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Abstract: Major threats to biodiversity are climate change, habitat fragmentation (in particular, habitat
loss), pollution, invasive species, over-exploitation, and epidemics. Over the last decades habitat
fragmentation has been given special attention. Many factors are causing biological systems to extinct;
therefore, many issues remain poorly understood. In particular, we would like to know more about
the effect of the strength of inter-site coupling (e.g., it can represent the speed with which species
migrate) on species extinction or persistence in a fragmented habitat consisting of sites with randomly
varying properties. To address this problem we use theoretical methods from mathematical analysis,
functional analysis, and numerical methods to study a conceptual single-species spatially-discrete
system. We state some simple necessary conditions for persistence, prove that this dynamical system
is monotone and we prove convergence to a steady-state. For a multi-patch system, we show that the
increase of inter-site coupling leads to the formation of clusters – groups of populations whose sizes
tend to align as coupling increases. We also introduce a simple one-parameter sufficient condition for
a metapopulation to persist.
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1. Introduction

In recent decades, significant attention has been directed towards the factors and
processes that lead to the survival or extinction of natural populations [1]. This focus
has been spurred by ongoing global environmental changes, including the impact of
global warming on populations and communities [2]. One specific consequence of global
warming is the alteration of species ranges and the fragmentation of habitats. Additionally,
habitat fragmentation can occur due to human activities such as forest logging and the
construction of new roads. Both habitat fragmentation and general habitat loss have a
noticeably detrimental impact on corresponding populations, often leading to species
extinctions [3,4]. In fact, habitat fragmentation is widely recognized as the most significant
threat to biodiversity on a global scale [5,6].

That is why it is importaint to understand population dynamics in a complex or
fragmented habitat and there is indeed a large number empirical and theoretical studies
addressing this issue [7–16]. The most widely used models of population dynamics in
a fragmented habitat are metapopulation models [4,17–22]. In this framework, a frag-
mented habitat is viewed as a collection of separate sites, with subpopulations of a species
residing in these sites. The subpopulations can be connected either through dispersal
between sites or by a shared external factor with spatial correlations, such as weather
fluctuations [23,24]. Metapopulation models can either be spatially implicit, where the state
of the metapopulation is described by a single global variable, for example the fraction of
occupied sites [4,17–19], or spatially explicit, where each site is characterized by its own
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’local’ variables, such as the size of a specific subpopulation [10,16,25], the propability of
a patch being inhabited [26] etc. The former case sometimes can show results similar to
lattice models [27,28] and network models [29,30], particularly when the relative locations
of sites are explicitly considered.

Numerous studies have investigated the persistence or extinction of metapopulations
in relation to habitat geometry [26,31,32], as well as environmental and demographic
stochasticity [33,34]. However, there is a noticeable scarcity of research that specifically
explores the impact of coupling strength between different sites on persistence or extinction,
even though it may be implicitly accounted for through habitat geometry, where coupling
strength generally diminishes with greater inter-site distance. Nevertheless, understanding
the impact of coupling strength is critical, especially in light of evidence suggesting that
inter-site coupling might be altered due to climate change [35,36].

It should be noted that the possibility of extinction depends on the type of density-
dependence observed in local population growth. In deterministic models, in a closed
system (i.e., without outward migration), populations with logistic growth cannot go extinct
because the extinction state is unstable [37–39]. However, natural populations rarely con-
form to logistic growth patterns. Instead, growth rates often exhibit the Allee effect [40–43],
which can be caused by many factors that are often present in real-life situations [44]. The
presence of a strong Allee effect significantly alters population dynamics [40,42,43,45–48].
Notably, the extinction state becomes stable, thus allowing for the possibility of extinction
within a closed population.

For a two-site system studied previously [49], it was demonstrated that, subject to
certain limitations, an increase in coupling strength can potentially trigger a population
outbreak, where the system transitions from a low-density steady state to a high-density
one. Mathematically, this transition corresponds to a saddle-node bifurcation, in which the
low-density steady state vanishes as a consequence of increased coupling. Although with
the model proposed below we focus on extinction rather than outbreaks, It will be shown
that the extinction may follow a sufficiently large increase in the coupling strength due to
essentially the same mechanism as in [49].

This paper complements the research done in [50] with linear coupling. Here we
consider two types of coupling: linear and quadratic. This work differs from the work done
in [50] in the sence that we use analytic methods from mathematical analysis, nonlinear
functional analysis, monotone dynamical systems theory etc. The methods are used to
prove some sufficient conditions for metapopulation persistence. We also show that the
solutions are bounded and analytic and we study the asymptotic behavior for some initial
conditions. In the end we present a one parameter criterion for a system to persist and
estimate the parameter.

2. Materials and Methods

The existence of a non-zero steady-state point for the case with logistic growth will be
proved analytically.

For the Allee effect we simulate both types of coupling using the RK45 method, which
is programmed in Python using scipy.integrate.solve_ivp. This method with standard
settings is perfect for the model with quadratic coupling; for linear coupling we will change
the settings, see this section below. The Euler method is not very efficient here because of its
slow convergence to the solution. Also the use of higher order methods can be motivated
by analyticity of solutions. We do not consider Runge-Kutta methods of higher order
because it is not necessary for our tasks. The RK45 method has global error on the order of
O(h5) [51].

We let ui(0) = max k j and change q with a step size of 0.5 from 0.5 to 20. It was checked
in simulations that t = 200 was sufficiently large to ensure the system’s convergence to its
steady-state distribution. For linear case we had to set the value of related tolerance to an
error rtol = 10−6 instead of default rtol = 10−3 to ensure the convergence for large q.
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In the section “Two-Patch System” we assume that the solution to the Cauchy problem
exists and is unique and continuously differentiable for t ≥ 0, it will be proved in the
section “Multi-Patch System”, which is written more formally and states all necessary
proofs. The section “Two-Patch System” helps become better acquainted with the model in
a simpler case.

3. Two-Patch System

In this section we consider the systems with a linear and quadratic coupling. The
linear coupling between two populations u and v is written as q(u− v) for some coefficient
q. The quadratic coupling between two populations u and v is written as q(u2 − v2) for
some coefficient q.

The quadratic coupling is also called density-dependent dispersal. It is due to the
fact that u2 − v2 = (u + v)(u− v). So the strength of the coupling depends on the total
population u + v.

