup or software updates.
Further, the key tools for the solution to the identification problems (16)–(19) are
the instruments of numerical optimization. The mentioned problems are truly chal-
lenging because they belong to the set of non-smooth and non-convex constrained
optimization. To solve the illustrative problem in the paper, we use the routines from
the standard MATLAB R2019a optimization kit. Evidently, the solution to the iden-
tification problem and the online parameter adaptation ones for the real computing
nodes requires the utilization of advanced optimization techniques, including classical
algorithms [34] and contemporary metaheuristic ones [35].

3. The enhancement of the surface for the runtime variance. It is possible to extend the
class of the admissible model functions. Another way is to change the point of view
towards the variance estimation. Indeed, the provider does not need an accurate
variance model, but some conservative estimate. He/she can obtain it by replacement
of the L1 loss function by some piece-wise linear one, usually used in the quantile
regression [36].

These topics, as mentioned, represent promising avenues for future research.

Author Contributions: Conceptualization, A.B.; methodology, A.B.; software, A.I.; validation, A.B.
and A.I.; formal analysis, A.B. and A.I.; investigation, A.B.; resources, A.I.; data curation, A.I.; writing,
A.B. and A.I.; visualization, A.B.; supervision, A.B.; funding acquisition, A.B. All authors have read
and agreed to the published version of the manuscript.

Funding: The research has been supported by the Ministry of Science and Higher Education of the
Russian Federation, project No. 075-15-2020-799.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The research was carried out using the infrastructure of the Shared Research
Facilities “High Performance Computing and Big Data” (CKP “Informatics”) of the Federal Research
Center “Computer Science and Control” of the Russian Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CE Conditional Expectation
CPU Central Processing Unit
HMM Hidden Markov Model
OS Operation System
pdf Probability Density Function
QoS Quality of Service
RAM Random Access Memory
SLA Service Level Agreement

References
1. Sakellari, G.; Loukas, G. A survey of mathematical models, simulation approaches and testbeds used for research in cloud

computing. Simul. Model. Pract. Theory 2013, 39, 92–103. [CrossRef]
2. Jawed, M.S.; Sajid, M. A Comprehensive Survey on Cloud Computing: Architecture, Tools, Technologies, and Open Issues. Int. J.

Cloud Appl. Comput. 2022, 12, 1–33. [CrossRef]

http://doi.org/10.1016/j.simpat.2013.04.002
http://dx.doi.org/10.4018/IJCAC.308277

Mathematics 2023, 11, 4379 25 of 26

3. Vijayakumar, P.; Rajalingam, P.; Rajeswari, S.V.K.R. Edge Computing Optimization Using Mathematical Modeling, Deep Learning
Models, and Evolutionary Algorithms. In Simulation and Analysis of Mathematical Methods in Real–Time Engineering Applications;
Kumar, T.A., Julie, E.G., Robinson, Y.H., Jaisakthi, S.M., Eds.; Wiley: Hoboken, NJ, USA, 2021; Chapter 2, pp. 17–44.

4. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;
Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108–177. [CrossRef]

5. Han, X.; Zhao, Y.; Yu, K.; Huang, X.; Xie, K.; Wei, H. Utility-Optimized Resource Allocation in Computing-Aware Networks. In
Proceedings of the 2021 13th International Conference on Communication Software and Networks (ICCSN), Chongqing, China,
4–7 June 2021; pp. 199–205. [CrossRef]

6. Smeliansky, R. Network Powered by Computing. In Proceedings of the 2022 International Conference on Modern Network
Technologies (MoNeTec), Moscow, Russia, 27–29 October 2022; pp. 1–5. [CrossRef]

7. Tang, X.; Cao, C.; Wang, Y.; Zhang, S.; Liu, Y.; Li, M.; He, T. Computing power network: The architecture of convergence of
computing and networking towards 6G requirement. China Commun. 2021, 18, 175–185. [CrossRef]

8. Sun, Y.; Liu, J.; Huang, H.Y.; Zhang, X.; Lei, B.; Peng, J.; Wang, W. Computing Power Network: A Survey. arXiv 2022,
arXiv:2210.06080.

9. Kianpisheh, S.; Taleb, T. A Survey on In-Network Computing: Programmable Data Plane and Technology Specific Applications.
IEEE Commun. Surv. Tutorials 2023, 25, 701–761. [CrossRef]

10. Zhang, J.; Xie, N.; Zhang, X.; Li, W. Multi-choice Virtual Machine Allocation with Time Windows in Cloud Computing. In Green,
Pervasive, and Cloud Computing: 13th International Conference, GPC 2018, Hangzhou, China, 11–13 May 2018; Li, S., Ed.; Springer
International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 182–195.

11. Attaoui, W.; Sabir, E.; Elbiaze, H.; Sadik, M. Multi Objective Decision Making for Virtual Machine Placement in Cloud Computing.
In Network Games, Control and Optimization: 10th International Conference, NetGCooP 2020, Corsica, France, 22–24 September 2021;
Lasaulce, S., Mertikopoulos, P., Orda, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 154–166.

12. Fedorova, E.; Lapatin, I.; Lizyura, O.; Moiseev, A.; Nazarov, A.; Paul, S. Mathematical Modeling of Virtual Machine Life Cycle
Using Branching Renewal Process. In Proceedings of the Information Technologies and Mathematical Modelling. Queueing
Theory and Applications, Tomsk, Russia, 4–9 December 2023; Dudin, A., Nazarov, A., Moiseev, A., Eds.; Springer Nature
Switzerland: Cham, Switzerland, 2023; pp. 29–39.

