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Abstract: In a density-dependent single-species population growth model, a simple method is
proposed to explicitly and directly derive the analytic expressions of reliable regions for local and
global asymptotic stability. Specifically, first, a reliable region ΛLAS is explicitly represented by
solving the fixed point and utilizing the asymptotic stability criterion, over which the fixed point is
locally asymptotically stable. Then, two types of auxiliary Liapunov functions are constructed, where
the variation of the Liapunov function is decomposed into the product of two functions and is always
negative at the non-equilibrium state. Finally, based on the Liapunov stability theorem, a closed-form
expression of reliable region ΛGAS is obtained, where the fixed point is globally asymptotically stable
in the sense that all the solutions tend to fixed point. Numerical results show that our analytic
expressions of reliable regions are accurate for both local and global asymptotic stability.
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1. Introduction

In the field of mathematical ecology, it is important to investigate the population
ecology, in particular population dynamics. A population is a group of organisms that
has a cohesiveness in which growth and reproduction take place. It contains a variety of
individuals in terms of age, sex, and physiological characteristics. Obviously, the population
increases or decreases by reproduction or death, and communicates with other populations
by migration and dispersion. Its dynamics are greatly influenced by not only physical
environmental factors but also other organisms such as food resources, predators, parasites,
and so on.

In the exploration of population dynamics, Malthus [1] argued that population growth
is outpacing the availability of resources. This idea has attracted a lot of interest in the
dynamics of biological populations in modern ecological discussions. Nicholson [2] investi-
gated the ecological balance within populations and the factors that measure the growth
or death of species. His efforts pointed to the importance of the complex dynamics of
single-species populations in ecology. As research progressed, May [3] provided an insight
into the behavior of ecosystems and revealed complex and chaotic behaviors in simple
ecosystem models. This work investigated the stability–complexity trade-off problem in
ecosystems, and advanced the dynamics of ecosystem models.

The population dynamics of a single species that exhibit density-dependent [4] behav-
iors were first formulated by M. P. Hassell [5] as a difference equation. This form of model
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is commonly referred to as density-limited population growth (DLPG) model [6]. In this
study, we further explore the DLPG model represented by difference equation

Xt =
λXt−1

(1 + aXt−1)
b (λ > 1, a > 0, b > 0, Xt > 0), (1)

where Xt denotes the population density of the tth generation, λ is the growth rate, a is the
reciprocal of the threshold density, and b is a constant representing the relationship between
the mortality rate, birth rate, and the density. Clearly, the behavior of solutions of DLPG
difference Equation (1) changes depending on the parameters above. Thus, there exist
various behavior patterns, which includes the monotone convergence to the equilibrium
state, the eventual convergence to the equilibrium state via damped oscillation, a periodic
orbit, the oscillating irregular case, and so on.

A number of works focused on the first two behavior patterns, i.e., local asymptotic
stability. In [7], Mathur investigated the dynamical behavior of a pest-dependent con-
sumption pest–natural enemy model. Considering the dynamics of a second-order rational
difference equation, Din [8] offered parametric conditions for the local asymptotic stability
of the equilibrium state. For a general class of difference equations, Moaaz [9] stated new
necessary and sufficient conditions for the local asymptotic stability in these equations.
In [10], a system-theoretic treatment of certain continuous-time homogeneous polynomial
dynamical systems was provided via tensor algebra to analyze the asymptotic stability
properties of those systems. Based on the trace statistics of random matrices, a solution was
presented to determine the asymptotic stability properties of the community matrix for
large complex random matrix systems [11]. These works provide some intuition regarding
the stability properties in the field of population dynamics, but only address the local
asymptotic stability.

It is well known that global asymptotic stability is an important consideration in
the analysis of discrete systems [12]. For a community of interacting species, which is
formulated by a system of first-order integro-differential equations, a sufficient stability of a
fixed point was derived in [13]. Moreover, the result was applied to a predator–prey system
with continuous time delays. Considering one-dimensional discrete-time model, a new
formula was presented to obtain sharp global stability results [14]. Hoang [15] presented a
mathematically rigorous analysis for the global asymptotic stability of the disease endemic
equilibrium state of a hepatitis B epidemic model with saturated incidence rate. Based
on nonstandard techniques of mathematical analysis, a new and simple approach was
proposed to establish the global asymptotic stability of a general fractional-order single-
species model [16].

