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1. Introduction

The present paper reviews, develops, and provides a comprehensive and thorough
study of the natural exponential family (NEF) of distributions along with its exponential
dispersion model (EDM), which is generated by the Landau distribution. Such NEFs
and EDMs are associated with exponential variance function (VF). They will be abbrevi-
ated henceforth as NEF-EVF and EDM-EVF, respectively. These families are absolutely
continuous, supported on the whole real line, and abundant with probabilistic and statisti-
cal properties.

Our study embraces both properties of these families and contains a collection of scat-
tered results in the literature and the development of additional new results. We present
these families exhaustively in a unified approach and propose them as statistical model
candidates for fitting skewed continuous data sets on the real line (with or without covari-
ates). Various other continuous distributions supported on the whole real line are available
in the statistical literature (e.g., the Behrens–Fisher distribution [1], the exponentially mod-
ified Gaussian distribution [2], the hyperbolic secant distribution [3], and the Johnson
SU distribution [4]. However, we trust that our proposed NEF and EDM have many
virtues (detailed in the sequel), making them important models for statistical modeling and
GLM applications.

The standard Landau distribution µ0 is stable and supported on R. In general, the α-
stable distribution requires four parameters for a complete description: a stability index
α ∈ (0, 2] (c.f., [5]), a skewness parameter β ∈ [−1, 1], a scale parameter σ > 0, and a location
parameter b ∈ R. For µ0, the corresponding set of parameters is α = β = 1, σ = π/2, and
b = 0, yielding a characteristic function (c.f.)

ϕµ0(t) = exp
{
−π

2
|t| − it log |t|)

}
.
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and density

f0(x) =
1
π

∫ ∞

0
e−xy−y log y sin(πy)dy, x ∈ R.

The measure µ0 is analyzed in [5]. It is also studied by [6] and further discussed in
different contexts by [7–9]. It is named after Leb Landau due to its brilliant presentation in
ionization losses—the energy losses by fast-charged particles traveling through matter. This
process has been studied for over 100 years, and the theoretical explanation spans a similar
period. About 80 years ago, ref. [10] published a theoretical paper on the subject, drastically
leveling up the research and remaining among the most cited in the field. See [11,12]
for more on the history of the theoretical developments and attempts to clarify Landau’s
method of research and the function named after him).

By transforming the measure µ0 by x 7−→ x + b, b ∈ R, we obtain the measure µb
with density

fb(x) =
1
π

∫ ∞

0
e(b−x)y−y log y sin(πy)dy, x ∈ R

and c.f.
ϕµb(t) = exp

{
−π

2
|t|+ it(b− log |t|)

}
.

This simple translation transformation yielding µb has some practical importance,
as seen in the sequel. First, it provides, for b = 1, a more elegant expression for the
VF of the NEF-EVF, and second, it allows a simple computation of the density of its
corresponding EDM.

The paper is organized as follows. Section 2 is dedicated to preliminaries. We first
elaborate more on the measure µb and its Laplace transform and provide a new proof for the
form of its Laplace transform that is needed for all derivations in the sequel. We then present
basic preliminaries on NEFs, EDMs, and associated VFs. Section 3 introduces the EDM-EVF
generated by the measure µb and derives the corresponding densities. Sections 4 and 5
present numerous probabilistic and statistical properties of EDM-EVFs. In Section 4, we
derive expressions for the cumulants, skewness, and kurtosis coefficients and show that
the EDM-EVF densities are skewed to the right and leptokurtic (i.e., have fatter tails). We
show that the VF of the EDM-EVF is a limit of VFs in the Tweedie scale and thus reason
to call it the Tweedie family with power infinity. We study the EDM-EVF concerning the
following properties: reciprocity, self-decomposability and unimodality, reproducibility in
the broad and regular sense, duality, chainability (a new notion), characterizations by zero
regression on the sample mean, and large deviations. Section 5 describes and develops
various aspects of statistical features related to EDM-EVFs. In particular, we consider
maximum-likelihood estimation, second-order minimax estimation of the mean, testing
hypotheses, and describe practical steps toward GLM applications. Some concluding
remarks are presented in Section 6.

2. Preliminaries

This section includes two subsections. The first is devoted to deriving the Laplace
transform (LT) of the Landau distribution µb, which is needed to define the set NEF-
EVF. The second introduces some essential preliminaries on NEFs and EDMs required to
determine the sets NEF-EVF and EDM-EVF generated by the Landau distribution µb.

Let µ be a non-Dirac positive measure on R. Its LT Lµ and effective domain Dµ are
defined as

Lµ(θ) =
∫
R

eθxµ(dx) (1)

and
Dµ =

{
θ ∈ R: Lµ(θ) < 0

}
. (2)

Also, let
Θµ = int Dµ (3)
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and define the cumulant transform of Lµ by

kµ(θ) = Lµ(θ), θ ∈ Θµ. (4)

2.1. The Laplace Transform of the Landau Distribution

The form of the LT of the Landau measure µ0 is presented in various sources in the
literature as

Lµ0(θ) =
∫
R

eθxµ0(dx) = (−θ)−θ , θ < 0, (5)

from which that of µb is simply

Lµb(θ) =
∫
R

eθxµb(dx) = ebθ(−θ)−θ , θ < 0, b ∈ R. (6)

However, all our attempts to find proof for (5) in the literature were not successful.
It is, of course, possible to derive the LT of µ0 from its c.f. given in (1). However, such
a derivation is only sometimes simple. Since the present paper reviews and studies in
detail the NEF and EDM generated by the Landau distribution—a study which is heavily
dependent on the form of Lµb —we decided, for the sake of completeness, to provide a
proof for (6). This proof is presented in Proposition 1 below. It was provided to the author
by Gérard Letac (Institut de Mathématiques de Toulouse, Université Paul Sabatier, France).

Proposition 1. The Laplace transform of µb has the form given in (6).

Proof. In the Lévy canonical representation, a c.f. of an infinitely divisible distribution µ
has the form∫ ∞

−∞
eitxµ(dx) = exp

(
ibt− 1

2
σ2t2 +

∫
R\{0}

(eitx − 1− it τ(x))ν(dx)
)

.

where b is a location parameter, σ2 is the Gaussian parameter, τ(x) is a centering function,
and ν is the Lévy measure defined by its c.f. (see [5,6]), which can be either type 0, 1, or 2.
If the Lévy measure ν has type 2, then the convex support of µ is R even if the support of ν is
contained in (0, ∞) and the Gaussian coefficient σ2 is zero. Ref. [6] uses τ(x) = sin x, while
the Russian literature uses τ(x) = x/(1+ x2). We shall adopt Feller’s usage of τ. Since µb is
stable supported on R and its associated Lévy measure ν measure is ν(dx) = 1

x2 I(x > 0)dx,
it follows that its c.f. is

exp
(

ibt +
∫
R\{0}

(eitx − 1− it sin x)
)

1
x2 dx

and thus its LT has the form

Lb(θ) =
∫ ∞

−∞
eθxµb(dx) = eθb+

∫ ∞
0 (eθx−1−θ sin x) dx

x2

The trick is to use first integration by parts and then split into two integrals.∫ ∞

0
(eθx − 1− θ sin x)

dx
x2 = θ

∫ ∞

0
(eθx − cos x)

dx
x

= θ(I1 + I2)

where
I1 =

∫ ∞

0
(eθx − e−x)

dx
x

, I2 =
∫ ∞

0
(e−x − cos x)

dx
x

.