Here we begin with a quadratic coupling as a continuation of the paper [50] with
linear model. Then we list some additional properties for a linear coupling which can be
analogously proven.

The dynamics of the two-patch system with a quadratic coupling is described by the
following equations:

du1

dt
= f1(u1) + q(u2

2 − u2
1),

du2

dt
= f2(u2) + q(u2

1 − u2
2), (1)

where f1, f2 are polynomials of the same form such that f1(0) = f2(0) = f1(k1) = f2(k2) = 0
for some positive real numbers k1, k2. Here we are considering polynomials of the forms
fi(ui) = αiui(1− ui

ki
) (logistic growth) and fi(ui) = αiui(ui − βi)(1− ui

ki
) (logistic growth

with an Allee effect) with positive coefficients, where βi < ki.
The properties of the system (1) are determined by its steady states; in particular, a

long-term persistence of the two subpopulations is only possible if there exists a stable
‘coexistence’ steady state, i.e., a positive solution of the following system:

f1(u1) + q(u2
2 − u2

1) = 0, f2(u2) + q(u2
1 − u2

2) = 0. (2)

From (2) we readly get:
f1(u1) + f2(u2) = 0. (3)

If q 6= 0, the system (2) can be rewritten as

u2
2 = u2

1 −
1
q

f1(u1), u2
1 = u2

2 −
1
q

f2(u2) (4)

When q→ ∞, we get u1 = u2.
Let u1(0) = u01, u2(0) = u02. By û1, û2 further we will denote the steady state values

for these initial conditions if they exist ( in a sence that u1(t) → û1, u2(t) → û2, when
t→ ∞).

If there are steady state values, then f1(û1) + f2(û2) = 0. So the Equation (3) is a
necessary condition for a point (û1, û2) to be a steady state point.

We also define u = u1+u2
2 , u0 = u(0), du

dt = f1(u1)+ f2(u2)
2 , Z( f ) = {u| f (u) = 0}.

The case q = 0 is not very interesting because the system (2) is simplified to f (u1) = 0,
f (u2) = 0, hence, a point (û1, û2) is a steady state point iff (û1, û2) ∈ Z( f1) × Z( f2) =
{(u1, u2)| f (u1) = 0, f (u2) = 0}.

There is another trivial case which is covered by Lemma 1.

Lemma 1. Let Z( f ) = {u| f (u) = 0}. Then for any û ∈ Z( f1)
⋂

Z( f2) we have a steady state
point (û, û).
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Proof. We fix any û ∈ Z( f1)
⋂

Z( f2). Let u01 = û, u02 = û. Then du1
dt (0) = du2

dt (0) = 0,
hence, the point (û, û) is a steady state point.

Now we consider more specific models: logistic growth and logistic growth with an
Allee effect. For the logistic growth the case k1 = k2 is trivial, for other two cases it is
enough to consider an example 1 below because another one becomes the example 1, if we
change indexes.

Example 1. fi(ui) = αiui(1− ui
ki
), i = 1, 2, k1 > k2; u1(0) = k2, u2(0) = k2, q 6= 0. Then

there is a non-zero steady state point.

Proof. We know that du1
dt |u1=u2 6=0 > 0 for u1 = u2 < k1, hence, for all t > 0 we have

u1(t) > u2(t). We note that du
dt > 0 when u1 ∈ [0; k1], u2 ∈ [0; k2]. This means that the

population cannot extinct because u(t) > k2 for all t > 0, in other words, we got that for all
t > 0 u1(t) > u2(t) > k2.

Let us now consider the behavior as t → ∞ (Figure 1). We know that du1
dt (0) > 0,

the function du1
dt is continuous, hence, it is positive in some neighborhood. It is also clear

that for i = 1 there exists ti > 0 (ti may be infinity) such that du1
dt (ti) = 0, otherwise there

would be some constant Ci > 0 such that du1
dt > Ci that would lead to u1 → ∞ – it is a

contradiction. So we have du1
dt (ti) = 0, and two cases: ti = ∞, and ti 6= ∞. If we have more

than one point ti we number the set T = {ti ∈ R
⋃{∞}| du1

dt (ti) = 0} in such way that
for any integer i between 2 and card(T) we will have ti−1 < ti (the set T is no more than
countable because du2

dt > 0).

Figure 1. The functions u1, u2 are monotonically increasing, the function du
dt is monotonically

decreasing and has a limit 0, that leads to an existence of a non-zero steady-state point. The first
coordinate of the ends of the lines is the value of u1 and u2 at the particular time:time = const. The
second coordinate of the centres of the lines is du

dt .

Let us first assume that ti 6= ∞. du2
dt > 0 while du1

dt > 0, nontrivial solution of an
autonomous system cannot approach a fixed point in finite time, hence, we have

du1

dt
(ti) = 0,

du2

dt
(ti) > 0,

hence, for some εi > 0 for all ε ∈ (0; εi] we have du1
dt (ti + ε) > 0, du2

dt (ti + ε) > 0. Repeating
these actions again, if the function du1

dt has infinite number of ti 6= ∞ such that du1
dt (ti) = 0

and du1
dt > 0 in some deleted neighborhood, we get that for any i ∈ N \ {1} ti−1 < ti and

du1

dt
(ti) = 0,

du2

dt
(ti) > 0.

It means that du
dt (t) > 0 for all t ∈ [0; ∞). The derivative du

dt (t) must approach zero,
otherwise there would be a constant C > 0 such that du

dt (t) > C for all t ∈ [0; ∞], leading
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to u1 → ∞ (∞← u < u1), which contradicts with u1 ≤ k1. Therefore, du
dt (∞) = du1

dt (∞) =
du2
dt (∞) = 0 because all the derivatives were non-negative. It means that there is a non-zero

steady-state point (u1, u2). Moreover, we also prooved that ∞ ∈ T, and that du2
dt > 0 while

du1
dt ≥ 0.

We are left to prove that there is a non-zero steady-state point (û1, û2) in case of
finite number of zeros of the derivative du1

dt . If we let t0 = 0 there is an index i such that
ti−1 < ti = ∞, εi = ∞, for all ε ∈ (0; ∞) we have du1

dt (ti−1 + ε) > 0, du2
dt (ti−1 + ε) > 0. It

means again that du
dt (t) > 0 for all t ∈ [0; ∞), hence, du

dt (∞) = du1
dt (∞) = du2

dt (∞) = 0, and
there is a non-zero steady-state point (û1, û2).

