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Abstract: Federated learning is a distributed learning framework designed to protect user privacy,
widely applied across various domains. However, existing federated learning algorithms face chal-
lenges, including slow convergence, significant loss fluctuations during aggregation, and imbalanced
client sampling. To address these issues, this paper introduces a high-performance federated learning
aggregation algorithm. This algorithm combines a cyclic adaptive learning rate adjustment strategy
with client-weighted random sampling, addressing the aforementioned problems. Weighted random
sampling assigns client weights based on their sampling frequency, balancing client sampling rates
and contributions to enhance model aggregation. Additionally, it adapts the learning rate based
on client loss variations and communication rounds, accelerating model convergence and reducing
communication costs. To evaluate this high-performance algorithm, experiments are conducted using
well-known datasets MNIST and CIFAR-10. The results demonstrate significant improvements in
convergence speed and loss stability. Compared to traditional federated learning algorithms, our
approach achieves faster and more stable convergence while effectively reducing training costs.

Keywords: distributed learning; federated learning; aggregation algorithm; weighted sampling;
learning rate adjustment

MSC: 68W15

1. Introduction

With the rapid development of artificial intelligence [1] and IoT (Internet of Things)
technology, an increasing number of data are dispersed across various terminal devices
and edge servers. Therefore, data silos and data privacy protection are the two primary
challenges in artificial intelligence technology [2]. In 2016, Google first introduced the
concept of federated learning in a paper published on arXiv [3], which allows users to
protect their dataset privacy while jointly training and sharing models. As an emerging
distributed machine learning approach, federated learning has emerged as a solution to
effectively address privacy preservation and data security issues [4] by conducting model
training locally on devices, avoiding centralized data collection and storage.

However, federated learning faces several challenges, including significant resource
consumption and low aggregation efficiency when aggregating client model parameters
during the training process. In traditional federated learning, all clients typically use the
same fixed learning rate for local model training, as shown in Figure 1. Nevertheless, due
to variations in client performance and data heterogeneity, using a fixed learning rate may
result in slow convergence or performance degradation of the global model. For instance, on
mobile devices, certain clients may have limited computational resources and higher energy
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consumption, leading to slower processing speeds, while other high-performance servers
can complete model training more quickly. Consequently, there is a need to introduce a
learning rate adjustment strategy into the federated learning framework to dynamically
adjust the learning rate, personalized to adapt to the characteristics of different clients, and
enhance the algorithm’s performance and convergence speed.
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Another challenge is to select the participating clients carefully during the aggregation
process in federated learning. Traditional federated averaging algorithms often employ
random selection or follow certain rules to choose clients. However, such selection methods
may overlook the contributions of certain clients or lead to excessive participation, thereby
affecting the accuracy and stability of the aggregation results. For example, some clients
may have a high accuracy in model aggregation but may not be able to participate in a
timely manner, resulting in delayed model updates. To address this issue, a multi-client
selection scheme is needed, which takes into account factors such as client accuracy and data
scale to make a rational choice of participating clients and better balance their contributions.

To address the above challenges, this paper proposes a federated learning aggregation
algorithm with improved efficiency. In this method, we introduce cyclic adaptive learning
rate adjustment to adjust the learning rate of local clients dynamically, based on the progress
and performance of their local training, to accelerate the convergence speed of the model.
Simultaneously, we design a client-weighted sampling algorithm, considering the sampling
frequency of clients, to avoid the drawbacks of multiple sampling for some clients and
nonsampling for others, and assign different weights to clients to enhance the accuracy and
stability of the aggregation process.

The following sections will provide a detailed description of our algorithm design
and experimental results to validate the effectiveness and performance advantages of the
proposed improvements. Through experimental evaluations comparing different learning
rate schemes and real-world application scenarios, we will demonstrate the superiority of
cyclic adaptive learning rate and client-weighted sampling algorithms in federated learning
aggregation models. We will also explore their potential in improving model convergence
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speed, accuracy, and stability. This research will provide new insights and solutions for
the development of federated learning, promoting its widespread application in practical
scenarios and further research.

The main contributions of this paper are as follows:

• Traditional learning rate strategies lack adaptability and cannot adjust the learning
rate based on dynamic changes during the training process. The proposed cyclic
adaptive learning rate adjustment algorithm replaces the traditional approach of
fixed learning rates for clients. Experimental results on various datasets show that it
improves the training effectiveness of local models and enhances the performance of
the global model;

• Addressing the issue of slow aggregation caused by traditional random sampling of
clients, this paper introduces a client sampling strategy to balance the frequency of
client sampling and their contributions, effectively enhancing the efficiency of model
training in federated learning. The proposed federated learning client-weighted
sampling method eliminates the impact of a single randomly selected client on global
weights, addressing existing issues in client sampling algorithms;

• This paper conducts experimental evaluations on two representative datasets. The
experimental results on these datasets demonstrate that, compared to baseline al-
gorithms, the enhanced algorithm achieves the same test accuracy with an average
reduction of 27.65% in training rounds on the MNIST dataset and an average reduction
of 27.75% in training rounds on the CIFAR-10 dataset.

2. Related Work

Federated learning is a machine learning framework that protects user data privacy,
allowing multiple participants to locally train models without sharing raw data [5]. Many
researchers have combined federated learning with technologies such as secret sharing [6],
differential privacy [7], secure multi-party computation [8], and homomorphic encryp-
tion [9,10] to achieve secure and efficient federated learning solutions. In recent years,
the field of federated learning has seen a surge in new algorithms and optimization tech-
niques to address challenges related to communication efficiency, model security, and
convergence speed.