Recall that the Frullani integral is
∫ ∞

0 ( f (ax)− f (bx)) dx
x = f (0) log(b/a), when a, b > 0,

f is continuous on [0, ∞) and
∫ ∞

1 | f (x)| dx
x converges. By applying this to f (x) = e−x,
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a = −θ and b = 1, we obtain I1 = − log(−θ). To show that I2 = 0 is more complicated,
a way to proceed is to consider the entire function f (z) = (e−z − eiz)/z in∫ R

0
(e−x − cos x)

dx
x

= <
∫ R

0
f (z)dz,

and to apply the Cauchy theorem to f and the segment (0, R), to the quart of circle
{Reit; 0 ≤ t ≤ π/2}, and to the segment (iR, 0). In this way, we obtain

2
∫ R

0
f (z)dz = −i

∫ π/2

0
(e−Reit − eiReit

)dt.

We now use the following majorization for 0 ≤ t ≤ π/2 :∣∣∣e−Reit − eiReit
∣∣∣ ≤ |e−Reit |+ |eiReit | = e−R cos t + e−R sin t ≤ 2e−R/

√
2 →R→∞ 0.

Therefore, I2 = 0. Another way to show this is to compute F(s) =
∫ ∞

0 (e−x −
cos x)e−sx dx

x for s > 0. Since

F′(s) =
1

1 + s
− s

1 + s2

is easily computed and since F(∞) = 0, we obtain that F(s) = log(1 + s)− 1
2 log(1 + s2),

and thus I2 = F(0) = 0. This concludes the proof of (6).

2.2. Preliminaries on NEFs and EDMs

Let µ be a non-Dirac positive measure on R with LT Lµ and cumulant transform kµ

as defined (1)–(4). We henceforth define the notions of NEF, VF, EDM, and other related
quantities needed to describe NEF-EVF (for a good reference, see [13]).

NEF. The NEF F generated by µ is defined by the probabilities

F = F(µ) =
{

P(θ, µ(dx)) = exp
{

θx− kµ(θ)
}

µ(dx), θ ∈ Θµ

}
. (7)

Full NEF. It is defined as follows. Let F(µ) be an NEF generated by µ. If µ is a
probability measure, then

F̄ = F̄(µ) = F(µ) ∪ µ (8)

is called the full NEF generated by µ.
Cumulants. The cumulants of F(µ) are obtained by the derivatives of kµ. The r-th

cumulant of F(µ) is given by

κr(θ)
.
=

drkµ(θ)

dθr , θ ∈ Θµ, r = 1, 2, . . . (9)

In particular, κ1(θ) = k′µ(θ) and κ2(θ) = k
′′
µ(θ) are the mean and variance of F(µ).

Mean domain. The image MF = κ1(Θµ) of Θµ under κ1 is called the mean domain of
F(µ). Since kµ is strictly convex and real analytic on Θµ, the map θ 7−→ κ1(θ) is one to one,
and its inverse function ψµ : MF −→ Θµ is well defined.

VF. The variance corresponding to P(m, F) is VF(m) = 1/ψ′µ(m) = k′′µ(θ). The map
m 7−→ VF(m) from MF into R+ is called the VF of F. More precisely, a VF of an NEF F is
a pair (VF, MF). It uniquely determines an NEF within the class of NEFs c.f., (see [3,14]).
Since they were first defined by [3], various classes of VFs have appeared in numerous
papers in the last four decades. Morris himself characterized all six NEFs having (up) to
quadratic VFs (e.g., Poisson with VF (m,R+), gamma with VF (am2,R+), inverse Gaussian
with VF (am3,R+)).

Steep NEF. An NEF F = F(µ) is called steep iff MF = int Cµ. The steepness of F
(or µ) ensures that the MLE of the canonical parameter θ or the related mean exists with
probability 1 and is given as the unique solution of the maximum-likelihood equation based
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on n independent replicas X1, . . . , Xn taken from P(θ, µ) (c.f., [15], Chapter 9). This property
is essential in various derivations of the MLE and GLM applications (see Sections 4.8 and 6).

Mean value parameterization. For a given VF (VF, MF) of an NEF F, it is clear that
ψµ(m) = θ and ϕµ(m)

.
= kµ(θ) are two primitives of 1/V(m) and m/V(m), respectively;

i.e.,

ψµ(m) =
∫ dm

V(m)
, ϕµ(m) =

∫ mdm
V(m)

. (10)

Accordingly, the NEF F can be represented as

F=
{

P(m, µ(dx)) = exp
{

xψµ(m)− ϕµ(m)
}

µ(dx) : m ∈ MF
}

. (11)

The reparameterization in (11) is called the mean value parameterization of F [13],
Proposition 2.3, and [16]. Such a parameterization of F in terms of its mean m is more
appealing than that of θ, as θ is just an artificial parameter (the argument of the LT of µ).

EDM. An EDM is related to an NEF as follows. The Jorgensen set Λ = ΛF associated
with F is defined by

Λ = Λ(F)

=
{

p ∈ R+ : pkµ(θ) is a cumulant transform of some Radon measure µp
}

.

Note that µp, p ∈ Λ, is the p-th fold convolution of µ (even if p is not a positive integer);
i.e., Lµp(θ) = Lp

µ(θ), θ ∈ Θµ.
The Jorgensen set is nonempty since, by convolution, it contains N. Also, Λ = R+ iff µ

is infinitely divisible (and thus F(µ) is composed of infinitely divisible (i.d.) distributions).
For p ∈ Λ, the NEF Fp

.
= F(µp) generated by µp is

Fp
.
= Fp(µp) =

{
P(θ, p, µp(dx)) = exp

{
θx− pkµ(θ)

}
µp(dx), θ ∈ Θµ, p ∈ Λ

}
, (12)

where the support of µp may depend on p. For p ∈ Λ, we denote, respectively, the mean
function, mean domain, and VF of the NEF Fp by mp, Mp and Vp (instead of mFp , MFp , and
VFp ). These are given by

mp = pκ′(θ) = pm, Mp = pMF

and
Vp(m) = pκ′′µ(θ) = pVF(m), m ∈ MF or Vp(mp) = pVp(

mp

p
), mp ∈ Mp.

Then, the set of families
G =

{
Fp : p ∈ Λ

}
is called the EDM associated with F(µ), and it is parameterized by (θ, p) ∈ Λ×Θµ.

EDMs have been studied thoroughly by [17,18] and others, suggesting them to describe
the error component in generalized linear models (GLMs). The statistical literature contains
hundreds of articles applying EDMs in GLM methodology.

Remark 1. It should be noted, however, that applying EDMs in GLM methodology requires the
knowledge of the exact expression of the measure µp, p ∈ Λ, appearing in the EDM model (12).
Such knowledge could be very complicated, if at all attainable. To feel the last statement’s complexity,
we will refer to a case where p = n ∈ N. For this case, µn, n ∈ N, is the n-th fold convolution of the
generating measure µ of F(µ)—a rather complicated computational task.

In the sequel, when no confusion is caused, we shall suppress the dependence of
Dµ, Θµ, kµ, MF, and VF on µ and F and write D, Θ, k, M, and V.

We now post two rules regarding appropriate transformations on an F = F(µ) to
conclude these introductory preliminaries. These are
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The Jorgensen rule:

if p ∈ Λ(F) then VFp(m) = pVF(m/p) (13)

and
the affine rule:

if ϕ(x) = ax + b then Vϕ(F)(m) = a2VF((m− b)/a)). (14)

3. The NEF-EVF and EDM-EVF

These are described in the two following subsections.