All stated above gives us a proof of a following theorem:

Theorem 1. The system (1) with logistic growth functions has a non-zero steady state point.

Remark. Another proof of Theorem 1 is given in the Section 4.1 (Theorem 6).

Example 2. fi(ui) = αiui(ui − βi)(1− ui
ki
), i = 1, 2, k1 > k2, β1 < k2 ; u1(0) = k2, u2(0) =

k2. There is a non-zero steady state point—the proof is identical to the proof in the Example 1.

Further we will consider the system with fi(ui) = αiui(ui − βi)(1− ui
ki
), i = 1, 2, k1 >

k2, β1 > k2.
Firstly, we note that if q ≤ max

u2∈(β2;k2)

f2(u2)

u2
2

, then there is a steady state point (u1; u2), u1 <

u2 ∈ (β2; k2]. For q = 0 it is obvious. For q > 0, indeed, this means that there exists
u02 ∈ (β2; k2) (that will be the initial condition for u2, and 0 for u1) such that f2(u20)−
qu2

20 ≥ 0. du2
dt ≥

du2
dt |u1≡0 ≥ 0, f2(k2) + q(u2

1 − k2
2) = q(u2

1 − k2
2),

du1
dt |u2=u1≤k2 < 0, hence

u1(t) < u2(t) ≤ k2 for all t > 0. The function u2 as a monotone bounded continiously
differentiable function has a limit û2 ∈ [u02; k2] as t → ∞. du1

dt > du1
dt |u2=const > 0 for all

t, but du1
dt must approach 0, otherwise it contradicts with the condition du1

dt |u2=u1≤k2 < 0,
hence, there is a limit û1 ∈ (0, û2].

Now we consider a system with a linear coupling:

du1

dt
= f1(u1) + q(u2 − u1),

du2

dt
= f2(u2) + q(u1 − u2), (5)

where f1, f2 are of the same types as in (1).
In this case Examples 1 and 2 will have the same proofs as in (1) because we used only

monotone property of the functions and their transitional points, which are the same.
Further for the case fi(ui) = αiui(ui − βi)(1− ui

ki
), i = 1, 2, k1 > k2, β1 > k2 we in the

same way get that if q ≤ max
u2∈(β2;k2)

f2(u2)
u2

then we have a non-zero steady state point.

Remark. Local extrema of the functions fi in the system with the Allee effect can be easily computed:

fi(ui) = αiui(ui − βi)(1−
ui
ki
) = −αi

ki
u3

i +
αi(βi + ki)

ki
u2

i − αiβiui

f ′(ui) = −
3αi
ki

u2
i +

2αi(βi + ki)

ki
ui − αiβi

uimax =
βi + ki +

√
(βi + ki)2 − 3βiki

3

uimin =
βi + ki −

√
(βi + ki)2 − 3βiki

3
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That helps us to state the following theorem.

Theorem 2. Let q 6= 0. For both systems (1) and (5) there is a sufficient condition for the case with
fi(ui) = αiui(ui − βi)(1− ui

ki
), i = 1, 2, k1 > k2, β1 > k2:

f1(u1max) + min
u2∈[β1;u1max ]

f2(u2) ≥ 0 (6)

then we have a non-zero steady state (u∗1 , u∗2) with u∗1 , u∗2 ∈ [β1; u1max].

We note that the condition does not include the parameter q meaning that the system will
have a non-zero steady-state point for all q > 0. Now let us prove this sufficient condition.

Proof. Let Qi = max
ui∈[β1;u1max ]

fi(ui), Ri = min
ui∈[β1;u1max ]

fi(ui). Then we have Q1 ≥ −R2.

We need to prove that there is always an intersection of curves l1, l2 on [0;+∞) ×
[0;+∞) \ {(0, 0)}, where the curves are defined by the following implicit equations:

l1 : f1(u11) + qd(u21, u11) = 0; (7)

l2 : f2(u22) + qd(u12, u22) = 0; (8)

where d(u1, u2) = u1 − u2 for the case without the Allee effect and d(u1, u2) = u2
1 − u2

2 for
the case with the Allee effect. This is equivalent to

qd(u11, u21) = f1(u11);

qd(u12, u22) = − f2(u22).

Then on the set [β1; k1]× [β1; k1] we have

0 ≤ R1

q
≤ d(u11, u21) ≤

Q1

q
;

0 <
−Q2

q
≤ d(u12, u22) ≤

−R2

q
;

moreover, d may take all values in between R1
q , Q1

q , and −Q2
q , −R2

q respectively due to

continuity of all functions. We have an inequality Q1 ≥ −R2, hence, 0 ≤ d(u12, u22) ≤ Q1
q .

Therefore, letting u1 = u11 = u12 and getting u21(u1) and u22(u1) from (7) and (8)
for u1 ∈ [β1; k1] (for the (7) we firstly get u1(u21) and then use the Cardano method
(see [52], p. 135–140) to get the inverse of a cubic function), we finally get that we have
a continuous function of one variable g(u1) = d(u1, u21(u1)) − d(u1, u22(u1)) such that
g(β1) = d(β1, β1) − d(β1, u22(u1)) = −d(β1, u22(u1)) < 0 because u22(u1) < β1, and
for u1max we have g(u1max) = d(u1max, u21(u1max))− d(u1max, u22(u1max)) =

1
q ( f1(u1max) +

f2(u22(u1max))) ≥ 1
q (Q1 +R2) ≥ 0 because u22(u1max) ∈ [k2; u1max], hence, f2(u22(u1max)) >

R2. Therefore, if g(u1max) > 0 then, by the intermediate value theorem [53], there is a
point u∗1 ∈ (β1; u1max) or if g(u1max) = 0 then there is a point u∗1 = u1max such that
d(u∗1 , u21(u∗1)) = d(u∗1 , u22(u∗1)) and (u∗1 , u21(u∗1)) is a point on a curve l1 and (u1, u22(u∗1))
is a point on a curve l2. But that means that u21(u∗1) = u22(u∗1) =: u∗2 . So there is a point
(u∗1 , u∗2) ∈ [β1; u1max]× [β1; u1max] that lies on both curves.