One of the most commonly used algorithms in federated learning is the FedAvg [3]
algorithm. In the federated learning research, Briggs et al. [11] introduced hierarchical clus-
tering based on FedAvg. They clustered and separated clients according to the similarity
between the local updates of clients and the global model, thereby improving aggrega-
tion efficiency. Karimireddy et al. [12] corrected the direction of client local updates by
estimating the difference between the server and client update directions, successfully
overcoming the problem of non-uniform data distribution. This correction strategy enables
faster model convergence within fewer communication rounds, accelerating the federated
learning training process.

Ye et al. [13] introduced the FedCNM algorithm, which employs global momentum
to mitigate “client drift”, leading to a significant improvement in test accuracy, with an
enhancement ranging from 1.46% to 11.12%. Additionally, the use of local optimizers,
SGD + M and NAG, further improved test accuracy by 10.53% and 10.44%, respectively.
Ref. [14] presented the Client-Level Federated Learning (CL-FL) method, primarily ad-
dressing client contribution protection in federated learning. This method adds Gaussian
noise to each participant’s contributions through a central server to hide their contributions
and designs a dynamic differential privacy adjustment method to improve training effi-
ciency. Chen et al. [15] divided the neural network in federated learning into shallow and
deep layers and observed that the update frequency of deep layers was lower than that of
shallow layers. Based on this observation, they proposed an asynchronous update strategy,
effectively reducing the number of parameters transmitted in each round by reducing the
transmission of deep-layer parameters during the communication process.
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Haddadpour et al. [16] reduced communication overhead in federated learning by
employing gradient compression and local computation on top of FedAvg, thereby im-
proving the algorithm’s efficiency. Specifically, the algorithm computes gradients locally,
compresses them, and then uploads them to the server, reducing the amount of commu-
nication. Zhang et al. [17] designed a federated learning method for mechanical fault
diagnosis and proposed a dynamic verification scheme based on the federated learning
framework to adaptively adjust the model aggregation process. They also introduced
a self-supervised learning scheme to learn structural information from limited training
data. Meng et al. [18], in the context of differentially private federated learning, addressed
the problem of gradient explosion caused by a learning rate that is too large or too small
during the neural network training process. They proposed the CAdabelief algorithm and
integrated it into the framework of differentially private federated learning, conducting
federated learning differential privacy experiments with the MNIST dataset. The experi-
mental results demonstrated that under the same privacy budget, the CAdabelief algorithm
outperformed three comparative algorithms: SGD [19], Adam [20], and Adabelief [21]. In
this paper, we improve the federated learning algorithm by changing the learning rate
allocation scheme and client sampling scheme, aiming to accelerate model training speed,
reduce loss, and minimize communication rounds.

3. Theoretical Knowledge

Regarding the proposed cyclic adaptive learning rate adjustment algorithm and client-
weighted sampling strategy, this paper not only provides detailed definitions and com-
putational steps in subsequent sections but also analyzes their abilities in reducing com-
munication overhead and improving model convergence speed through experimental
analysis. Therefore, this section will introduce the federated learning knowledge rele-
vant to the experiments conducted in this study, as well as the model structures used in
the experiments.

3.1. Federated Learning

Federated learning [3] is a distributed training approach that utilizes decentralized
datasets from multiple participants through privacy-preserving techniques to collabo-
ratively build a joint model [22]. During the training process, participants exchange
model-related information such as model structure, model parameters, and gradient infor-
mation while keeping their local data securely stored on their own devices. Information
transmission is performed using encryption or noise addition techniques. Compared to
traditional machine learning algorithms, federated learning does not require centralization
of all participants’ data, effectively preserving the privacy of individual data owners. The
trained federated learning model can be shared and deployed among the participants. In
summary, the characteristics of federated learning can be summarized as follows:

1. There are two or more participants who aim to cooperatively build a consensus model
that can be shared;

2. During the federated learning training process, each participant’s local dataset is
strictly kept on their device;

3. Model-related information of federated learning participants is transmitted and ex-
changed in an encrypted manner, ensuring that no participant can infer the local
dataset of other participants based on their model-related information;

4. The performance of the joint model obtained through federated learning should
closely approximate the performance of traditional centralized training machine
learning models.

Figure 2 presents a typical data distribution chart for Horizontal Federated Learning
(HFL). Based on different distribution patterns in the sample space and feature space of
training data, federated learning can be categorized into Horizontal Federated Learning
(HFL), Vertical Federated Learning (VFL), and Federated Transfer Learning (FTL) [23].
The work in this paper is based on the Horizontal Federated Learning architecture, which
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is suitable for scenarios where participants have significant feature overlap in their data
but limited sample overlap. Under the Horizontal Federated Learning (HFL) architecture,
participants with the same model structure and data format collaboratively train a joint
model under the coordination of the aggregation server. All participant clients’ local models
are aggregated through the central server, while their original data are strictly kept locally
and do not leave the local clients.
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Figure 3 illustrates the process of model parameter aggregation in federated learning.
The steps are explained below:

1. At the beginning of the training process, the central server sends initial parameters to
the local clients;

2. Each local client uses the received model parameters to update its own model and
then performs local model training. After local training, each client obtains its local
model parameters, which are then encrypted using techniques such as homomorphic
encryption or differential privacy;

3. All clients send their encrypted data to the central server;
4. The server receives the encrypted data without decrypting them. It uses secure

federated learning aggregation algorithms to aggregate the parameters uploaded by
the participants.