3.1. The NEF-EVF Generated by the Landau Distribution µ1

The density and LT of the Landau measure µb are given, respectively, by (1) and (6).
Hence,

mb = k′µb
(θ) = b− ln(−θ)− 1, VFb(θ) = k

′′
µb
(θ) = −1

θ
, θ < 0, (15)

and thus
Vb(m) = emb−b+1, mb ∈ R. (16)

The choice b = 1 in (16) provides a more elegant form of the VF. We adopt this choice
and consider the NEF-EVF to be generated by µ1 with cumulant transform

k1(θ)
.
= kµ1(θ) = θ − θ log(−θ). (17)

Hence, the NEF-EVF F(µ1) is presented by density and VF,

f1(x; θ)
.
= f1(x) exp{θx− [θ − θ ln(−θ)]}, x ∈ R, θ < 0, (18)

and
V(m) = (em,R), (19)

where, by (1), f1 is

f1(x) =
1
π

∫ ∞

0
e(1−x)y−y log y sin(πy)dy. (20)

The NEF-EVF F(µ1) is discussed in the context of EDMs by [17–19]. (For simplicity of
notation, we have suppressed the dependence of m1 and V1 on b = 1).

Note that the full family F̄(µ1) (see (8)) related to F(µ1) is well defined as µ1 is a
probability measure, in which case F̄(µ1) = F(µ1) ∪ µ1. The full family is relevant in
Section 4.4 when discussing the properties of self-decomposability and unimodality of
F(µ1).

The mean value parameterization of F(µ1) is obtained from (19), (10) and (11), with

ψ1(m) = θ(m) = −e−m and φ1(m) = k1(θ(m)) = −e−m(m + 1). (21)

Thus, the mean value parameterization of (18) is

f1(x) exp
{
−e−mx−

[
−e−m(m + 1)

]}
, x, m ∈ R. (22)

Such a representation of F(µ1) is needed when discussing GLM methodology in
Section 5.4.
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3.2. The EDM-EVF Generated by µ1

Since µ1 is stable (and thus is infinitely divisible), Lp
1 is a LT of some measure µp, for

all p ∈ R+. Hence, the EDM-EVF generated by µ1 has, by (12), densities of the form

fp(x; θ)
.
= µp(x) exp

{
θx− pkµ(θ)

}
= µp(x) exp{θx− p[θ − θ ln(−θ)]}, x ∈ R, θ < 0, p ∈ Λ, (23)

where
kp(θ) = p[θ − θ ln(−θ)] (24)

is the cumulant transform of µp. So, the question is: what is µp? As indicated before,
the answer is a rather complicated problem. Luckily enough, for our case, µ1 is stable—a
fact allowing the computation of µp while using the general form of the density fb given
in (1). This is performed in the following proposition.

Proposition 2. Consider the EDM-EVF in (23), then
(i) The Jorgensen set of µ1 is Λ = R+.
(ii) With fb denied in (1), µp is

µp(x) =
1
p

f1+ln p(x/p),

and the densities fp(x; θ) of the EDM-EVF in (23) are

fp(x; θ) = 1
p f1+ln p(x/p) exp{θx− p(θ − θ ln(−θ))}

=
(

1
pπ

∫ ∞
0 e(1−

x
p )y−y log y py sin(πy)dy

)
exp{θx− p(θ − θ ln(−θ))},

x ∈ R,(θ, p) ∈ R− ×R+.

(25)

Proof. (i) This is simple as µ1 is infinitely divisible, implying that Lp
1 is a LT for all

p ∈ R+ = Λ.
(ii) Note that

pk1(θ) = p(θ − θ ln(−θ)) = pθ − pθ(ln(−pθ)− ln p) = pθ(1 + ln p)− pθ ln(−pθ)

i.e.,
pk1(θ) = k1+ln p(pθ),

where kµb(θ) is defined in (6). This means that

Lp(θ) = Lp
1 (θ) =

∫ ∞

−∞
eθxµp(dx) =

∫ ∞

−∞
epθx f1+ln p(dx),

which, by changing variables x 7→ x′ = px, leads to

Lp(θ) =
1
p

∫ ∞

−∞
eθx′ f1+ln p(x′/p)dx,

or, equivalently, that

µp(x) =
1
p

f1+ln p(x/p).

Thus, using (1) with b = 1 + ln p leads to (25).
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Remark 2. In particular, we should notice the simple but interesting case where p = n. This
case concerns the convolution of n i.i.d. random variables X1, . . . , Xn taken from an NEF-EVF
distribution. So if Yn = ∑n

i=1 Xi, then by (25) the density of Yn is

fn(x; θ) =

(
1

nπ

∫ ∞

0
e(1−

x
n )y−y log yny sin(πy)dy

)
exp{θx− n(θ − θ ln(−θ))}, x ∈ R.

The VF corresponding to EDM-EVF is by (12)

(V, M) =
(

pem/p,R
)

, p > 0,

where its mean value parameterization is obtained from (10) by setting

ψp(m) = −e−
m
p , ϕp(m) = −e−

m
p (m + p),

in which case

fp(x; θ) = 1
p f1+ln p(x/p) exp

{
−e−

m
p x− (−e−

m
p (m + p)

}
,

x ∈ R, (m, p) ∈ R×R+
(26)

Figure 1 plots the EDM-EVF density (26) for the four couples (p, m)= (1, 2), (1, 6),
(0.5, 2), (0.5, 4). It can be seen that its skewness to the right is well evident.

Figure 1. EDM-EVF density (26) for (p, m) = (1, 2), (1, 6), (0.5, 2), (0.5, 4).

4. Probabilistic Features of NEF-EVF and EDM-EVF

This section will present and develop several probabilistic features of both NEF-EVF
and EDM-EVF. Usually, we present these for EDM-EVF, as those for NEF-EVF are obtained
by setting p = 1. However, sometimes, we only represent them for NEF-EVF for the sake
of notation simplicity.

These probabilistic features include: (1) A derivation of cumulants, skewness, and kur-
tosis coefficients. Primarily, we show that all such distributions are skewed to the right
and leptokurtic; (2) a presentation of EVFs as a limit of a sequence of VFs in the Tweedie
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scale; (3) the property of reciprocity; (4) properties of self-decomposability and unimodal-
ity; (5) reproducibility in the broad and regular sense; (6) duality; (7) chainability (a new
property of infinitely divisible distributions); (8) characterizations by zero regression on the
sample mean; and (9) large deviations.

4.1. Cumulants, Central Moments, Skewness, and Kurtosis

By (9), the r-th cumulant is κr = drkp(θ)/dθr, where kp is given by (24). This yields

κr+1(θ) = p(r− 1)!(−θ)−r, r = 1, 2, . . .

or in terms of m,
κr+1 = p(r− 1)!erm/p, r = 1, 2, . . . (27)

Let mr,r = 2, . . ., denote the r-th central moment. Then, m2 = κ2, m3 = κ3 and

mr+2 = κr+2 +
r

∑
j=2

(
r + 1

j

)
mjκr−j+2, r = 2.3, . . . (28)

The skewness and kurtosis coefficients are γ1 = k3
k3/2

2
= p−1/2em/2p > 0,

γ2 =
k4+3k2

2
k2

2
= κ4

κ2
2
+ 3 = 2p−1em/p + 3 > 0.

(29)

Hence, all members of the EDM-NEF are skewed to the right and leptokurtic. Note
that (29) entails an interesting observation that the kurtosis coefficient γ2 is quadratic in γ1;
i.e.,

γ2 = γ2
1 + 3. (30)

Also, note that by (27) and (28) ,all central moments are positive. Accordingly, by
defining

γ2n+1 =
m3m2n+3

mn+3
2

, n ≥ 1,

as general measures of “skewness” [20], Section 3.31, then all such skewness measures are
also positive.

4.2. NEF-EVFs as a Limit of a Sequence of VFs in the Tweedie Scale

Mora [14] (see also [13]) discussed the situation when a limit of a sequence of VFs is a
VF. As this work is also a review paper, we find it beneficial to quote Mora’s result.