In this paper, we consider a population growth model in the form of DLPG difference
Equation (1). In this model, we propose a simple method to explicitly and directly derive the
analytic expressions of reliable regions for local and global asymptotic stability. Specifically,
we explicitly represent first a reliable region ΛLAS, over which the fixed point is locally
asymptotically stable, by solving the fixed point equation and utilizing the asymptotic
stability criterion. Then, we construct two types of the auxiliary Liapunov function, whose
variation is decomposed into the product of two functions and is always negative at the
non-equilibrium state. Since one function is a monotone decreasing function that becomes
zero at the fixed point, it is required to consider the increasing function that becomes zero at
the fixed point. Finally, based on the Liapunov stability theorem [6,17], we obtain a closed-
form expression of reliable region ΛGAS, where the fixed point is globally asymptotically
stable in the sense that all the solutions tend to it. Numerical results show that our analytic
expressions of reliable regions are accurate for both local and global asymptotic stability.

The remainder of this paper is organized as follows. Some preliminaries are given
in Section 2. Section 3 explicitly and directly provides the analytic expressions of reliable
regions for both local and global asymptotic stability. Numerical results are shown in
Section 4, and Section 5 presents our conclusion.
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2. Preliminaries

In this section, we present some basic knowledge about the asymptotic stability
analysis of the fixed points.

For the population growth model of Equation (1), since the population has discrete
generations, the size of the tth generation Xt is a function of the (t− 1)th generation Xt−1.
This relation expresses itself in the following form:

Xt = F(Xt−1), F(X) =
λX

(1 + aX)b . (2)

Obviously, this iterative procedure above is an example of a discrete dynamical system.
The notion of equilibrium states, i.e., fixed points, is of great importance for investigat-

ing the system above. It is desirable that all solutions of a given system tend to its fixed
point. Thus, we provide the definition of a fixed point.

Definition 1. The constant Xe is said to be a fixed point, i.e., an equilibrium state of System (2), if
and only if Xe = F(Xe).

One of the main objectives for the system is to analyze the dynamical behavior of its
solutions near a fixed point. This investigation constitutes the stability theory. Next, we
introduce the basic definitions of stability.

Definition 2. The fixed point Xe of System (2) is said to be

(1) (locally) stable if, for every ε > 0, there exists δ > 0 such that

|X0 − Xe| < δ implies |Xt − Xe| < ε (3)

for all t > 0.
(2) locally attracting if there exist δ > 0 such that

|X0 − Xe| < δ implies lim
t→∞

Xt = Xe. (4)

(3) globally attracting if for all X0 > 0 such that

|X0 − Xe| < ∞ implies lim
t→∞

Xt = Xe. (5)

(4) locally asymptotically stable if it is stable and locally attracting.
(5) globally asymptotically stable if it is stable and globally attracting.
(6) unstable if it is not locally stable.

Definition 3. The function V(X) is said to be a Liapunov function [6,17] if V(Xe) = 0 and
V(X) > 0 for X 6= Xe.

It may be impossible to determine the stability of a fixed point from the above defini-
tions in many cases, since it may not be able to find the solution in a closed form. Thus,
we present some of the simplest but most powerful tools to understand the behavior of
solutions for System (2) in the vicinity of a fixed point.

Lemma 1. Assume that ∣∣∣∣ dF
dX

(Xe)

∣∣∣∣ < 1; (6)

then, Xe is locally asymptotically stable [6,17].
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Lemma 2 (Liapunov stability theorem [6,17]). Let V(X) be a Liapunov function. If V(X)
satisfies the following conditions,

(1) V(X)→ ∞ as X → ∞.
(2) ∆V = V(F(X)−V(X)) < 0 for X 6= Xe,

then Xe is globally asymptotically stable.