The above steps 1–4 are repeated until the federated learning model reaches the desired
testing accuracy or until the maximum allowed number of iterations between the clients
and the server is reached, as set by the program.

In the above training process, participants interact with the central server by exchang-
ing encrypted model parameter information. The central server aggregates the received
encrypted model parameters and sends back the averaged model to the participants. This
method is referred to as model averaging in federated learning [3]. Another approach
involves directly sharing the locally computed model gradient information. This method is
known as gradient averaging [24]. In this paper, we focus on the model averaging aggrega-
tion algorithm, which has advantages such as independence from specific optimization
algorithms and better privacy protection compared to gradient averaging. All experiments
are conducted based on the model averaging aggregation algorithm.
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3.2. MLP and ResNet

A Convolutional Neural Network (CNN) [25] is a type of deep learning model pri-
marily used for image recognition tasks, widely applied in the field of computer vision. A
CNN is capable of automatically learning hierarchical feature representations from images.
It comprises multiple layers, including convolutional layers, pooling layers, and fully
connected layers. The convolutional layers perform convolution operations on the input
images to extract local features, while the pooling layers down sample the feature maps to
reduce computational complexity. The fully connected layers, also known as dense layers,
integrate the extracted features together to make the final predictions.

MLP (Multi-layer Perceptron) is a fundamental feed-forward neural network model
and one of the simplest deep learning models. It consists of multiple fully connected layers
(also known as hidden layers), with each hidden layer applying a nonlinear transforma-
tion using an activation function. The last hidden layer is connected to the output layer,
which typically uses the softmax activation function for classification tasks. By introduc-
ing more neurons in each hidden layer, the MLP model can learn and represent more
complex features.

ResNet (Residual Network) [26] was proposed to address the issues of gradient van-
ishing and degradation in deep neural networks. It introduced residual connections (skip
connections), allowing the network to learn residual mappings, i.e., learning the residuals
within each residual block, which enables effective training of deeper networks. ResNet has
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shown remarkable performance in image classification tasks, capable of handling complex
image features and achieving higher classification accuracy. Table 1 below compares several
common network parameters and their adaptability range.

Table 1. Comparison of common CNN network parameters and adaptability range.

Model Parameters Network Structure Suitable Datasets

MLP Few Input Layer—Hidden Layers
(Multiple)—Output Layer Small-sized datasets

AlexNet [27] Large
Convolutional Layers

(Multiple)—Fully Connected Layers
(Multiple)—Output Layer

Large image datasets

ResNet Moderate
Convolutional Layers

(Multiple)—Residual Blocks
(Multiple)—Fully Connected Layers

Large image datasets

CNN Moderate
Convolutional Layers

(Multiple)—Pooling Layers
(Multiple)—Fully Connected Layers

Image datasets

In the experiments of this paper on federated learning, two types of neural networks,
MLP and ResNet, are used as the client models for local training. The local client models
are trained and then sent to the central server. The central server employs a certain strategy
to sample clients from all participants and aggregate the local model parameters. Finally,
the aggregated model parameters are returned to the clients by the central server for the
next round of training.

4. High-Performance Aggregation Mechanism

By introducing the improved approach of cyclic adaptive learning rate adjustment
and weighted random client sampling, we can effectively enhance the aggregation perfor-
mance of the federated learning aggregation algorithm, reducing communication overhead
and accelerating the convergence speed of the model. The cyclic adaptive learning rate
adjustment strategy enables clients to automatically adjust the learning rate based on
their local model’s performance and loss, allowing them to better adapt to their training
progress. The weighted random client sampling strategy takes into account the historical
sampling frequency of clients, assigning different sampling weights to clients to reduce the
sampling weight of clients that are frequently sampled randomly. This balances the contri-
butions of each client and increases the diversity of the aggregated model. Through these
improvement measures, we can significantly reduce unnecessary communication over-
head, improve the efficiency of federated learning, and accelerate the convergence speed
of the global model, thereby providing better performance and scalability for practical
applications of federated learning.

4.1. Cyclic Adaptive Learning Rate Strategy

In this work, we address the learning rate issue in the Federated Averaging (FedAvg)
aggregation algorithm used in federated learning. We propose a cyclic adaptive learning
rate (CALR) adjustment strategy based on the change in loss. This strategy replaces the
traditional fixed learning rate used in FedAvg, as a fixed learning rate can result in slow
or unstable convergence during model training. The content of Adaptive Learning Rate
Adjustment Algorithm 1 is as follows:



Mathematics 2023, 11, 4344 8 of 29

Algorithm 1 Learning Rate Adjustment.

function ADJUST_LEARNING_RATE(Passing values: communication round number
RoundNum, current loss loss[i], historical loss loss[i− 1], and loss ratio threshold threshold)
Calculate loss ratio:

loss_r = loss[i]
loss[i−1]

Calculate rate of change:
ChangeRate = | loss_r− 1|2

if ChangeRate < 1 then
ChangeRate = ChangeRate + 1

end if
Calculate learning rate adjustment factor:

υ = 1
ChangeRate

√
RoundNum

if RoundNum%100 = 0 then
Set new learning rate:

ηi+1 = 0.001
else if RoundNum%100 6= 0 and threshold >|loss_r| then Calculate ηi+1 :

ηi+1 = ηi × (1− υ)
else if RoundNum%100 6= 0 and loss_r > maxorloss_r < min then Calculate ηi+1:

ηi+1 = ηi × (1 + υ)
else

Set new learning rate:
ηi+1 = ηi

Unchanged
end if

The cyclic adaptive learning rate algorithm takes into account the model aggregation
rounds RoundNum and the loss change rate loss_r, and it constrains the range of learning
rate variations. The algorithm sets the maximum value ηmax and the minimum value ηmin
for the learning rate, enabling it to cycle within a certain range. The learning rate variation
range is determined through practical measurements, and, within each cycle, the learning
rate η adapts dynamically based on specific factors. The formula for the learning rate in the
ith round is as follows:

ηi+1 = ηi × (1± υ), (1)

The adaptive learning rate variation depends on the magnitude of the change in loss
between two consecutive training iterations. Therefore, the first step is to calculate the rate
of change in loss between these iterations:

loss_r =
loss[i]

loss[i− 1]
, (2)

The specific learning rate variation coefficient is related to the rate of change in loss
loss_r and the communication round RoundNum. The learning rate variation coefficient υ
is calculated as follows:

υ =
1

ChangeRate
√

RoundNum
, (3)

The relationship between ChangeRate and loss_r can be expressed as follows:

ChangeRate = | loss_r− 1|2 , (4)

η: Learning rate. ηi is the learning rate for the ith (i > 0) round, and the initial learning
rate η0 is set to 0.001.

RoundNum: RoundNum is the number of iterations between the client and the cen-
tral server.

loss_r: loss_r is the change rate of the learning rate with respect to the historical
learning rates, based on which the decay coefficient is generated.
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υ: The learning rate change coefficient υ represents how fast the learning rate changes,
with a larger υ leading to faster learning rate variations.

ω: The client model training initialization parameters ω0 represent the initial model
parameters for client training. After the learning rate changes, the model parameters are
updated, allowing the client to use the new learning rate for training in the next round.

In this paper, the improved algorithm monitors the loss variation of each client in
every round and adjusts the learning rate based on the training iterations. If a client’s
loss decreases slowly in a particular round, it indicates that its training process may be
challenging and requires a smaller learning rate for finer adjustments. Conversely, if a
client’s loss decreases rapidly, it suggests that its training process is smooth, and a larger
learning rate can be used to accelerate the convergence speed. By dynamically adapting
the learning rate based on the loss variation and training rounds, the algorithm aims to
achieve faster and more stable convergence during the federated learning process.

When the model’s loss function exhibits oscillations or instability during the training
process, the learning rate is reduced:

ηi+1 = ηi × (1− 1

ChangeRate
√

RoundNum
), (5)

When the training process reveals slow convergence or a gradual decrease in the loss
function, the learning rate is increased:

ηi+1 = ηi × (1 +
1

ChangeRate
√

RoundNum
), (6)

4.2. Weighted Random Sampling Strategy

In each round of federated learning communication, the server selects a subset of
available clients to participate in training. The server’s operations include client sampling
and assigning weights to the sampled clients. Common methods for client sampling are
random selection and weighted averaging. In random selection, a portion of clients is
randomly chosen to participate in training, and each client is assigned the same weight.
The server then calculates the weighted average of the model parameters from the sampled
clients and sends it back to the clients as the new version of the global model for the next
round of training.

However, random selection may lead to some clients having low participation rates,
especially when there are differences in computational power, data size, and other factors
among clients. The contributions of clients with different data distributions may be under-
estimated, which can result in some clients’ data not being fully utilized during training,
leading to a decrease in the performance of the global model on those data distributions
and, subsequently, affecting the overall model’s performance.

To address this issue, this paper introduces the innovative weighted random sampling
(WRS) strategy for clients. WRS balances the relationship between the client sampling
frequency and the random sampling weights. Initially, all clients have zero sampling
frequency and equal sampling weights. However, after each round of communication
and aggregation, the client sampling frequency is updated, and the sampling weights are
adjusted accordingly. For example, if a client is repeatedly selected in multiple rounds, its
sampling weight may be reduced. By dynamically adjusting the sampling weights, WRS
ensures a balanced client selection and avoids extreme selection results.

The detailed steps of the client-weighted random sampling strategy are as follows:

1. Initialization: For each client, its sampling weight is determined based on the number
of times it has been sampled. Therefore, a global list count[] is defined to record the
sampling count for each client. The sampling count for all clients in the count[] list is
initially set to 0;
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2. Initial Weight Assignment: ωid represents the weight of random sampling for each
client. The initial sampling weights for each client are defined as equal, with the initial
unnormalized value for each client being ω(id,0) = 1.0;

3. Sampling Round Update: The sampling count in the count[] list is increased by 1 for
the selected clients in each sampling round. ω(id,i) represents the weight of the client
during the ith interaction between the client and the central server;

4. Weight Adjustment: Based on the number of times each client has been sampled,
the client’s sampling weight is adjusted. Typically, clients with more sampling will
receive lower weights to balance the sampling results. The client weight adjustment
formula is as follows:

ω(id,i) =
ω(id,i−1)

count[id]
, (7)

5. Weight Normalization: To ensure that the total sum of sampling weights for all clients
is equal to 1, the client’s sampling weights are normalized. The weight normalization
formula is as follows:

ω(id,i) =
ω(id,i)

numclients−1
∑

i=0
ω(id,i)

, (8)

6. Random Sampling: Based on the sampling ratio k and the client’s sampling weights
ω(id,i), random sampling is performed. The sampling ratio determines the probability
of selecting each client;

7. Updating Sampling Counts: The sampling count for the selected clients is increased
by 1 to reflect their participation;

8. Returning Sampling Results: The finally selected clients are assembled into a list and
returned to the aggregation algorithm for further parameter aggregation.