Theorem 1 ([14]). Let (Fn)∞
n=1 be a sequence of NEF’s with VF’s (Vn, Mn). Assume there exists

a nonempty open interval J contained in ∩∞
n=1Mn and a strictly positive function V on J with

limn→∞ Vn(m) = V(m), uniformly on all compact subintervals of J. Then:
(i) There exists an NEF F such that MF ⊃ J and such that VF restricted to J is equal to V.
(ii) For all m ∈ J, limn→∞P(m, Fn) = P(m, F), in the week convergence sense.

We apply this theorem for an NEF-EVF (where the same holds for EDM-EVF). First
note that (mn,R+) is a VF for all n ∈ N (c.f., [21]). For the latter VF, apply the Jorgensen
rule (13) with p = n and then the affine rule (14) with

ϕ(x) = n
1

n−2 x− n.

This yields

(Vn, Mn) =
(
(1 +

m
n
)n, (−n, ∞)

)
.
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Finally, by letting n→ ∞, we obtain the limit (em,R)—the VF of the NEF-EVF in (19).
The latter limiting behavior is reasoned to call the NEF-EVF, a Tweedie NEF with power
infinity (c.f., [17]).

4.3. Reciprocity

The definition of reciprocity among two NEFs is a bit ’boring’ and tedious, but on the
other hand, it has some interesting probabilistic interpretations. For brevity, we provide
here a theorem (which can also serve as a definition) regarding a reciprocal pair of NEFs,
taken from [13] (for more details, see their Definition 5.1, Proposition 5.1, and Theorem 5.2).

Theorem 2 ([13], Theorem 5.2). Let F and F1 be two NEF’s and denote M̃F = MF ∩ (0, ∞), M̃F1 =
MF1 ∩ (0, ∞). Then, (F, F1) is a reciprocal pair iff the three following conditions hold: (i) M̃F and
M̃F1 are nonempty; (ii) the mapping m 7→ 1/m is bijective from M̃F onto M̃F1 ; (iii)

VF(m) = m3VF1(1/m), ∀m ∈ M̃F.

The most famous examples of reciprocal pairs (F, F1) are perhaps: (i) The normal and
inverse Gaussian NEF’s given, respectively, by their VF’s: (VF, MF) = (p,R), where p > 0
is constant, and (VF1 , MF1) = (pm3,R+); and (ii) The exponential and Poisson NEFs given,
respectively, by their VF’s: (VF, MF) = (m2,R+) and (VF1 , MF1) = (m,R+).

Although a general probabilistic interpretation of a reciprocity is still lacking, certain
cases (as the above two examples) can be explained using fluctuation theory (see [22],
pp. 24–26, and [23]).

We now apply reciprocity to the NEF-EVF F(µ1) given by (18). Consider the image of
−F(µ1) of F(µ1) by dilation mapping ϕ : x 7→ −x, and consider the pair ( F(µ1),−F(µ1)).
The VF of −F(µ1) is (e−m,R). As −F(µ1) is composed of infinitely divisible members
(see next property below). Hence, its Lévy measure is concentrated on the negative line,
and thus, −F(µ1) admits a reciprocal NEF, say A, whose mean domain is R+ and VF

(VA, MA) = (m3e−1/m,R+).

Here, A is the family of stopping times T = inf{t : X(t) = 1}, where X(t) is a Lévy
process such that the distribution of −X(1) is P(θ0, µ1) (given by (18)) when θ0 varies
in (−∞, 0)). If we now consider the image F(µb) of −F(µ1) by a translation mapping
x 7→ x + b, then like the above, F(µb) admits a reciprocal NEF, say Ab having mean domain
MAb = R+ and VF VAb = m3e−1/m+b = ebVA(m). This fact makes a marked difference
among other NEFs and could be formulated in a sort (rather trivial) characterization of
F(µ1) in (18).

4.4. Self-Decomposabilty and Unimodality

Let P be a probability on R and Hα(P) be its image by the map x 7→ Hα(x) = αx
(α 6= 0). Then P is said to be self-decomposable if for α ∈ (0, 1) there exists a probability
Qα on R such that P = Qα∗ Hα(P), where ∗ indicates convolution. Self-decomposabilty
is an important property with a significant amount of literature—see [5,6,24]. All self-
decomposable probabilities are also infinitely divisible. However, a striking property of
self-decomposability is that it implies both absolute continuity and unimodality of P. This
property has been shown by [25]. All stable distributions are self-decomposable and thus
unimodal ([5]).

Bar-Lev Bshouty and Letac [26] dealt with the problem: Consider a full NEF F̄(µ) ={
P(θ, µ(dx)), θ ∈ Dµ

}
generated by µ ∈ M. If a member of F̄(µ) is self-decomposable, can

one conclude that all other members of F̄(µ) also have this property? They showed that
this does not generally hold but provided necessary and/or sufficient conditions for this
property. These conditions are related to the behavior of the Lévy measure associated with
µ. In particular, they showed the full NEF-EVF F̄(µ1) generated by µ1 in (18) satisfies such
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conditions and thus is composed of self-decomposable members, implying all NEF-EVF
(and therefore its associated EDM-EVF) distributions are unimodal.

4.5. Reproducibility in the Broad and Regular Sense

Bar-Lev and Casslis [27] defined the notion of reproducibility in the broad sense and
developed a discrete version of this definition. They showed that all NEFs in the Tweedie
scale are such. This property is defined as follows. Let F(µ) be the NEF generated by
µ. Then F is said to be reproducible in the broad sense if there exists a real number p
belonging to the Jorgensen set ΛF and affine transformation fα,β : x 7→ αx + β, α 6= 0, such
that fα,β(F) = Fp. In other words, an NEF F is reproducible in the broad sense if a p-th
power convolution of F equals an affine transformation of F.

The NEF-EVF F(µ1) can easily be shown to be reproducible in the broad sense. Indeed,
the cumulant transform of µ1 and µp (p ∈ Λ = R+) are given, respectively, by (17) and (24)
as θ − θ ln(−θ) and p[θ − θ ln(−θ)]. Thus, fα,β(k1) = kp implies

αθ − αθ ln(−αθ) + βθ = p[θ − θ ln(−θ)], θ < 0.

Thus, by choosing α = p and β = p ln p, we obtain

fp,p ln p(F(µ1)) = Fp(µ1)(= F(µp)) for all p > 0,

implying that F(µ1) is reproducible in the broad sense.
The regular definition of reproducibility, which preceded the one given by [27], is a

particular case of the above definition. It was first defined by [28] for the one-parameter
NEFs. It resulted in the characterization of NEFs having power variance functions or NEFs
in the Tweedie scale (in this respect, see also [29].