3. Asymptotic Stability Analysis

In this section, we mainly investigate the local and global asymptotic stability of the
fixed point Xe for System (2). Based on Lemma 1, we first offer a reliable region ΛLAS
of (λ, b), where the fixed point Xe is locally asymptotically stable. Then, by constructing
auxiliary Liapunov functions and Lemma 2, we propose a global asymptotic stability
theorem. In this theory, we obtain a reliable region ΛGAS of (λ, b), where Xe is globally
asymptotically stable in the sense that all the solutions Xt of System (2) tend to Xe.

Theorem 1. Assume that there exist δ > 0 such that |X0 − Xe| < δ, i.e., the initial value X0 is in
a neighborhood of the fixed point Xe. If a reliable region ΛLAS of (λ, b) is

ΛLAS = {(λ, b)| − 2 < bλ−
1
b − b < 0}, (7)

then Xe is locally asymptotically stable.

Proof. By solving equation Xe = F(Xe), the fixed point of (2) can be easily obtained:

Xe =
λ

1
b − 1
a

. (8)

Taking the derivatives of (2) with respect to X, we obtain

dF
dX

=
λ(1 + aX)b − λX · ab(1 + aX)b−1

(1 + aX)2b = λ · 1− aX(b− 1)

(1 + aX)b+1 . (9)

Then, substituting Xe of (8) into (9), we have

dF
dX

(Xe) = λ · 1− aXe(b− 1)

(1 + aXe)
b+1 = bλ−

1
b − (b− 1). (10)

Based on Lemma 1, i.e., the criterion for the asymptotic stability of fixed point,
Equation (10) becomes

|bλ−
1
b − (b− 1)| < 1. (11)

Therefore, we obtain a reliable region ΛLAS of (λ, b),

ΛLAS = {(λ, b)| − 2 < bλ−
1
b − b < 0}, (12)

where the fixed point Xe is locally asymptotically stable. The proof is completed.

Each pair of (λ, b) ∈ ΛLAS from Theorem 1 guarantees that all the solutions Xt oscillate
around Xe with the increment of generations t and eventually converge to Xe, as long as
the initial value X0 is in a neighborhood of Xe. That is,

∀ε > 0, (λ, b) ∈ ΛLAS, ∃δ > 0, |X0 − Xe| < δ; (13)

we have

|Xt − Xe| < ε and lim
t→∞

Xt = Xe (14)
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for all t > 0.

Theorem 2. Assume that a reliable region ΛGAS of (λ, b) is

ΛGAS = {(λ, b) | b + 1 + λ(1− b) > 0 or 0 < b < 2}. (15)

Then, Xe is globally asymptotically stable.

Proof. We set an auxiliary Liapunov function

V1(X) = (X− Xe)
2. (16)

It is clear that V1(X) satisfies the first condition of Lemma 2, i.e., V1(X)→ ∞ when X → ∞.
The second condition gives

∆V1(X) = V1(F(X))−V1(X) =

(
λX

(1 + aX)b − Xe

)2

− (X− Xe)
2 < 0 (17)

for X 6= Xe. By the factorization of polynomial, ∆V1(X) of (17) can be simplified as

∆V1(X) =

(
λX

(1 + aX)b + X− 2Xe

)(
λX

(1 + aX)b − X

)

= X

(
λX

(1 + aX)b + X− 2Xe

)(
λ

(1 + aX)b − 1

)
= XA1(X)B1(X) < 0, (18)

where

A1(X) ,
λX

(1 + aX)b + X− 2Xe (19)

and

B1(X) ,
λ

(1 + aX)b − 1. (20)

Notice that B1(X) is a monotone decreasing function of X, and B1(Xe) = 0. Thus, we have{
0 < X < Xe ⇒ B1(X) > 0
Xe < X ⇒ B1(X) < 0.

(21)

In fact, A1(Xe) = 0. Thus, ∆V1(X) < 0 in (18) if the following inequality holds:{
0 < X < Xe ⇒ A1(X) < 0
Xe < X ⇒ A1(X) > 0.