Below is the pseudo code for Algorithm 2, which is a weighted random client sampling
strategy. This strategy selects clients and passes their parameters to the federated learning
aggregation algorithm for parameter aggregation.The server then returns the aggregated
parameters to the clients for the next round of training.

Algorithm 2 Sample Clients.

function Sample_Clients(Passing values: sample ratio sample_ratio)
if sampler=None then

Sampler <- RandomSampler(num_clients)
end if
Define count[]:this list records the number of times each client has been sampled.
When a client is selected multiple times, update the sampling count for each client in the

count[]:
ω(id,i) =

ω(id,i−1)

count[id]
After that, normalize the weights of each client:

ω(id,i) =
ω(id,i)

numclients−1

∑
i=0

ω(id,i)

Perform weighted random sampling with the given total number of clients num_clients,
individual client weights ω(id,i), and sampling ratio sample_ratio:

Sampled <- random.choices(range(num_clients), weights =ω(id,i), k = sample_ratio)
for clients in Sampled do

count[id] = count[id] + 1
end for
assert num_clients_per_round = len(sampled)
return sorted(sampled)

end function
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4.3. Complexity Analysis of CALR-WRS Algorithm

A total of C clients is assumed, each with a local dataset size of M, model parameter
size of W, and Q clients participating in model aggregation in each round, with each client
conducting E local iterations.

Analysis of Client-Side Computational Complexity:

The computational complexity of each client’s local updates typically depends on the
number of samples updated in each round and the number of communication rounds.
Therefore, the time complexity of local updates on each client is O(EM).

Analysis of Server-Side Aggregation Complexity:

Parameter Aggregation: The server’s aggregation complexity is generally related to
the number of clients participating in aggregation (Q) and the dimension of the global
model parameters (W). Hence, the time complexity of aggregating parameters on the server
can be represented as O(QW).

Weight Update: On the server side, the weights of clients are recalculated based on
the sampling counts of all clients, and since there are C clients in total, its time complexity
can be expressed as O(C).

Analysis of Communication Cost:

Communication costs include two parts: transmitting local model parameters from
clients to the central server and returning the aggregated parameters from the central server
to clients. In the first part, only the clients participating in aggregation need to transmit
model parameters, resulting in a complexity of O(QW). In the second part, the central
server needs to return updated model parameters to all clients, resulting in a complexity of
O(CW). Therefore, the communication cost can be expressed as O(QW + CW).

The comparison of complexity between the proposed improved algorithm and Fe-
dAvg and FedProx algorithms is shown in Table 2. Our algorithm achieves improved
communication efficiency while maintaining lower complexity.

Table 2. Complexity comparison table.

Algorithm Time Complexity Communication Cost

Proposed Algorithm O(QW) + O(EM) + O(C) O(QW + CW)
FedAvg O(QW) + O(EM) O(QW + CW)
FedProx O(QW) + O(EM) O(QW + CW)

5. Experiment and Performance Evaluation

The experiments in this paper were conducted using Python programming language
version 3.7. The federated learning framework used was FedLab version 1.3.0. The total
number of clients in the federated learning experiment was set to 100, and the maximum
number of training rounds was set to 10,000. The client sampling ratio was set to 0.2, with
each client performing five epochs and a batch size of 600. The hardware and software
used for the experiments are summarized in Table 3.

Table 3. Experimental equipment configuration.

Equipment Parameter

Operating system Windows 11

CPU AMD Ryzen 7 5700X 8-Core Processor @3.40
GHz, China

Memory 16 GB
Hard disk SSD 1TB

GPU NVIDIA GeForce RTX 4080, USA
Torch 11.8

FedLab 1.3.0
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The experiments in this paper were conducted to evaluate the algorithm’s perfor-
mance on two image recognition tasks using the MNIST [28] and CIFAR-10 [29] datasets.
The MNIST dataset consists of 70,000 grayscale images of handwritten digits (0–9), with
each image having a size of 28 × 28 pixels. The dataset is divided into 10 classes, each
representing a digit from 0 to 9. There are 7000 images in each class, with 60,000 images
used for training and 10,000 images used for testing.

The CIFAR-10 dataset consists of 60,000 color images with a size of 32 × 32 pixels. It
is also divided into 10 classes representing different objects: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. Each class contains 6000 images, with 50,000
images used for training and 10,000 images used for testing. Each sample in the dataset
is associated with a label that indicates its corresponding class. The experiments were
designed to assess the performance of the proposed algorithm on these two datasets, and
the results will be used to demonstrate the effectiveness and efficiency of the improvements
made to the federated learning process.