4. Multi-Patch System
4.1. Existence and Uniqueness, Steady-State Points

Let N+ be the set of positive integers, N ∈ N+, Rn (for n ∈ N+, n ≤ N) be a
n-dimentional (topological) vector space over real numbers with a standard euclidean
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topology (with a norm || · || defined for x = (x1, . . . , xn) ∈ Rn as ||x|| =
√

n
∑

i=1
x2

i ). We

define R+ = [0, ∞), 1, N = {1, . . . , N}. We can define a ball with a center at x ∈ Rn and
with a radius r ∈ R+: B(x, r) = {ξ ∈ Rn| ||ξ − x|| < r}.

Here we will consider a system of N equations:

dui
dt

= fi(ui) +
N

∑
j=1

qijd(uj, ui) = Fi(u1, ..., uN), i ∈ 1, N,

where all fi(ui) = αiui(1 − ui
ki
), αi > 0, ki > 0 or all fi(ui) = αiui(ui − βi)(1 − ui

ki
),

αi > 0, ki > βi > 0, d(uj, ui) = uj − ui or d(uj, ui) = u2
j − u2

i , for all i, j we have qij ≥ 0.
Or in a shorter form:

du
dt

= F(u). (9)

Let u = 1
N (u1 + ... + uN).

Further we sometimes will use a notation u(t, u0) for the solution of a Cauchy problem

du
dt

= F(u), u(0) = u0. (10)

Now we prove the boundedness of solutions with initial conditions u0 ∈ [−a, max k j +

a]N for some a ≥ 0 and get some important corollaries from that. We will need a paral-
lelepiped [−a, max k j + a]N with a 6= 0 in the next section.

Lemma 2. Let u be a solution for the system (9), let a ∈ R be a non-negative constant. If for some
t0 ∈ R, i0 ∈ 1, N we have ui0(t0) = −a or ui0(t0) = max k j + a and uj(t0) ∈ [−a, max k j + a]

for all j 6= i0 then for the case ui0(t0) = −a we have
dui0
dt (t0) ≥ 0 and for the case ui0(t0) =

max k j + a we have
dui0
dt (t0) ≤ 0.

Proof. (1) ui0(t0) = −a, hence, f (ui0(t0)) ≥ 0 and for all j ∈ 1, N ui0(t0) ≤ uj(t0) ∈

[−a, max k j + a]; therefore,
dui0
dt (t0) = f (ui0(t0)) +

N
∑

j=1
qi0 jd(uj, ui0) ≥ 0.

2) ui0(t0) = max k j + a, hence, f (ui0(t0)) ≤ 0, for all j ∈ 1, N ui0(t0) ≥ uj(t0) ∈

[−a, max k j + a] and
dui0
dt (t0) = f (ui0(t0)) +

N
∑

j=1
qi0 jd(uj, ui0) ≤ 0.

Lemma 3. Let dx
dt = g(x) be an autonomous system, g : Rn → Rn is a continuously differentiable

mapping, n ∈ N+. For any solution x of the system we define a set O(x) = {ξ|there is t0 ∈ R :
x(t0) = ξ}, which is called the orbit of a solution x. Then for any two solutions x1, x2 we either
have O(x1)

⋂
O(x2) = ∅ or O(x1) = O(x2).

Proof. Let x1, x2 be solutions of the system and O(x1)
⋂

O(x2) 6= ∅. Then there are t1, t2

such that x1(t1) = x2(t2). Let x(t) = x2(t+(t2− t1)). We have dx
dt (t) =

dx2
dt (t+(t2− t1)) =

g(x2(t + (t2 − t1))) = g(x(t)), hence, it is a solution. Moreover, x(t1) = x2(t2) = x1(t1).
Hence, x2(t + (t2 − t1)) = x(t) = x1(t) by the Picard-Lindelöf theorem (see [54], p. 86) and
O(x1) = O(x2).

Theorem 3. Let u be a solution for the system (9), and u(0) = u0 ∈ [−a; max k j + a]N for some
a ≥ 0. Then we have −a ≤ ui(t) ≤ max k j + a for all i ∈ 1, N, for all t ≥ 0.

Proof. Let us assume that it is true not for all t ≥ 0, S = {τ ≥ 0|for all 0 ≤ t ≤ τ − a ≤
ui(t) ≤ max k j + a for all i ∈ 1, N}, t0 = max S. By the definition of t0 we have the
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inequality −a ≤ ui(t0) ≤ max k j + a for all i, but for every neighborhood of the time t0 we
have some points at which the inequality is not true.

All functions ui, i ∈ 1, N are differential (in particular, continuous) because u is a
solution, hence (see [55], p. 61]):

ui(t0 + h)− ui(t0) = (
dui
dt

(t0) + φi(h))h, lim
h→0

φi(h) = 0.

For i such that dui
dt (t0) 6= 0 we can choose hi > 0 such that for all h : 0 < h < hi the

sign of a number dui
dt (t0) + φi(h) is the same as the sign of a number dui

dt (t0).
For i such that ui(t0) ∈ (−a; max k j + a) we can choose hi > 0 such that for all

h : 0 < h < hi we have ui(t0 + h) ∈ (−a; max k j + a) due to continuity of the function ui.
Let H = min hj. For i such that ui(t0) ∈ (−a; max k j + a) for all h : 0 < h < H

we have ui(t0 + h) ∈ (−a; max k j + a). By the lemma 2 for i such that ui(t0) = −a we

have dui
dt (t0) ≥ 0 and for i such that ui(t0) = max k j + a we have dui

dt (t0) ≤ 0. Hence,

if dui
dt (t0) > 0 then ui(t0 + h) − ui(t0) > 0, if dui

dt (t0) < 0 then ui(t0 + h) − ui(t0) < 0;
therefore, for all i ∈ 1, N, for all h : 0 < h < H we have −a ≤ ui(t0 + h) ≤ max k j + a – it is
a contradiction.