(22)

Taking the derivatives of A1(X) in (19) with respect to X, we obtain

dA1

dX
=

λ(1 + aX)b − λXab(1 + aX)b−1

(1 + aX)2b + 1 =
λ + (1− b)aλX + (1 + aX)b+1

(1 + aX)b+1 . (23)

Obviously, the denominator of
dA1

dX
is a positive. We denote by g(X) , λ + (1− b)aλX +

(1 + aX)b+1 the numerator of
dA1

dX
. It can be readily shown:

g(0) = λ + 1 > 0. (24)
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After taking the derivatives of g(X) with respect to X, the corresponding tangent equation
is derived as

dg
dX

= (1− b)aλ + a(b + 1)(1 + aX)b. (25)

It is interesting to observe that
dg
dX

is a monotone increasing function of X. Here,

dg
dX

(0) = a(b + 1 + λ(1− b)). (26)

We assume that

b + 1 + λ(1− b) > 0. (27)

It is easy to see that g(X) is a monotone increasing function of X. We consider (24) again;
we have g(X) > 0 for all X > 0. Thus, we deduce that the derivatives of A1(X) in (23) are
greater than zero, which implies that A1(X) is also a monotone increasing function of X. It
follows that Equation (22) is satisfied. It is evident that ∆V1(X) < 0 in (18) and the second
condition in Lemma 2 is fulfilled. Consequently, the assumption of (27) holds and Xe is
globally asymptotically stable.

On the other hand, we let

V2(X) =

(
log

X
Xe

)2
(28)

be a new auxiliary Liapunov function. Clearly, V2(X) satisfies the first condition of Lemma 2.
The variation of V2 is

∆V2(X) = V2(F(X))−V2(X) =

(
log

λX

(1 + aX)b − log Xe

)2

−
(

log
X
Xe

)2
< 0. (29)

We now consider a sufficient condition satisfying (29). By transforming (29), we have

∆V2(X) = log
λX2

X2
e (1 + aX)b · log

λ

(1 + aX)b = A2(X)B2(X) < 0 (30)

with

A2(X) , log
λX2

X2
e (1 + aX)b (31)

and

B2(X) , log
λ

(1 + aX)b . (32)

We note that B2(X) is a monotone decreasing function of X, and B2(Xe) = 0. Thus, we
have {

0 < X < Xe ⇒ B2(X) > 0
Xe < X ⇒ B2(X) < 0.

(33)

Similarly, for A2(Xe) = 0, ∆V2(X) < 0 in (30) if{
0 < X < Xe ⇒ A2(X) < 0
Xe < X ⇒ A2(X) > 0.

(34)
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Taking the derivatives of A2(X) with respect to X yields

dA2

dX
=

X2
e (1 + aX)b

λX2 · 2λXX2
e (1 + aX)b − λX2X2

e ab(1 + aX)b−1

X4
e (1 + aX)2b

=
2(1 + aX)− Xab

X(1 + aX)
=

2 + aX(2− b)
X(1 + aX)

. (35)

Clearly, the denominator is a positive, since X > 0 and a > 0. We assume that

0 < b < 2; (36)

the numerator of (35) is greater than zero, i.e., 2 + aX(2 − b) > 0, for all X > 0. It
follows that the derivatives of A2(X) in (35) are greater than zero, which implies A2(X)
is monotonically increasing. Consequently, Equation (34) is satisfied, which leads to
∆V2(X) < 0 in (30) and the second condition in Lemma 2 is fulfilled. This means that the
assumption of (36) also holds and Xe is globally asymptotically stable.

Based on the discussions above, we obtain a united region of (27) and (36), called a
reliable region,

ΛGAS = {(λ, b) | b + 1 + λ(1− b) > 0 or 0 < b < 2}, (37)

which is a sufficient condition for the globally asymptotical stability of difference
Equation (2). The proof is completed.

Note that for each pair (λ, b) ∈ ΛGAS from Theorem 2, all the solutions Xt are oscillat-
ing around Xe and eventually tend to Xe as t→ ∞, regardless of whether the initial value
X0 is in a neighborhood of Xe or not. That is,

∀ε > 0, X0 > 0, (λ, b) ∈ ΛGAS; (38)

we have

|Xt − Xe| < ε and lim
t→∞

Xt = Xe (39)

for all t > 0.