13. Cohen, J.; Kelly, F. A Paradox of Congestion in a Queuing Network. J. Appl. Probab. 1990, 27, 730–734. [CrossRef]
14. Knuth, D.E. The Art of Computer Programming, Vols. 1–4; Addison-Wesley: Reading, MA, USA, 2023.
15. Arora, S.; Barak, B. Computational Complexity: A Modern Approach; Cambridge University Press: Cambridge, UK, 2006.
16. Fortnow, L.; Homer, S. A Short History of Computational Complexity. Bull. EATCS 2003, 80, 95–133.
17. Dean, W. Computational Complexity Theory. In The Stanford Encyclopedia of Philosophy, Fall 2021 ed.; Zalta, E.N., Ed.; Metaphysics

Research Lab., Stanford University: Stanford, CA, USA, 2021.
18. Sipser, M. Introduction to the Theory of Computation, 3rd ed.; Course Technology: Boston, MA, USA, 2013.
19. Borisov, A.; Gorshenin, A. Identification of Continuous-Discrete Hidden Markov Models with Multiplicative Observation Noise.

Mathematics 2022, 10, 3062. [CrossRef]
20. Reuter, A. Methods for parallel execution of complex database queries. Parallel Comput. 1999, 25, 2177–2188. [CrossRef]
21. Ordonez, C.; Bellatreche, L. A Survey on Parallel Database Systems from a Storage Perspective: Rows Versus Columns. In

Database and Expert Systems Applications: 29th International Conference, DEXA 2018, Regensburg, Germany, 3–6 September 2018;
Elloumi, M., Granitzer, M., Hameurlain, A., Seifert, C., Stein, B., Tjoa, A.M., Wagner, R., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 5–20.

22. Kaeli, D.; Yew, P. Speculative Execution in High Performance Computer Architectures; Chapman & Hall/CRC Computer and
Information Science Series; CRC Press: Boca Raton, FL, USA, 2005.

23. Liu, S.; Eisenbeis, C.; Gaudiot, J.L. Speculative Execution on GPU: An Exploratory Study. In Proceedings of the 2010 39th
International Conference on Parallel Processing, San Diego, CA, USA, 13–16 September 2010; pp. 453–461. [CrossRef]

24. Estebanez, A.; Llanos, D.R.; Gonzalez-Escribano, A. A Survey on Thread-Level Speculation Techniques. ACM Comput. Surv.
2016, 49, 1–39. [CrossRef]

25. Goldreich, O. Computational Complexity: A Conceptual Perspective, 1st ed.; Cambridge University Press: New York, NY, USA, 2008.
26. Knuth, D.E. Big Omicron and Big Omega and Big Theta. SIGACT News 1976, 8, 18–24. [CrossRef]
27. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2001.
28. Kleinberg, J.; Tardos, E. Algorithm Design; Addison Wesley: Boston, MA, USA, 2006.
29. Bogdanov, A.; Trevisan, L. Average-Case Complexity. Found. Trends Theor. Comput. Sci. 2006, 2, 1–106. [CrossRef]
30. Ion, R.A.; Klaassen, C.A.J.; van den Heuvel, E.R. Sharp inequalities of Bienaymé–Chebyshev and Gauß type for possibly

asymmetric intervals around the mean. TEST 2023, 32, 566–601. [CrossRef]
31. Borisov, A.; Bosov, A.; Ivanov, A. Application of Computer Simulation to the Anonymization of Personal Data: Synthesis-Based

Anonymization Model and Algorithm. Program. Comput. Softw. 2023, 49, 730–734. [CrossRef]
32. Shah, B.; Bhavsar, H. Time Complexity in Deep Learning Models. Procedia Comput. Sci. 2022, 215, 202–210. [CrossRef]
33. Huber, P. Robust Statistics; Wiley: New York, NY, USA, 1981.
34. Nocedal, J.; Wright, S. Numerical Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006.

http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/ICCSN52437.2021.9463597
http://dx.doi.org/10.1109/MoNeTec55448.2022.9960771
http://dx.doi.org/10.23919/JCC.2021.02.011
http://dx.doi.org/10.1109/COMST.2022.3213237
http://dx.doi.org/10.2307/3214558
http://dx.doi.org/10.3390/math10173062
http://dx.doi.org/10.1016/S0167-8191(99)00066-6
http://dx.doi.org/10.1109/ICPP.2010.53
http://dx.doi.org/10.1145/2938369
http://dx.doi.org/10.1145/1008328.1008329
http://dx.doi.org/10.1561/0400000004
http://dx.doi.org/10.1007/s11749-022-00844-9
http://dx.doi.org/10.1134/S036176882305002X
http://dx.doi.org/10.1016/j.procs.2022.12.023

Mathematics 2023, 11, 4379 26 of 26

35. Gendreau, M.; Potvin, J.Y. (Eds.). Handbook of Metaheuristics, 2nd ed.; Springer: New York, NY, USA, 2010.
36. Koenker, R. Quantile Regression; Econometric Society Monographs; Cambridge University Press: Cambridge, UK, 2005.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	An Applied Problem: Estimating the Chance of SLA Violation
	Proposed Model: Stochastic Time Complexity Surfaces
	Parameter Identification of Stochastic Time Complexity Surfaces
	Numerical Study of Time Complexity Surfaces for Personal Data Anonymization System
	Synopsis of Anonymization System Prototype
	Time Complexity Surfaces for Anonymization Procedure
	Time Complexity Surfaces for Statistical Queries
	Inferences and Recommendations after Stress Testing of Anonymization System

	Conclusions
	References