In our federated learning aggregation experiments, we trained the MNIST dataset
using MLP networks with termination conditions set at either 10,000 communication
rounds or an accuracy of 0.97. Key metrics of interest included communication rounds at
the experiment’s end, accuracy changes, and loss changes. For the CIFAR-10 dataset, ResNet
networks were employed under similar termination criteria: 10,000 communication rounds
or an accuracy of 0.75. We also focused on metrics such as communication rounds, accuracy
changes, and loss changes. These metrics are standard in the machine learning field.

In addition, we conducted training on various datasets and deep learning network
architectures. The Adam algorithm is commonly best practice in optimization, and, in line
with best practices, this study initialized parameters using the Adam optimization algo-
rithm in experiments. Additionally, experiments were compared against various traditional
baseline methods, including fixed learning rates, cyclic learning rates, and random client
sampling. By contrasting these widely used traditional methods and evaluating model
performance with standard metrics, we have drawn robust experimental conclusions.

5.1. Cyclic Adaptive Learning Rate Algorithm

In this section, we present the cyclic adaptive learning rate (CALR) algorithm and
compare its performance with several other non-CALR algorithms on different datasets. We
evaluate the test accuracy and loss variation during the training process. The experimental
results demonstrate that the proposed algorithm significantly improves the convergence
speed and reduces the loss in the federated learning aggregation process.

Comparison of various algorithm strategies on the MNIST dataset with MLP model is
shown in Figures 4–7.
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CLR refers to the traditional cyclic learning rate strategy, FLR represents the fixed
learning rate strategy, and CALR denotes the cyclic adaptive learning rate adjustment
strategy proposed in this paper. From the graphs, it is evident that the CALR strategy
proposed in this paper exhibits a more stable and efficient improvement in accuracy
compared to both the traditional fixed learning rate strategy and the CLR cyclic learning
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rate strategy. Since the CALR strategy in this paper adjusts the current learning rate based
on the client’s loss and training epochs in federated learning, the changes in loss are more
stable and persistent.

CALR represents the cyclic adaptive learning rate adjustment strategy proposed in
Figure 8, FLR1 corresponds to a fixed learning rate of 0.0005, FLR2 corresponds to a fixed
learning rate of 0.003, and CLR denotes the traditional cyclic learning rate strategy. In this
experiment, training is stopped when the test accuracy reaches 97%. By comparing the
training epochs under various learning rate strategies for federated learning aggregation
algorithms, it is observed that the CALR strategy improves the worst-performing strategy
by 56.2% and the best strategy by 13.3%. This indicates that the training epochs in this
paper are minimized, leading to faster achievement of the aggregated model accuracy.
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Based on the CIFAR-10 dataset and using the ResNet neural network model, the
comparison of multiple algorithm strategies is shown below in Figures 9–12.
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The CLR adopts the traditional cyclic learning rate strategy, Fixed LR represents the
fixed learning rate strategy, and CALR denotes the cyclic adaptive learning rate adjustment
strategy designed in this paper.

The chart results clearly demonstrate the excellent performance of our proposed cyclic
adaptive learning rate adjustment strategy on the CIFAR-10 dataset. Compared to the
traditional fixed learning rate strategy and the traditional cyclic learning rate strategy (CLR),
our method shows slightly more stable and efficient accuracy improvement. Additionally,
our approach exhibits a persistent and stable advantage in reducing losses, demonstrating
its effectiveness in optimizing the learning process.

In this experiment, User represents the cyclic adaptive learning rate adjustment strat-
egy proposed in this paper, FLR1 corresponds to a fixed learning rate of 0.001, FLR2
corresponds to a fixed learning rate of 0.0005, and CLR denotes the traditional cyclic
learning rate strategy. The training is stopped when the test accuracy reaches 75%. By
comparing the training epochs under various learning rate strategies for federated learn-
ing aggregation algorithms, it is observed that our proposed strategy requires the fewest
training epochs, effectively accelerating the model convergence speed. In Figure 13, it
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can be seen that our approach has improved by 27.7% compared to the worst-performing
strategy and achieved a 13% improvement compared to the best strategy. From the test
accuracy comparison experiment, it can be seen that both our proposed algorithm and
the comparison algorithms show similar convergence speeds in the early stages of model
training. However, in the later stages of model convergence, our algorithm, which adjusts
the learning rate based on the loss, significantly accelerates the model convergence speed,
effectively improving algorithm performance.
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5.2. Weighted Random Sampling Based on Sampling Times

In this section, we conducted experiments comparing the weighted random sampling
(WRS) algorithm, based on the number of samples, with the traditional random sampling
strategy under different datasets and learning rates. During the experimental process,
we observed that the proposed improvement algorithm strategy achieved positive effects
in both the test accuracy during the federated learning aggregation process and the loss
during the training process.

Comparison of various algorithm strategies on the MNIST dataset with MLP model is
shown in Figures 14–19.
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Figure 19. Comparison chart of loss change between RS and WRS.

RS employs the traditional random sampling strategy, while WRS is the weighted
random sampling strategy designed in this paper based on the number of samples.
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Under different learning rates, random sampling employs the traditional random
sampling strategy, while WRS is the weighted random sampling strategy designed in this
paper based on the number of samples. In this experiment conducted on the MNIST dataset,
the training process is stopped when the test accuracy reaches 97%. By comparing the
training iterations of the federated learning aggregation algorithm with traditional random
sampling, it can be observed that, regardless of the learning rate, the training iterations
in this paper are fewer than random sampling. In Figure 20, it is evident that when the
learning rate is set to 0.0005, the maximum improvement in convergence iterations is 16.8%,
while with a learning rate of 0.001, the minimum improvement in convergence iterations
is 2.5%.
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Figure 20. Communication rounds comparison chart.