Here, however, we consider a generalization of their definition by defining it as a two-
parameter family. Indeed, letF =

{
Fω1,ω2 : (ω1, ω2) ∈ Υ ⊂ R2} be a family of distributions

indexed by two parameters ω = (ω1, ω2) ∈ Υ, where Υ has a nonempty interior in R2.
Also, let X1, . . . , Xn be i.i.d. r.v.’s with L(X1) = Fθ ∈ F (where L(X) stands for the law of
X1). Then, F is said to be reproducible if, for all ω ∈ Υ and n ∈ N, there exist sequences
(αn)n≥1 and (βn)n≥1 : N→ R, and there exists a mapping (gn, hn) : Υ → Υ, n ∈ N, such
that

L(αn ∑n
i=1 Xi + βn) = F(gn(ω),hn(ω)) ∈ F , ∀(ω1, ω2) ∈ Υ, n ∈ N. (31)

This problem of reproducibility, in its general setting, is rather complex to solve, and its
complexity is discussed in Bar-Lev (2021). We shall implement, however, this definition of
reproducibility for the EDM-EVF F(µp) given in (23) and (24), while considering ω1 = θ,
ω2 = p and Υ = Θ×Λ = R− ×R+. Note that (31) can be expressed in terms of kp (see
(24))—the cumulant transform of µp as

nkp(αnθ) + βnθ = khn(p)(gn(θ))

or
np[αnθ − αnθ ln(−αnθ)] + βnθ = hn(p)[gn(θ)− gn(θ) ln(−gn(θ))], (32)

The general solution of (32) is rather intricate and cumbersome. So, we leave it as an
open problem. We do, however, demonstrate some special solutions:

(a) hn(p) = np, αn ≡ 1, βn ≡ 0, and gn(θ) ≡ θ. This result implies that L(∑n
i=1 Xi) =

F(µnp), i.e., if X1, . . . , Xn are i.i.d. taken from F(µp), then the distribution of their
random sum belongs to F(µnp)—a rather important fact for statistical applications.

(b) hn(p) = p, βn ≡ 0, gn(θ) = nαnθ, where αn > 0 is increasing in n ∈ N. The implica-
tions of this result are the following: If X1, . . . , Xn are i.i.d. taken from F(µp), then the
distribution of their random sum ∑n

i=1 Xi belongs to F(µ1) but with parameter nαnθ
instead of θ—a quite surprising result.
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4.6. Duality

The notion of duality among NEFs has been introduced by [30] as follows. Consider
two NEFs F(µ) and F(µ∗) generated by the two measures µ, µ∗ ∈ M and let kµ and
kµ∗ , VF(µ) and VF(µ∗), Θµ and Θµ∗ , be their corresponding cumulant transforms, VFs, and
canonical parameter spaces. Also, denote by lµ(s) = kµ(−s), s ∈ Sµ = − Θµ. Then, µ∗ is
called the dual of µ if

−l′µ∗(−lµ(s)) = s,

which implies that

l
′′
µ∗(m) =

1
VF(µ)(m)

.

As kµ = k1 = θ− θ ln(−θ) for an NEF-EVF and kµ∗ = eθ for the Poisson NEF generated
by µ∗ = ∑∞

n=0
1
n! δn, it follows that these two families are dual (c.f., [30], Section 4.1).

Among many others, one more example of duality is the pair of normal and inverse
Gaussian NEFs. It should be noted, however, that duality is not valid for all NEFs.

4.7. Chainability

We introduce a new notion of a property regarding infinitely divisible probability
measures, which we term chainability. Let

M = {Non-Dirac Positive Radon measures µ on R
with Θµ = int Dµ 6= φ}

and M̄ be the union ofM with the set of positive Dirac measures on R.
It is well known ([6], Chapter XIII) that a measure ρ0 ∈ M is infinitely divisible (i.d.)

iff there exists a measure ρ1 ∈ M̄ such that

Θρ1 = Θρ0 and Lρ1 = k′′ρ0
.

If ρ1 is also i.d., then there exists a measure ρ2 ∈ M̄ such that

Θρ2 = Θρ1 and Lρ2 = k′′ρ1

This procedure can proceed by assuming that ρ2 and then ρ3 and so forth, are also i.d.
This process leads to the following property of chainable i.d. measures onM.

Definition 1. With the definitions ofM and M̄ above, let ρ0 be an i.d. measure inM and (ρk)
∞
k=0

a sequence of i.d. measures in M̄. Then, ρ0 is called infinitely chainable iff

Lρn = k′′ρn−1
, n = 1, 2, . . . , with Θρn = Θρ0 , ∀ n ∈ N.

It is called chainable of order r ∈ N, if ρ1, . . . , ρr are i.d. measures in M̄ such that

Lρi = k′′ρi−1
, for i = 1 . . . ., r,

but Lρr+1 = k′′ρr is not a LT of an i.d. measure in M̄.

The problem of chainability raises some stimulating probabilistic questions. For
instance, formulating necessary and/or sufficient conditions under which an i.d. measure
ρ0 ∈ M is infinitely chainable or just chainable of order r, r ≥ 2. Yet, responding to such
questions or others goes beyond this paper’s scope as it deserves a special study.

Here, we only analyze the Landau distribution µ1 generating the NEF-EVF F(µ1),
with respect to chainability.

Proposition 3. The Landau distribution µ1 is infinitely chainable.
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Proof. For simplicity, denote ρ0 = µ1 and define the i.d. measure να,β ∈ M by

να,β(dx) = βxα−1/Γ(α)I(x > 0)dx, α > 0, β > 0,

where
Lνα,β(θ) =

∫ ∞

0
eθxνα,β(dx) = β(−θ)−α, θ < 0.

Now, for ρ0 given by (23), we have

kρ0(θ) = θ − θ ln(−θ), k′ρ0
(θ) = − ln(−θ), and k

′′
ρ0
(θ) = (−θ)−1.

Thus, ρ1 = ν1,1 with L.T.

Lρ1(θ) = k
′′
ρ0
(θ) = (−θ)−1,

for which

kρ1(θ) = − ln(−θ), k′ρ1
(θ) = (−θ)−1, and k

′′
ρ1
(θ) = (−θ)−2,

imlying that ρ2 = ν2,1 with
Lρ2(θ) = k

′′
ρ1
(θ) = (−θ)−2.

Continuing this way, we obtain, by a simple induction, that

Lρn(θ) = 2(−θ)−2, n ≥ 3,

i.e.,
ρn = ν2,2 fo all n ≥ 3.

This concludes the proof.

4.8. Zero Regression Characterizations of F(µ1)

Let X = (X1, . . . , Xn) be a random sample taken from a common distribution P and
let S = S(X) be a polynomial statistic (in the Xi’s) such that the regression of S on the
sample mean X̄ is zero (or constant). If P is the only distribution for which such a property
holds, we say that P is characterized by the zero regression of S on X̄. The pioneering
study of such characterizations is due to [22], who characterized all distributions (six
at all) for which the regression of a quadratic form of S on X̄ is constant. Since their
seminal work, numerous such characterizations have appeared in the literature (e.g., [31–37]
At this point, it should be noted that a zero regression characterization of P means a
characterization of a family of distributions, say F, to which P belongs (e.g., the normal
family with unknown location and scale parameters or the Poisson family with unknown
mean).

Bar-Lev [38] provided methods enabling to characterize ’almost’ any family F (at
least those that establish NEFs) by zero regression properties (e.g., a zero regression
characterization of the generalized Laplace distribution—see [39]. Such methods sug-
gest searching for cumulant relationships existing among the members of F. Indeed, let
(κr1 , . . . , κrm), 1 ≤ r1 ≤ . . . ≤ rm, be a set of m arbitrary cumulants of F. Derive functional
relations among these cumulants in the form g(κr1 , . . . , κrm) = 0, where g is a polynomial in
the κrj ’s, and then construct an unbiased polynomial statistic for g with the tools described
in [38]. In the next proposition, we demonstrate such a process for obtaining a zero regres-
sion characterization of NEF-EVF F(µ1) (which can also be executed for the NEF-EDM
F(µp)). For this, note that by (27), the cumulants of F(µ1) satisfy

κr+1 = (r− 1)!erm = (r− 1)!κr
2, r ≥ 1. (33)
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Thus, possible polynomials g’s have the form

gr(κ2, κr+1)
.
= κr+1 − (r− 1)!κr

2 = 0, r ≥ 1, (34)

where, in particular, for r = 2,

g2(κ2, κ3) = κ3 − κ2
2 = 0. (35)