Now we consider a case when dui
dt (t0) = 0. From the system (9) we have dui

dt (t0) =

fi(ui(t0)) +
N
∑

j=1
qijd(uj(t0), ui(t0)). If ui(t0) = −a then we have d(uj(t0), ui(t0)) ≥ 0, hence,

fi(ui(t0)) = 0. If ui(t0) = max k j + a then we have d(uj(t0), ui(t0)) ≤ 0, hence, fi(ui(t0)) =
0. This is only possible when a = 0.

So now we have dui
dt (t0) =

N
∑

j=1
qijd(uj(t0), ui(t0)) = 0. Since for all j we have qij ≥ 0

and d(uj(t0), ui(t0)) are all of the same sign, we have that for all j it is true that qijd(uj(t0),
ui(t0)) = 0, so either qij = 0 or uj(t0) = ui(t0), and again by the Lemma 2 for all j such that

qij 6= 0 we get that the sign of a number
duj
dt (t0) is the same as the sign of a number dui

dt (t0).

d2ui
dt2 (t0) = ∑

j 6=i
qij

duj

dt
(t0) for linear coupling,

d2ui
dt2 (t0) = 2 ∑

j 6=i
qijuj(t0)

duj

dt
(t0) for quadratic coupling.

Let Ji = {j|qij 6= 0}.
(1) ui(t0) = 0. Then if there is j0 ∈ Ji such that

duj0
dt (t0) > 0 then d2ui

dt2 (t0) > 0, hence,
the function ui has a strict local maximum at a point t0 [53] – it is a contradiction. In the

other case d2ui
dt2 (t0) = 0. So for all j ∈ Ji we have

d2uj
dt2 (t0) = 0 (in particular, f j(uj)(t0) = 0)

and d2ui
dt2 (t0) = 0. We consider an autonomous system

dui
dt

= fi(ui) + ∑
j∈Ji

qijd(uj, ui),

duj

dt
= f j(uj) + ∑

l∈Jj

ql jd(ul , ui), j ∈ Ji.

By the Lemma 3 any two of its orbits are either disjoint or coinciding. The system has a
steady-state solution û(t) = (0, . . . , 0), but we also have ui(t0) = 0, uj(t0) = 0 for all j ∈ Ji.
Therefore, for all t ∈ R we have ui(t) = 0, uj(t) = 0 for all j ∈ Ji – it is a contradiction.

(2) ui(t0) = max k j. Then if there is j0 ∈ Ji such that
duj0
dt (t0) < 0 then d2ui

dt2 (t0) < 0,
hence, the function ui has a strict local minimum at a point t0 [53]—it is a contradiction.
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In the other case d2ui
dt2 (t0) = 0. So for all j ∈ Ji we have

d2uj
dt2 (t0) = 0 (in particular,

f j(uj)(t0) = 0) and d2ui
dt2 (t0) = 0. We consider an autonomous system

dui
dt

= fi(ui) + ∑
j∈Ji

qijd(uj, ui),

duj

dt
= f j(uj) + ∑

l∈Jj

ql jd(ul , ui), j ∈ Ji.

By the Lemma 3 any two of its orbits are either disjoint or coinciding. The system
has a steady-state solution û(t) = (max k j, . . . , max k j), but we also have ui(t0) = max k j,
uj(t0) = max k j for all j ∈ Ji. Therefore, for all t ∈ R we have ui(t) = max k j, uj(t) = max k j
for all j ∈ Ji – it is a contradiction.

Corollary. For u(0) = u0 ∈ [−a; max k j + a]N we have −a ≤ u ≤ k1+...+kN
N ≤ max k j + a.

Corollary (Picard–Lindelöf theorem). There is b < 0 such that the solution u(·, u0) : [b, ∞)→
[−a; max k j + a]N to the Cauchy problem (10) with an initial condition u(0) = u0 ∈ [−a; max k j +

a]N for some a ≥ 0 exists and is unique. Moreover, the dynamical system u(t, ξ) : [b, ∞) ×
[−a; max k j + a]N → [−a; max k j + a]N is continuous.

Proof. The function of the right part of the system and its derivative are bounded on a
compact set [−a; max k j + a]N (see [55], p. 33]). Then, informally speaking, we can get local
solutions (Picard-Lindelöf theorem) [54] with the same parameters and then cover the set
[b, ∞)× [−a; max k j + a]N with the parallelepipeds (of the same “sizes”) from the theorem.

Let us write out a more detailed proof. We write the family of solutions u(t, ξ) as a
sum u(t, ξ) = ξ + v(t, ξ). Then we have an equivalent Cauchy problem

∂v
∂t

(t, ξ) = F(ξ + v(t, ξ)) = G(t, ξ, v), v(0, ξ) = 0. (11)

Indeed, let u(t, ξ) be a solution to the Cauchy problem (10). Then 0 = u(0, ξ)− ξ =

v(0, ξ) and ∂v
∂t (t, ξ) = ∂(u−ξ)

∂t (t, ξ) = ∂u
∂t (t, ξ) = F(u(t, ξ)) = F(ξ + v(t, ξ)).

Now let v(t, ξ) be a solution to the Cauchy problem (11). Then u(0, ξ) = ξ + v(0, ξ) = ξ

and ∂u
∂t (t, ξ) = ∂(ξ+v)

∂t (t, ξ) = ∂v
∂t (t, ξ) = F(ξ + v(t, ξ)) = F(u(t, ξ)).

Now we consider an equivalent integral equation

v(t, ξ) =

t∫
0

G(τ, ξ, v(τ, ξ))dτ. (12)

Indeed, let v(t, ξ) be a solution to the problem (11). Then v(t, ξ) = v(t, ξ)− v(0, ξ) =
t∫

0

∂v
∂t (τ, ξ)dτ =

t∫
0

G(τ, ξ, v(τ, ξ))dτ (by the fundamental theorem of calculus, see [53]).

Now let v(t, ξ) be a solution to the integral Equation (12). Then v(0, ξ) = 0 and

∂v
∂t (t, ξ) = ∂

∂t

t∫
0

G(τ, ξ, v(τ, ξ))dτ = G(t, ξ, v(t, ξ)) [53]. In particular, the solution v(·, ξ)

is differentiable.
Further we prove that the solution to the integral Equation (12) exists and is unique.
On a compact set Ω = [−d, d]× [−a− c, max k j + a + c]2N ⊃ [−d, d]× [−a, max k j +

a]2N for some c, d ∈ (0, ∞) the function G is bounded by some constant K. |G(t, ξ, v1)−
G(t, ξ, v2)| = |F(ξ + v1(t, ξ)) − F(ξ + v2(t, ξ))| ≤ ( sup

v∈[−a−c;max kj+a+c]N
||F′(v)||) ∗ ||v1 −

v2||. Let M = sup
v∈[−a−c;max kj+a+c]N

||F′(v)||.