Under the scenario of using the CIFAR-10 dataset and the ResNet neural network
model, the comparison of various algorithm strategies is as follows in Figures 21–24.
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RS uses the traditional random sampling strategy and USER based on the number of
samples designed in this paper.

In this experiment using the CIFAR-10 dataset, the training is stopped when the
test accuracy reaches 75%. By comparing the training rounds of the traditional random
sampling strategy (RS) and our weighted random sampling strategy based on the number of
samples (USER), it can be observed that our algorithm consistently requires fewer training
rounds regardless of the learning rate used. At a learning rate of 0.001, the convergence
speed is improved by 15.4%, and with the traditional CLR learning rate, the convergence
speed is improved by 37.6%.

The results from Figure 25 clearly demonstrate that our weighted random sampling
algorithm based on the number of samples outperforms the traditional random sampling
strategy in terms of test accuracy on both the MNIST and CIFAR-10 datasets. This indicates
that our algorithm can better utilize the importance weights of each sample, resulting in
improved classification accuracy on the test set.
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Figure 25. Communication rounds comparison chart.

In terms of loss function reduction, our algorithm exhibits more stable and persistent
behavior. By observing the loss function, it is evident that the weighted random sampling
algorithm based on the number of samples can better control the loss reduction during
training, avoiding significant fluctuations and oscillations. This indicates that our algorithm
can more stably guide the model to learn data features and patterns, leading to improved
training effectiveness. The convergence round data of the algorithm under different datasets
and learning rates show that our algorithm can effectively accelerate the model convergence
speed in federated learning, thereby enhancing model performance.

5.3. High-Performance Federated Learning Aggregation Algorithm

In this section, we achieved significant improvements in federated learning by com-
bining the cyclic adaptive learning rate adjustment algorithm with the weighted random
sampling strategy. We compared various strategies based on the convergence speed and
loss function changes of the federated learning model.

The comparison of multiple algorithm strategies based on the MNIST dataset and
using the MLP neural network model is as follows in Figures 26–28:
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Mathematics 2023, 11, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 27. Comparison chart of loss trends across multiple algorithms. 

CLR-RS: cyclic learning rate—random sampling strategy; 
FLR-WRS: fixed learning rate—weighted random sampling strategy; 
FLR1-RS: fixed learning rate 0.0005—random sampling strategy; 
FLR2-RS: fixed learning rate 0.003—random sampling strategy; 
CALR-RS: cyclic adaptive learning rate—random sampling strategy; 
CLR-WRS: cyclic learning rate—weighted random sampling strategy; 
CALR-WRS: cyclic adaptive learning rate—weighted random sampling strategy. 

 
Figure 28. Comparison chart of communication rounds across multiple algorithms. 

The above data demonstrate that the CALR-WRS algorithm exhibits superior conver-
gence performance on the MNIST dataset compared to other algorithms, showing signif-
icant improvements. 

0.00

0.50

1.00

1.50

2.00

2.50

1 50 100 200 300 400 500 600

Lo
ca

l L
os

s

Round

CLR-RS CALR-RS FLR-WRS CLR-WRS

FLR1-RS FLR2-RS CALR-WRS

677 748 718

1,024
863

1,709

1,046

0

200

400

600

800

1000

1200

1400

1600

1800

CALR-WRS CALR-RS FLR-WRS CLR-WRS FLR1-RS FLR2-RS CLR-RS

Communication Rounds-MNIST

Figure 27. Comparison chart of loss trends across multiple algorithms.

CLR-RS: cyclic learning rate—random sampling strategy;
FLR-WRS: fixed learning rate—weighted random sampling strategy;
FLR1-RS: fixed learning rate 0.0005—random sampling strategy;
FLR2-RS: fixed learning rate 0.003—random sampling strategy;
CALR-RS: cyclic adaptive learning rate—random sampling strategy;
CLR-WRS: cyclic learning rate—weighted random sampling strategy;
CALR-WRS: cyclic adaptive learning rate—weighted random sampling strategy.
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The above data demonstrate that the CALR-WRS algorithm exhibits superior con-
vergence performance on the MNIST dataset compared to other algorithms, showing
significant improvements.

The comparison of various algorithmic strategies based on the CIFAR-10 dataset and
using the ResNet neural network model is as follows in Figures 29–31:
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CLR-RS: cyclic learning rate—random sampling strategy;
FLR-WRS: fixed learning rate—weighted random sampling strategy;
FLR1-RS: fixed learning rate 0.005—random sampling strategy;
FLR2-RS: fixed learning rate 0.001—random sampling strategy;
CALR-RS: cyclic adaptive learning rate—random sampling strategy;
CLR-WRS: cyclic learning rate—weighted random sampling strategy;
CALR-WRS: cyclic adaptive learning rate—weighted random sampling strategy.
In this study, we also conducted comparisons between the improved algorithm and

baseline algorithms to assess their convergence performance under uneven client sample
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distributions. Specifically, we examined the performance of different algorithmic strategies
using the CIFAR-10 dataset and the ResNet neural network model in scenarios where client
sample distributions were uneven. Below are the comparative results of our analysis.