Now, let n(k) = ∏k
i=1(n− (i− 1)), and define

S(X) .
=T3(X)−T2,2(X), (36)

with
T3(X) =

1
n ∑ X3

i −
3

n(2)
∑
i 6=j

XiX2
j +

3
n(3)

∑
i 6=j 6=k

XiXjXk, (37)

and
T2,2(X) =

1
n(2)

∑
i 6=k

X2
i X2

j −
2

n(3)
∑

i 6=j 6=k
XiXjX2

k +
1

n(4)
∑

i 6=j 6=k 6=l
XiXjXkXl , (38)

where the summations in (37) and (38) are taken over all distinct indices i, j, k, and l, ranging
between 1 and n. It then can be simply shown that E[S(X)] = g2(κ2, κ3) = κ3 − κ2

2 = 0.
Note also that the two components of S(X) can be represented in terms of Lr = ∑n

i=1 Xr
i ,

r = 1, 2, . . ., as follows:

T3(X) =
1
n

L3 −
3

n(2)
(L1L2 − L3) +

3
n(3)

(
L3

1 − 3L1L2 + 2L3

)
(39)

and

T2,2(X) =
1

n(4)

[
(n2 − 3n + 3)L2

2 − (n2 − n)L4 − 2nL2L2
1 + 4(n− 1)L3L1 + L4

1

]
. (40)

For brevity, we omit calculation details of (39) and (40).
We now have all the ingredients for the following characterization proposition of

NEF-EVF distributions.

Proposition 4. Let F be a non-degenerate distribution and X = (X1, . . . , Xn) be a random sample
of size n ≥ 4 taken from F having a finite third moment with κ3 > 0. Then, S(X) has a zero
regression on L1 iff F is an NEF-EVF distribution.

Proof. We prove only the necessity part of the proposition as its sufficiency part is easily
verified. Let f (t) be the characteristic function of F, h(t) = ln f (t), and Nδ be some δ-
neighborhood of the origin. Then by Lemma 1.1.1 of [33] and Lemma 1 of [38], it follows
that if S(X) has a zero regression on L1, then

E
(

S(X)eitL1
)
= f n(t)

{
i−3h(3)(t)− i−4

[
h(2)(t)

]2
}

= 0, t ∈ Nδ,

where h(j)(t) = djh(t)/dtj, j = 1, 2, 3. Thus,

ih(3)(t)−
[

h(2)(t)
]2

= 0 or i
h(3)(t)
h(2)(t)

= h(2)(t), t ∈ Nδ,

which by integrating becomes

i ln h(2)(t) = h(1)(t) + c1.
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Set u = h(1), then u′ = c2e−iu. Integration using the separation variable technique
leads to

u = h(1)(t) = −i ln(1 + c3t) + c4,

and hence
h(t) = −ic−1(1 + ct) ln(1 + ct) + at + b,

where ci, i = 1, . . . , 4, a, b and c are arbitrary constants with c 6= 0. Since h(0) = 0 and
h(j)(0) = ijκj, it follows that b = 0, a = i(κ1 + 1), and c = −iκ2, so that

h(t) = κ−1
2 (1− iκ2t) ln(1− iκ2t) + i(1 + κ1)t. (41)

To conclude the proof, we need to verify that (41) is the cumulant characteristic
function of an NEF-EVF distribution. Indeed, by (17) it follows that h(t) corresponding
F(µ1) has the form

it + θ ln(−θ)− (θ + it) ln(−((θ + it)), θ < 0. (42)

With (17), we obtain κ1 = k′1(θ) = − ln(−θ) and κ2 = k
′′
1(θ) = (−θ)−1. Substituting

these into (42) yields the expression in (41).

4.9. Large Deviations

1. In his seminal pioneering study of the characterization of NEFs by their VFs, ref. [3]
introduced the following large deviation theorem for NEFs (see [3] Equation (9.1)).
Let F = F(µ) be an NEF with VF V(m) = σ2, then for all t ≥ 0,

P
(

X−m
σ

≤ t
)
≤ exp(−B(t)),

where

B(t) = σ2
∫ t

0

t− w
V(m + σw)

dw.

Applying this to an NEF-EVF F(µ1) in (22) and taking into account that the corre-
sponding skewness coefficient is γ1 = em/2 (see (29)) yields an interesting result in
which the upper bound depends only on the skewness coefficient,

P
(

X−m
em/2 ≤ t

)
≤ exp

{
−
[
γ1t + e−γ1t − 1

]}
, t ≥ 0.

5. Statistical Aspects of EDM-EVFs

In general, for various statistical aspects, particularly for generalized linear model
(GLM) applications, it is more effective to represent an absolutely continuous EDM distri-
bution to resemble the normal structure, i.e., instead of (12), writing the model densities as{

P(θ, ϕ, νϕ(dy))) = exp
{

ϕ−1[θy− kν(θ)]
}

νϕ(dy), θ ∈ Θν, ϕ ∈ Λ
}

, (43)

(c.f., [18,40,41]. The structure in (43) is inappropriate for the discrete case (counting mea-
sures on N), as for different ϕs, it changes the support of the measure νϕ. For the latter case,
the structure in (12) is appropriate.
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Accordingly, for obtaining the structure (43) for EDM-EVF densities given in (25), we
denote ϕ = p−1 and map x → ϕx. This yields

g(y : θ, ϕ) = f1−ln ϕ(y) exp
{

ϕ−1[θy− k1(θ)]
}

=
(

1
π

∫ ∞
0 e(1−y)t−t log t ϕ−t sin(πt)dt

)
exp

{
ϕ−1[θy− (θ − θ ln(−θ))]

}
,

y ∈ R, (θ, ϕ) ∈ R− ×R+.

(44)

as the densities that are appropriate for GLM applications as well as other statistical
applications. Note that we also changed the variable of interest from x to y to make it more
suitable for GLM usage. Accordingly, in the sequel, we denote a random sample of size n
taken from (44) by Y = (Y1, . . . , Yn).

Henceforth, we shall describe the following statistical features related to EDM-EVF of
the form (44): (1) maximum-likelihood estimation; (2) second-order minimax estimation of
the mean; (3) test of hypotheses aspects; and (4) practical steps towards GLM applications.
For estimation problems, we shall see that the steepness property of EDM-EVF plays an
important role.

5.1. Maximum-Likelihood Estimates (MLEs) of the Mean and Dispersion Parameters

The log-likelihood function of (θ, ϕ) based on the random sample Y = (Y1, . . . , Yn)
taken from (44) is

l(θ, ϕ) =
n

∑
i=1

f1−ln ϕ(yi) + ϕ−1

[
θ

n

∑
i=1

yi − nk1(θ)

]
. (45)

Note that for the one-parameter case with known ϕ, the maximum likelihood equation
for θ yields

m̂ = k′1(θ̂) = Ȳn with probability 1. (46)

This follows since the NEF (44) is steep (see [15], Chapter 9.6). The same result holds
for the two-parameter case as well. Note, by (21), that k′1 is strictly increasing so its inverse
ψ1 = −e−m is well defined. Hence, the MLE for θ (for both cases where ϕ known or
unknown) is θ̂ = −e−Ȳn . Let

f ′1−ln ϕ(yi) =
d f1−ln ϕ(y)

dϕ
= −

(
1
π

∫ ∞

0
e(1−y)t−t log t ϕ−(t+1) sin(πt)dt

)
, (47)

then, the maximum-likelihood equation for ϕ is

n

∑
i=1

f ′1−ln ϕ̂(yi)− ϕ̂−1
n

[
θ̂

n

∑
i=1

yi − nk1(θ̂)

]
= 0, (48)

where ϕ̂ = ϕ̂n is the MLE of ϕ. Equation (48) can be solved numerically with Newton–
Raphson’s method or any other search algorithm, as is performed with all NEFs generated
by positive stable distributions—all of which have integral forms of their generating
measures.