Mathematics 2023, 11, 4337 10 of 22

We fix ξ ∈ [−a, max k j + a]N .
We choose d > 0 such that
(1) (t, ξ ′, v) ∈ Ω, if |t| ≤ d, ||ξ ′ − ξ|| ≤ d and ||v|| ≤ Kd;
(2) Md < 1.
Let C∗ be a space of continuous functions defined on a “rectangle” R = {(t, ξ ′)| |t| ≤

d, ||ξ ′ − ξ|| ≤ d} such that ρ(v, 0) ≤ Kd where ρ is a metric on this space defined as
ρ(v(1), v(2)) = max

(t,ξ ′)
|v(1)(t, ξ ′)− v(2)(t, ξ ′)| (the maximum of the continuous function v(1) −

v(2) is correctly defined because the set R is compact). The space C∗ is a complete metric
space as a closed subset of a complete metric space of all continuous functions on R.

We consider another integral equation

ψ(t, ξ ′) =

t∫
0

G(τ, ξ ′, φ(τ, ξ ′))dτ =: (Aφ)(t, ξ ′), (t, ξ ′) ∈ R, φ ∈ C∗,

which defines an operator A such that ψ = Aφ. Now we prove that A : C∗ → C∗ is a
contraction mapping ([54], p. 82]) from the complete metric space C∗ to itself and use the
contraction mapping theorem [54] to show that there is a unique fixed point u ∈ C∗ such
that u = Au.

For φ ∈ C∗ and (t, ξ ′) ∈ R we have

|ψ(t, ξ ′)| =

∣∣∣∣∣∣
t∫

0

G(t, ξ ′, φ(τ, ξ ′))dτ

∣∣∣∣∣∣ ≤ Kd.

Hence, ρ(ψ, 0) ≤ Kd and ψ ∈ C∗. That means that A(C∗) ⊂ C∗. Moreover, for φ1, φ2 ∈

C∗ and ψ1, ψ2 such that ψ1 = Aφ1, ψ2 = Aφ2 we have ρ(ψ1, ψ2) ≤
d∫

0
max
(t,ξ ′)
|G(t, ξ ′, φ1(τ, ξ ′))−

G(t, ξ ′, φ2(τ, ξ ′))|dτ ≤ Mdρ(φ1, φ2). Since Md < 1, the operator A is a contraction map-
ping.

So we have a contraction mapping of a complete metric space to itself. Then by the
contraction mapping theorem there exists a unique solution v ∈ C∗ to the equation v = Av.
So, due to the arbitrarity of ξ ∈ [−a, max k j + a]N , for all ξ ∈ [−a, max k j + a]N there exists
a unique solution v(t, ξ) for |t| ≤ d which is continuously differentiable in t and continuous
in ξ.

Now we consider the following sequences of solutions to the problem (11):
{v(m)(t, ξ(m))}∞

m=0, where ξ(m) = ξ(m−1) + v(m−1)(d, ξ(m−1)) for m ∈ N+, ξ(0) = ξ ∈
[−a, max k j + a]N . We note that ξ(m) = ξ + ∑

0≤i<m
v(i)(d, ξ(i)).

We define a mapping v(t, ξ) = ξ(m) − ξ + v(m)(t−md, ξ(m)) for t ∈ [md, (m + 1)d) for
some m. It is a continuous mapping in t by the definition of a sequence.

For t ∈ [m0d, (m0 + 1)d) for some m0 we have

∀m ∈ N+ : m ≤ m0∀εm > 0∃ε0 > 0 : ξ ′ : ||ξ ′ − ξ|| < ε0 ⇒ ||ξ
′(m) − ξ(m)|| < εm

by continuity of all mappings. Hence, v(t, ξ) is a continuous mapping in ξ.
v(t, ξ) is a unique solution to the problem (11) in (m0d, (m0 + 1)d) by the definition of

a sequence. On the boundary we have:

∂v
∂t

(md, ξ) =
∂v(m)

∂t
(0, ξ(m)) = G(0, ξ(m), 0) = F(ξ(m))

= F(ξ + ξ(m) − ξ) = F(ξ + v(md, ξ)) = G(md, ξ, v(md, ξ)).
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Moreover, the derivative ∂v
∂t is continuous with respect to t on the boundary:

lim
t→md−0

∂v
∂t

(t, ξ) = lim
t→md−0

∂v(m−1)

∂t
(t− (m− 1)d, ξ(m−1))

= lim
t→md−0

F(ξ(m−1) + v(m−1)(t− (m− 1)d, ξ(m−1))) = F(ξ(m)).

Remark (to the Cauchy problem (10))). Let the conditions of the previous corollary be true. Then
u(t2, u(t1, u0)) = u(t2 + t1, u0) for all t1, t2 ∈ [ b

2 , ∞) (b < 0, see the previous corollary).

Proof. Let u(1)(t) = u(t, u(t1, u0)), u(2)(t) = u(t+ t1, u0). Then u(1)(0) = u(0, u(t1, u0)) =
u(t1, u0) and u(2)(0) = u(t1, u0). But by the assumption the solution to the Cauchy prob-
lem (10) is unique, hence, u(1)(t) = u(2)(t) for all t ∈ [ b

2 , ∞).

Theorem 4. There is b < 0 such that the solution u ∈ C∞((b, ∞); [−a; max k j + a]N) to the
Cauchy problem (10) with an initial condition u(0) = u0 ∈ [−a; max k j + a]N for some a ≥ 0
exists and is unique and analytic for all t ∈ (b, ∞) (its Taylor series at every point of the interval
(b, ∞) converge uniformly to the mapping u in some neighborhood of that point; see [53], p. 219).

Proof. All the functions Fi are analytic (their Taylor series converge because the functions
Fi are polynomials), hence, F is an analytic vector field. Then by the Cauchy-Kovalevskaya
theorem [56] we have a solution for any initial condition v0 ∈ [−a; max k j + a]N which is
analytic on some open interval J(v0), containing zero.