Remark 1. The work in this paper can be extended to the DLPG model with time delay. The validity
of our Theorems 1 and 2 are not affected by time delay. That is, the reliable regions ΛLAS and ΛGAS
are exactly the same as the Equations (7) and (15). This is because F(·), Xe, ∆V1(X), and ∆V2(X)
remain constant, even if time delay is taken into account. This well confirms the robustness of the
DLPG model.

4. Numerical Results

In this section, we present some numerical results by our asymptotic stability analysis
in Section 3. In our numerical computation, the reciprocal of the density of the threshold is
set to a = 0.1.

We obtain reliable regions ΛLAS of (λ, b) by (7). We plot the boundary of ΛLAS in Figure
1a, where the lower left is the reliable region ΛLAS and the upper right is the unreliable region
ΛLAS, i.e., the complementary region of ΛLAS. From Theorem 1, we know that each pair of
(λ, b) ∈ ΛLAS guarantees the local asymptotic stability of fixed point Xe. Obviously, the pair
of (λ, b) = (4, 1) is in the reliable region ΛLAS, over which that all the solutions Xt oscillate
around Xe with the increment of generations t and eventually converge to Xe, as long as the
initial value X0 is in a neighborhood of Xe. Also, we see that (λ, b) = (14, 3) ∈ ΛLAS. On
the other hand, we observe that the point (λ, b) = (30, 4) is in the unreliable region ΛLAS,
where all the solutions Xt are divergent, regardless of whether the initial value X0 is in a
neighborhood of Xe or not. We also mark that (λ, b) = (45, 6) ∈ ΛLAS.
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Figure 1. Reliable and unreliable regions for local and global asymptotic stability. (a) ΛLAS and ΛLAS

for local asymptotic stability; (b) ΛGAS and ΛGAS for global asymptotic stability.

Similarly, we obtain a reliable region ΛGAS of (λ, b) by (15), and plot the corresponding
boundary in Figure 1b. Based on Theorem 2, each pair of (λ, b) ∈ ΛGAS guarantees the
global asymptotic stability of fixed point Xe. It is obvious that the point (λ, b) = (18, 1) is
in ΛGAS, over which all the solutions Xt are oscillating around Xe and eventually tends to
Xe. Clearly, (λ, b) = (35, 6) ∈ ΛGAS, in the sense that all the solutions Xt are divergent.

4.1. Locally Asymptotically Stable

We performed some numerical examples to analyze the dynamic behavior of solutions
of system Equation (2). For (λ, b) = (4, 1) ∈ ΛLAS, the fixed point Xe = 30 is obtained
by (8). Given an initial value X0 = 25 in the vicinity of fixed point Xe = 30, we ob-
tain the dynamic behavior of Xt with time series t, as shown in Figure 2a. We see that
the solution Xt is monotonically increasing to Xe with the increment of t. Similarly, for
(λ, b) = (14, 3) ∈ ΛLAS, the corresponding fixed point of (8) is Xe = 14.1014. Starting with
an initial value X0 = 10 near Xe = 14.1014, the corresponding dynamic behavior of Xt is
illustrated in Figure 2b. It is interesting to see that solution Xt is oscillating around Xe and
converging to Xe. The phenomena observed from Figure 2a,b coincide with our Theorem 1,
in the sense that Xe is locally asymptotically stable if (λ, b) ∈ ΛLAS.

For comparison, for (λ, b) = (30, 4) and (45, 6), both in the unreliable region ΛLAS, the
fixed points are Xe = 13.4035 and 8.8597, respectively. Correspondingly, we also provide
the dynamic behavior of Xt in Figure 2c,d. From Figure 2c, it is easy to see that Xt is periodic
with Period 2 for t ≥ 9. Figure 2d shows that Xt is irregular for all t. These phenomena
imply that Xt is oscillatory and eventually divergent, in the sense that Xe is unstable if
(λ, b) ∈ ΛLAS, no matter how close X0 is to Xe.