One more aspect should be raised concerning the corresponding information matrix.
Let l(ij) = l(ij)(θ, ϕ), i, j = 1, 2, denote the second partial derivative of l(θ, ϕ) with respect
to θ and ϕ (where the first index i relates to differentiation with respect to θ and the
second index j with respect to ϕ), and I(ij) = I(ij)(θ, ϕ) = E(l(ij)(θ, ϕ); y). Since f1−ln ϕ(y)
is differentiable in ϕ, for almost all y ∈ R, the corresponding Fisher information matrix
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I(θ, ϕ) = ||Iij(θ, ϕ)||2i,j=1 is diagonal; i.e., the parameters θ and ϕ are orthogonal. This
observation can be easily seen as

l(12) = − 1
ϕ2

(
n

∑
i=1

Yi − nk′1(θ)

)

and E(Yi) = k′1(θ), i = 1, . . . , n. Moreover, adopting the tools and methods developed
by [42], it is seen that

n1/2(ϕ̂n − ϕ) =
1

I22(θ, ϕ)n1/2

∞

∑
i=1

∂l(Yi : θ, ϕ)

∂ϕ
+ rn(Y :θ, ϕ),

where rn(Y :θ, ϕ) →
a.s.

0 as n → ∞. Moreover, the moments of n1/2(ϕ̂n − ϕ) exist and

converge, respectively, to the moments of N(0, I−1
22 (θ, ϕ)), from which it can be deduced

that
n1/2(ϕ̂n − ϕ)

D→ N(0, I−1
22 (θ, ϕ)) as n→ ∞.

5.2. Second-Order Minimax Estimation of the Mean

Bar-Lev and Landsman [42] presented a modified second-order minimax estimator
for the mean of EDMs associated with steep NEFs and established some of its asymptotic
properties. They provided some necessary and sufficient conditions for such a modified
estimator to improve on the sample mean Ȳn. One of their necessary conditions requires the
steepness of the EDM, as indeed is the case with EDM-EVF. They considered the EDM-EVF
and showed the following result as a specific example.

Theorem 3 ([42], Theorem 4). The estimator Ȳn of mean m can be improved in the second-order
minimax sense with respect to the power weight q(m) = exp(βm) iff β = 2. Consequently,
the second-order minimax estimator, which improves Ȳn for any m ∈ R, is given by

m∗n = Ȳn −
1
n

ϕ̂neȲn ,

where its mean squared error is

Em,ϕ(m∗n −m)2 =
1
n

ϕem(1− 1
n

ϕem + o(
1
n
)).

5.3. Testing Hypotheses

Various tests are available for model fit of the EDM-EVF for real data. Among them
are extensive literature studies dealing with goodness-of-fit (gof) tests. Some are based
on characterizations of the distributions belonging to the null hypothesis. Indeed, as [43]
pointed out, characterization theorems or properties can be natural and practical starting
points for constructing gof tests and are essential for assessing the validity of distributional
models. The first idea of constructing gof tests based on a characterization of distribution
in the realm of the null hypotheses is due to [44] (see [45]). Since then, various studies of
constructing gof tests have been suggested; for example, those developed by [46–49], and
the references cited therein. However, the earliest explicit use of a characterization theorem
for constructing a gof test was presented by [50], who used Shannon’s maximum entropy
characterization to construct a test for a composite hypothesis of normality.

Recently, ref. [51] employed the zero regression characterizations for the Tweedie
class with γ ≥ 1, of NEFs having power VFs of the form amγ to construct novel gof tests
for deviation from any given family belonging to the Tweedie class. The zero regression
characterizations are those obtained by [31,34] for all the Tweedie class, including those
members with γ < 0—see a comment on the latter members in the sections of conclusions.
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Accordingly, a similar gof test for testing
H0 : F = NEF-EVF

H1 : F 6= NEF-EVF

can be obtained by employing the zero regression characterization for the NEF-EVF pre-
sented in Proposition 4. The test statistic is naturally Ŝn(Y)

.
= S(Y) defined in (36)–(40).

This test statistic has the desirable properties as detailed in the following theorem. When-
ever convenient, we use F0 and FA to denote F in H0 and H1, respectively. We also adopt

the symbols a.s.→, D→ and ∼ for almost sure convergence, weak convergence (in distribution),
and equivalence, respectively, as n→ ∞.

Theorem 4. Let Y = (Y1, . . . , Yn) be a random sample of size n ≥ 4 taken from a distribution
F having first six finite moments, and let Ŝn(Y) be the statistic defined in (36)–(40). Then, the
following properties hold:

(i)
EFA(Ŝn(Y)) = s .

= g2(κ2, κ3) = κ3 − κ2
2 and EF0(Ŝn(Y)) = 0.

(ii)
Ŝn(Y)

a.s.→ s under FA and Ŝn(Y)
a.s.→ 0 under F0.

(iii)
VF(Ŝn(Y)) ∼

c
n

(49)

where c is a constant depending on the first six moments of F.
(iv)

Ŝn(Y)− s√
VFA(Ŝn(Y))

D→ Z ∼ N(0, 1) and
Ŝn(Y)√

VF0(Ŝn(Y))

D→ Z, (50)

(v) Under H0,
nŜ2

n(Y)
D→ cχ2

1, (51)

where χ2
1 denotes a chi-squared distribution with 1 degree of freedom.

The proof of this theorem is straightforward but somewhat tedious. It can be conducted
like that used in [51] for the Tweedie scale families. As this paper is mainly expository,
we omit such a proof for brevity. We do, however, sketch some helpful points related to
this proof. The first part is followed easily by the derivations preceding Proposition 4.
For the three other parts, note that Ŝn(Y), defined in (36)–(40), is a polynomial in the sample
moments Li/n, i = 1, 2, 3. Hence, the almost sure convergence in part (ii) is straightforward.
The variance of Ŝn(Y) can be computed by VF(Ŝn(Y)) = EF(Ŝ2

n(Y))− s2. Then, by (36)–(40),
note that the squared form of Ŝ2

n will yield expressions involving Y6
i , a fact implying that

the variance of Ŝn, and thus also c, will be involved with the sixth moment of F. The proof
of part (iv) follows from the asymptotic multivariate normality of (L1, L2, L3), appropriately
scaled, and then the application of well-known and old results concerning the asymptotic
normality of a function of these sample moments (c.f., [52,53]. Part (v) trivially follows
from (49) and (50).

Consequently, as a testing procedure under H0, one inclines to reject H0 for absolute
large values of Ŝn(Y) or large values of Ŝ2

n(Y). Theorem 2 presents the general result
concerning the asymptotic null distribution of nŜ2

n(Y). This limiting distribution depends
on c, which is a function of the first six moments α1, . . . , α6 of the NEF-EVF distribution.
So, we can write c = c(α), where α = ( α1, . . . , α6). Expressions for the αi’s can be obtained
directly from (27) and (28) with p = 1. Indeed, the cumulants of the NEF-EVF are given by

κr+1 = (r− 1)!erm, r = 1, 2, . . . ,
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and the central moments are given in (28) as functions of the κr’s. Thus, for instance,
α1 = κ1 = m and α2 = em(1 + em), i.e., the the αi’s, i = 2, . . . , 6, are polynomials in the em.
As the MLE for m is Ȳn, we immediately obtain the MLE ĉ = ĉ(α̂) for c. The latter result is
crucial when calculating the proposed test’s power.

Accordingly, an approximation of the p-value of the test is obtained by using (51) as

p̂ = 1− Fχ2
1
(nĉ−1Sobs

n (y).