Let J(u0) be the maximal interval of convergence of the Taylor series of the solution
u(t, u0), and let us assume that SJ = sup J(u0) < ∞. From the previous remark we have
that u(t, u(SJ , u0)) = u(t + SJ , u0) and from the prevoius part of this proof we have that
the solution u(t, u(SJ , u0)) is analytic on some open interval J(u(SJ , u0)), containing zero.

But that means that dnu(0,u(SJ ,u0))
dtn =

dnu(SJ ,u0)
dtn and there is a neighborhood U ⊂ J(u(SJ , u0))

of zero such that for all t ∈ U

u(t + SJ , u0) =
∞

∑
n=0

dnu(SJ ,u0)
dtn

n!
((t + SJ)− SJ)

n =
∞

∑
n=0

dnu(SJ ,u0)
dtn

n!
tn.

—it is a contradiction. Hence, the solution is analytic for all t > 0. In particular, the solution
is smooth.

Theorem 5. If qij = q for all i, j and q ≤ max
i

max
ui∈(βi ;ki)

fi(ui)

u2
i

for quadratic coupling or q ≤

max
i

max
ui∈(βi ;ki)

fi(ui)
ui

for linear coupling, then there is a non-zero steady-state point.

Proof. The proof is the same as in the case of the two-patch system.

Theorem 6. The system with logistic growth always has a non-zero steady-state point.

To prove the theorem we have to prove a lemma about approximation of a steady-state
point by periodic points.

Lemma 4. For a dynamical system u(t, ξ) induced by the problem (10) let M be a compact set such
that for all ξ ∈ M for all t ≥ 0 we have u(t, ξ) ⊂ M, let {ξn}∞

n=1 ∈ M be a sequence of periodic
points where each point ξn has a period Tn > 0 and there are limits lim

t→∞
ξn = ξ0, lim

t→∞
Tn = 0.

Then the point ξ0 is a steady-state (fixed) point of the dynamical system u(t, ξ).

Proof. We prove the lemma by contradiction: we asume that the point ξ0 is not a steady-
state point, meaning that there is t0 > 0 such that u(t0, ξ0) 6= ξ0. Let γ = ||u(t0, ξ0)− ξ0||.
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Then the balls B(ξ0, γ
4 ) and B(u(τ, ξ0),

γ
4 ) do not intersect. Let us choose T such that

0 < T < t0 and ||u(t, ξ0)− ξ0|| < γ
8 for 0 ≤ t ≤ T. By continuity of u(t, ξ) there is δ > 0

such that choosing any ψ such that ||ψ− ξ0|| < δ implies that ||u(T, ψ)− u(T, ξ0)|| < γ
8

for 0 < t < T. In particular, we notice that if ||ψ − ξ0|| < δ then ||u(t, ψ) − ξ0|| =
||u(t, ψ)− u(t, ξ0) + u(t, ξ0)− ξ0|| ≤ ||u(t, ψ)− u(t, ξ0)||+ ||u(t, ξ0)− ξ0|| ≤ γ

8 + γ
8 = γ

4
for all t such that 0 ≤ t ≤ T.

There is N0 ∈ N+ such that for all n > N0 we have Tn < T and ||ξn − ξ0|| < δ. Hence,
||u(t, ξn)− ξ0|| < γ

4 for 0 ≤ t ≤ Tn < T. And as the orbit O(ξn) is periodic of period Tn,
we have ||u(t, ξn)− ξ0|| < γ

4 for all t ∈ R. But this contradicts with the fact that ||u(t, ξn)−
u(t, ξ0)|| < γ

4 because the last two statements mean that u(t, ξn) ∈ B(ξ0, γ
4 ) and u(t, ξn) ∈

B(u(τ, ξ0),
γ
4 ) and from the assumption we know that B(ξ0, γ

4 )
⋂

B(u(τ, ξ0),
γ
4 ) = ∅.

Proof of Theorem 6. Firstly we note that if for some t0 we have 0 < u(t0) <
min

j
kj

N then
du
dt (t0) > 0 because ui(t0) ∈ [0; ki], i ∈ 1, N and at least one of the populations is greater
than zero at the time t0. But that means that the metapopulation cannot extinct.

Let us consider a family of mappings Πtu0 = u(t, u0) for any u0 ∈ [
min kj

2N , max k j]
N ,

where Πt : [
min kj

2N , max k j]
N → [

min kj
2N , max k j]

N .

To apply the Brouwer fixed-point theorem [57–59] we need the set [
min kj

2N , max k j]
N to

be compact and convex, which is obviously true, and the mapping Πt : [
min kj

2N , max k j]
N →

[
min kj

2N , max k j]
N to be continious. The statement “all mappings Πt are continuous” means that

∀t > 0∀v0 ∈ [
min k j

2N
, max k j]

N∀ε > 0∃δ > 0 : ∀v ||v− v0|| < δ⇒ ||u(t, v)− u(t, v0)|| < ε

or equivalently that means the continuous dependence on initial conditions. But that is
true due to the Picard-Lindelöf theorem, hence, all mappings Πt are continuous.

Let {Tn}∞
n=1 ⊂ R+ be a monotone sequence such that there is a limit lim

n→∞
Tn =

0. And by the Brower fixed-point theorem for every n ∈ N+ there is a fixed point

ξn ∈ [
min kj

2N , max k j]
N of the mapping ΠTn . So we have ΠTn(ξn) = u(Tn, ξn) = ξn.

The sequence {ξn}∞
n=1 ⊂ [

min kj
2N , max k j]

N is bounded, hence, there is a subsequence

{ξnm}∞
m=1 ⊂ [

min kj
2N , max k j]

N such that there is a limit lim
m→∞

ξnm = ξ0 ∈ [
min kj

2N , max k j]
N .

Then by the Lemma 4 we conclude that the point ξ0 is a steady-state point.

4.2. Solutions as a Monotone Dynamical System

From the previous section we know that the dynamical system u(t, u0), defined by
the Cauchy problem (10), is bounded in RN

+ for u0 ∈ [−a, max k j + a]N for some a ≥ 0
in the sence that for all t ≥ 0 each component of a vector u(t, u0) is bounded by −a and
max k j + a in R+. The dynamical system u(t, u0) is continuous. It is analytical in the first
variable t.