Based on the above Figures 32–34, it is evident that even in the case of non-uniform
distribution of client dataset sizes, our algorithm can achieve convergence more rapidly.
Furthermore, our algorrithm exhibits faster accuracy improvement, smoother loss changes,
and an increase in training rounds of 4.84%, further saving communication time costs.
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In this study, we compared various learning rate adjustment and client sampling
strategies in the federated learning aggregation process. Experimental results demonstrate
that the CALR-WRS strategy has achieved significant performance improvements on the
MNIST and CIFAR-10 datasets. As shown in Figures 26–28, the CALR-WRS algorithm,
on average across training rounds, increased performance by 27.65% compared to the
baseline algorithm, achieving similar test accuracy on the MNIST dataset. In Figures 29–31,
it is evident that on the CIFAR-10 dataset, there was an average improvement of 27.75%.
In terms of accuracy improvement rate, CALR-WRS demonstrated greater stability and
efficiency compared to traditional fixed learning rate and other cyclic learning rate strategies.
Moreover, CALR-WRS showed more stable and persistent loss reduction.
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The CALR-WRS strategy exhibited clear superiority in the aggregation process of
federated learning, and it is of great significance for improving the performance and
efficiency of federated learning. The algorithm design presented in this study provides
new insights and solutions for the development of federated learning, and it is expected to
promote its wide application and further research in practical scenarios.

6. Discussion

In this paper, we propose a novel approach to improve the performance and efficiency
of federated learning aggregation. We address two key challenges in the federated learning
process: selecting appropriate learning rates for client and designing a weighted random
client sampling strategy for client aggregation.

Combining CALR and WRS, we propose the CALR-WRS strategy, a comprehensive
improvement for the federated learning aggregation process. By dynamically adjusting the
learning rate and using weighted random sampling, CALR-WRS effectively addresses the
challenges of client selection and convergence speed. This research provides new insights
and solutions for federated learning, promoting its widespread application and further
research in practical scenarios. However, although the CALR-WRS strategy demonstrates
good performance in the aggregation process, it may still have some limitations in specific
scenarios. For example, in cases of highly imbalanced data distribution, the contribu-
tions of certain clients may still be neglected. Hence, future research could explore more
complex client selection strategies to further enhance the efficiency and accuracy of the
aggregation process.

Finally, this study focuses on improving the aggregation process of federated learning,
while research on other aspects of federated learning, such as privacy protection and
security, is relatively limited. Future exploration can investigate the broader application
of federated learning in various scenarios, incorporating more optimization techniques
and privacy protection mechanisms to build a more comprehensive and efficient federated
learning system.

7. Evaluation

In our study, a comprehensive performance evaluation of the proposed CALR-WRS
strategy was conducted. The performance comparison is presented in Table 4. We tested this



Mathematics 2023, 11, 4344 27 of 29

strategy on multiple datasets to assess its performance under various data distributions. The
experimental results reveal that the CALR-WRS strategy exhibits significant improvements
across various aspects. Firstly, we observed that our strategy can accelerate the model’s
convergence speed, thereby reducing training time and computational costs. Secondly, the
global models generated by the CALR-WRS strategy consistently outperform traditional
random sampling methods, resulting in higher accuracy and lower loss. These evaluation
results underscore the exceptional performance of the CALR-WRS strategy in the context
of federated learning, providing an efficient and dependable solution for distributed
machine learning.

Table 4. Comparison of CALR-WRS algorithm with baseline algorithm metrics.

Dataset Metric
Fixed Learning Rate
and Random Client

Sampling

Cyclic Learning Rate
and Random Client

Sampling

CALR-WRS
Algorithm

MNIST Communication
Rounds 1709 Rounds 1046 Rounds 677 Rounds

Accuracy Change Rate Slow Medium Fast
Loss Reduction

Stability
Loss Reduction

Stability Moderate Stability Moderate Stability

CIFAR-10 Communication
Rounds 384 Rounds 462 Rounds 261 Rounds

Accuracy Change Rate Medium Slow Fast
Loss Reduction

Stability
Loss Reduction

Stability Moderate Stability Moderate Stability

Our strategy introduces the cyclic adaptive learning rate (CALR) algorithm, which
dynamically adjusts the learning rate based on the local training progress and performance
of clients. This innovative approach expedites the model’s convergence across different
clients, thereby enhancing the efficiency of federated learning. Additionally, we designed
the weighted random sampling (WRS) strategy to ensure a more balanced contribution
from each client, mitigating the bias issues often associated with traditional random sam-
pling. These enhancements emphasize the novelty of the CALR-WRS strategy presented in
this paper.

In summary, our research not only demonstrates outstanding performance but also
highlights the strategy’s innovation and practicality. It holds the potential to have a
profound impact on the field of federated learning.

8. Conclusions

Our research introduces the CALR-WRS strategy, a novel approach to federated learn-
ing aggregation. This strategy effectively addresses challenges related to client selection,
convergence speed, and model performance. Our comprehensive evaluation highlights
its exceptional performance, with accelerated convergence, reduced training time, and im-
proved model accuracy. The CALR-WRS strategy holds promise for practical applications
and contributes to the advancement of federated learning in the machine learning field
with potential for broader applications and lasting impact.
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