One can also approximate the p-value and the critical points using a parametric
bootstrap approach by applying the following procedure as suggested by [51]:

1. For some large integer B, repeat the following steps for every b ∈ {1, . . . , B};
(a) Generate a bootstrap sample Y∗b1 , . . . , Y∗bn ;
(b) Based on the bootstrap sample, calculate the bootstrap S∗bn version of test

statistic Sn;

2. Approximate the p-value with

p̂ =
1
B

B

∑
b=1

I(S∗bn ≥ Sobs
n )

and the critical point with S∗bc:B,n, where c = d(1− α)Be and d·e is the ceiling function.
Various alternatives in H1 are listed in the introduction section above. Simulations

should then be executed to assess the performance of the proposed gof test in terms of type
I error rate.

5.4. Practical Steps towards GLM Applications

For GLM applications, we need the following ingredients. Equation (44) presents
the EDM-EVF densities in the form required by GLM. However, for better insight, we
represent them in terms of the mean m (rather than in terms of θ) as

g(y : m, ϕ) = f1−ln ϕ(y) exp
{

ϕ−1[θ(m)y− k1(θ(m))]
}

,
y ∈ R, (θ, ϕ) ∈ R− ×R+,

(52)

where, by (21), the mean value parameterization, θ(m) and k1(θ(m)) are

θ(m) = −e−m and k1(θ(m)) = −e−m(m + 1), (53)

with VF
(V, M) = (ϕem, m ∈ R). (54)

If Y ∼ g(· : m, ϕ), we also use the standard EDM’s notation and write Y ∼ EDM−
EVF(m, ϕ). The mean, variance, and cumulants of such a Y are

E(Y) = m, V(Y) = ϕem, κr(m) = (r− 1)!ϕrerm, r ≥ 3. (55)

We shall now consider two essential ingredients needed for GLM applications of
EDM-EVFs (52), namely, the scaled deviance and the link function. These were introduced
by [18,41] (see also [40,54]. We also discuss some relevant computational aspects involved.

1. Scaled deviance and link function
Consider

t(y, m) = yθ(m)− k1(θ(m)).

Then, as (52) is steep, it follows that maxm g(y : θ(m), ϕ) is obtained at y = m (see (46)
for n = 1). Hence, the unit deviance

d(y, m) = 2[t(y, y)− t(y, m)]
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can be considered as a distance measure with two properties: d(y, y) = 0 and
d(y, m) > 0 for y 6= m. For the EDM-EVF, we obtain by (53) that

t(y, m) = −ye−m + e−m(m + 1),

and thus, for EDM-EVF,

d(y, m) = 2
[
−ye−y + e−y(y + 1)− (−ye−m + e−m(m + 1))

]
.

Consequently, (52) can be rewritten as

g(y : m, ϕ) = g(y : y, ϕ) exp
{
− 1

2ϕ
d(y, m)

}
.

GLMs assume a systematic component where the linear predictor

η = β0 +
p

∑
j=1

β jxj

is linked to the mean m through a link function g such that g(m) = η. For the
EDM-EVF, we choose the canonical link function

η = g(m) = θ(m) = −e−m,

a relatively simple link function.
The set of observations is y = (y1, . . . , yn)T , where the yi’s are independent with yi ∼
EDM− EVF(mi, ϕ) and is associated with the link function ηi = β0 + ∑

p
j=1 β ji xji, i =

1, . . . , n. Here, the set of covariates is n× p matrix X so that we may write η = Xβ.
The total and scaled deviances are given, respectively, by

D(y, m) =
n

∑
i=1

d(yi, mi)

and

D∗(y, m) =
D(y, m)

ϕ
.

When the saddlepoint approximation holds (and it holds for EDM-EVF—
see [54]), the scaled deviance distribution follows an approximate chi-square dis-
tribution,

D∗(y, m) ∼ χ2
n,

at the true values of mi (for all i) and ϕ. Consequently, the log-likelihood is

l(m.ϕ) = ln ∑ g(y : y, ϕ)− D∗(y, m).

All of the above provides all the necessary ingredients for GLM applications.
Computational aspects
Therefore,we reason to call the Tweedie scale a Tweedie NEF with power infinity.
The Tweedie class is composed of power VFs in the form V(m) = ϕmγ, where for
γ > 2, the corresponding NEFs are generated by positive stable. We already noticed
in Section 4.2 that the VF of the EDM-EVF is a limit of a sequence of VFs in the
Tweedie scale distributions (which are absolutely continuous with respect to Lebesgue
measures on R+), except for the inverse Gaussian NEF (γ = 3), none of which have
an expressible density function but rather are expressed in terms of integral form
(or power series)—a situation that also occurs with the EDM-NEF (power infinity).
The Tweedie scale with power γ < 0 is comprises NEFs generated by extreme stable
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distributions and lacks the steepness property (this will be discussed in the concluding
remarks section). At this point, it seems fair to note that the Tweedie class should also
be attributed to [28] in their study of power VFs through the analysis of the notion of
reproducibility (see [29], for further details). Indeed, in recent papers, the Tweedie
class was abbreviated as the TBE class.
The situation above, whereby this class of NEFs does not have explicitly expressed
densities, probably prevented its use for statistical modeling for quite some years.
This complexity has then been resolved due to the availability of powerful mathemat-
ical software. Ref. [54] studied two methods for evaluating the density function of
a Tweedie distribution, which are based on the inversion of the cumulant generat-
ing function while using the Fourier inversion and the saddlepoint approximation.
An algorithm for evaluating their density function based on series expansions was
presented by [55] (for these evaluation aspects, see also [56,57]. Dunn created and
maintained the Tweedie R package [58], while [59] contributed to and maintained
the statmod R package. In this frame, the function tweedie.profile in the tweedie R
package practically enables the fit of TBE models. These packages can be extended to
include the EDM-EVF as well.

6. Concluding Remarks

In this study, we presented a comprehensive review and further developed various
properties of the class of EDM-EVF distributions and found it is abundant with probabilistic
and statistical properties. This class of absolutely continuous distributions, supported on
the whole real line, possesses simple VF, cumulants, and central moments with skewed dis-
tributions to the right and leptokurtic. In the context of probabilistic aspects, we illustrated
the following features of EDM-EVF distributions related to reciprocity, self-decomposability,
unimodality, reproducibility, duality, chainability, and large deviations. Also, we provided
some characterizations by zero regression on the sample mean.

We also described some aspects of statistical features. Mainly, we considered maximum-
likelihood estimation, second-order minimax estimation of the mean, and hypotheses test-
ing and presented practical steps toward generalized linear model applications. However,
applying the EDM-EVF distributions to real-world data presents a multifaceted challenge
that necessitates using advanced estimation techniques and corresponding goodness-of-fit
tests. These challenges primarily revolve around computational complexities. The first
significant challenge lies in estimating the parameter p. This estimation must be executed
numerically, as the probability density function includes an integral with no closed-form
solution. The second challenge arises when someone wants to use a classical goodness-of-fit
test, such as the Kolmogorov–Smirnov. Since we have a composite goodness-of-fit test,
the computation of the p-value of the test should be done by using bootstrap methods. This,
in turn, requires both the development of an algorithm for generating random values from
the EDM-EVF distribution and the development of an algorithm to estimate the unknown
parameters. All of these make it even more complex for GLM applications. The execution
and analysis of the latter statistical aspects constitute a distinct project as it involves devel-
oping appropriate tools, for example, in R. Such a computationally-oriented project is now
being carried out in collaboration with other researchers.

We trust that the proposed EDM-EVF will play an important role in modeling real
data, mainly due to its simple link function, simple mean value parameterization, and other
properties.
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