4.2. Globally Asymptotically Stable

To verify our global asymptotic stability analysis results, we also offer some numerical
examples to analyze the dynamic behavior of solutions Xt. For a given pair of (λ, b) =
(18, 1) ∈ ΛGAS, we calculate the fixed point Xe = 170 by (8). When the initial value is given
by X0 = 165 near Xe = 170, we provide the dynamic behavior of Xt with time series t
in Figure 3a. For comparison, for X0 = 280 far away from Xe = 170, we also plot Xt in
Figure 3b.
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Figures 3a,b show that each solution Xt converges monotonically to the fixed point Xe
for all X0 with the increment of t. This verifies that our Theorem 2 is accurate, in the sense
that Xe is globally asymptotically stable if (λ, b) ∈ ΛGAS, regardless of whether the X0 is
close to Xe.

On the other hand, taking a pair of (λ, b) = (35, 6) ∈ ΛGAS, the fixed point is
Xe = 8.0861. For X0 = 5 near Xe = 8.0861 and X0 = 100 far away from Xe = 8.0861, we
also offer the corresponding dynamic behavior of Xt, as depicted in Figure 3c,d, respectively.
It is easy to show that all solutions Xt oscillate infinitely about the fixed point Xe, but do
not eventually converge to Xe. This occurrence makes the fixed point Xe unstable. The
reason is that Theorem 2 is not satisfied, i.e., (λ, b) /∈ ΛGAS.

4.3. Time Delay

For the DLPG model with time delay T, it is represented by difference equation
Xt =

λXt−T

(1+aXt−T)
b . We also present some numerical results to investigate the effect of time

delay for asymptotic stability and species dynamics. The time delay is set to T = 5.
For local asymptotic stability, the same parameters are set with Section 4.1. The

corresponding dynamic behavior of Xt with time series t are plotted in Figure 4. These
phenomena observed from Figure 4 coincide with our Theorem 1. That is, if (λ, b) ∈ ΛLAS,
Xe is locally asymptotically stable. Otherwise, Xe is unstable.
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(b) (λ, b) = (14, 3) ∈ ΛLAS, X0 = 10, T = 5
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(c) (λ, b) = (30, 4) ∈ ΛLAS, X0 = 10, T = 5
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Figure 4. Locally asymptotically stable and unstable solution with time delay.

Similarly, for global asymptotic stability, the parameters are set the same as in Section 4.2.
We obtain the corresponding results as shown in Figure 5. Clearly, if (λ, b) ∈ ΛGAS, Xe is
globally asymptotically stable, and vice versa. This is consistent with our Theorem 2.
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(a) (λ, b) = (18, 1) ∈ ΛGAS, X0 = 165, T = 5
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(c) (λ, b) = (35, 6) ∈ ΛGAS, X0 = 5, T = 5
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(d) (λ, b) = (35, 6) ∈ ΛGAS, X0 = 100, T = 5

Figure 5. Globally asymptotically stable and unstable solution with time delay.

We note that, although the factor of time delay leads to slight perturbations for
the curves of population dynamics, these variations do not affect the validity of our
Theorems 1 and 2.

5. Conclusions

For a density dependent single-species population growth model, we proposed a
simple method to explicitly and directly derive the analytic expressions of reliable regions
for local and global asymptotic stability. Specifically, we explicitly represented first a reliable
region ΛLAS, over which the fixed point is locally asymptotically stable, by solving the fixed
point equation and utilizing the asymptotic stability criterion. Then, we constructed two
types of the auxiliary Liapunov function whose variation is decomposed into the product
of two functions and is always negative at the non-equilibrium state. Finally, based on the
Liapunov stability theorem, we obtained a closed-form expression of reliable region ΛGAS,
where the fixed point is globally asymptotically stable in the sense that all the solutions
tend to it. Numerical results show that our analytic expressions of reliable regions were
accurate for both local and global asymptotic stability.

In this paper, we mainly focused on the analytic expression of reliable region for global
asymptotic stability by constructing relatively simple auxiliary Liapunov functions, such
as the squared form of the difference and the logarithm. There are other more complicated
forms of the Liapunov function. Moreover, the DLPG model can be applied to some specific
species which are characterized by discrete reproductive cycles, such as zebrafish [18] and
Pink salmon [19]. This paves the way to investigate the intricacies of population dynamics
in the specific species. How to extend our method to them is an interesting issue for
further investigation.
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