In this section we prove that the dynamical system u(t, u0) is strongly-monotone;
moreover, we prove that it is asymptotically stable (as t→ ∞) for some initial conditions,
that are important for us, for example, in computer simulations. Here the asymptotical
stability means the convergence to some steady-state point.

On a topological vector space RN from the previous section we define non-strict partial
orders ≤ and < and a strict partial order� by the following rules:

x, y ∈ RN , x ≤ y iff for all i ∈ 1, N xi ≤ yi;

x, y ∈ RN , x < y iff for all i ∈ 1, N xi ≤ yi and x 6= y;

x, y ∈ RN , x � y iff for all i ∈ 1, N xi < yi.
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Remark. Let x, y ∈ RN . If x � y then there are neighborhoods U and V of x and y respectively,
such that for all u ∈ U,v ∈ V we have u ≤ v (We will denote it as U ≤ V).

Proof. By definition, x � y means for all i ∈ 1, N we have xi < yi. Then for all i ∈ 1, N
for all ui ∈ (xi −

yi−xi
2 , xi +

yi−xi
2 ) and vi ∈ (yi −

yi−xi
2 , yi +

yi−xi
2 ) we have ui ≤ vi, hence,

u = (u1, . . . , uN) ≤ v = (v1, . . . , vN).
So we can choose U = (x1 − y1−x1

2 , x1 +
y1−x1

2 ) × · · · × (xN − yN−xN
2 , xN + yN−xN

2 ),
V = (y1 − y1−x1

2 , y1 +
y1−x1

2 )× · · · × (yN − yN−xN
2 , yN + yN−xN

2 ).

Theorem 7. Let a ≥ 0. Let u(m) be a solution for an initial value problem u(m)(0) = u(m)
0 ∈

[−a; max k j + a]N , m = 1, 2. If we have u(1)(0)� u(2)(0) then for all t ≥ 0 we have u(1)(t)�
u(2)(t).

Proof. Due to continuity of the solutions the inequality u(1)(t) � u(2)(t) is true for t in
some neighborhood of 0. Let us prove the rest of the statement by contradiction: we
suppose that there is t0 > 0 and there are indexes i1, ..., ir0 (r0 ∈ N+) such that we have

u(1)
ir (t0) = u(2)

ir (t0) for all r ∈ 1, r0 and t0 is such that for all t < t0 we have u(1)(t)� u(2)(t).
We fix i0 ∈ {ij|j ∈ 1, r1}. From the system (9) we have

du(m)
i0

dt
= fi0(u

(m)
i0

) +
N

∑
j=1

qi0 jd(u
(m)
j , u(m)

i0
), m = 1, 2.

For the following Cauchy problems

du(m)
i0

dt
= fi0(u

(m)
i0

), u(1)
i0

(0)� u(2)
i0

(0), m = 1, 2, (13)

we would have u(1)
i0

(t) < u(2)
i0

(t) for all t due to uniquness of the solution, Theorem 4.
Then we note that

N

∑
j=1

qi0 jd(u
(1)
j (t0), u(1)

i0
(t0)) =

N

∑
j=1

qi0 jd(u
(1)
j (t0), u(2)

i0
(t0)) <

N

∑
j=1

qi0 jd(u
(2)
j (t0), u(2)

i0
(t0))

if
N

∑
j=1,j 6=i0

q2
i0 j 6= 0.

So if
N
∑

j=1,j 6=i0
q2

i0 j 6= 0 then for all t in some neighborhood of t0 we have
du(1)

i0
dt (t) <

du(2)
i0

dt (t), hence,
d(u(1)

i0
−u(2)

i0
)

dt (t) < 0 and (u(1)
i0
−u(2)

i0
)(t) < 0, in particular, u(1)

i0
(t0) 6= u(2)

i0
(t0)—

it is a contradiction.

If
N
∑

j=1,j 6=i0
q2

i0 j = 0 then the functions u(1)
i0

and u(2)
i0

are the solutions to the Cauchy

problems (13), hence, we have u(1)
i0

(t) < u(2)
i0

(t) for all t—it is a contradiction.

Corollary 1. Let u(m) be a solution for an initial value problem u(m)(0) = u(m)
0 ∈ [0; max k j]

N ,
m = 1, 2. If we have u(1)(0) < u(2)(0) then for all t ≥ 0 we have u(1)(t) < u(2)(t).

Proof. Let us choose neighborhoods U1 and U2 of u(1)(0) and u(2)(0) respectively which
does not intersect. We can choose v(1)(0) ∈ U1 and v(2)(0) ∈ U2 in such a way that
v(1)(0)� v(2)(0). Then for all t ≥ 0 we have v(1)(t)� v(2)(t), it means that there are some
neighborhoods V1(t) of v(1)(t) and V2(t) of v(2)(t) such that V1(t) ≤ V2(t) for all t ≥ 0.
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We fix t0 ≥ 0. The dynamical system u(t, ξ) is continious with respect to the second
variable ξ, when ξ ∈ [−a, max k j + a], a > 0. Hence, there is ε0 > 0 such that for all
ε ∈ (0, ε0] such that V1(t0) = {x ∈ RN | ||x− v(1)(t0)|| < ε} and V2(t0) = {x ∈ RN | ||x−
v(1)(t0)|| < ε} there is δ > 0 such that for all ξ1 ∈ U1 = {x ∈ RN | ||x − u(1)(0)|| < δ}
and ξ2 ∈ U2 = {x ∈ RN | ||x − u(2)(0)|| < δ} we have u(t0, ξ1) ∈ V1(t0) and u(t0, ξ2) ∈
V2(t0), in particular, u(1)(t0) ∈ V1(t0) and u(2)(t0) ∈ V2(t0), but V1(t0) ≤ V2(t0), hence,
u(1)(t0) ≤ u(2)(t0). Due to the arbitrarity of t0 ≥ 0 we conclude that for all t ≥ 0 we have
u(1)(t) ≤ u(2)(t).

Remark. Here we used the fact that for sufficiently small ε0 > 0 the initial values lie in some open
set containing [0; max k j]

N in which the solution exists and is unique.

Corollary 2. Let u(m) be a solution for an initial value problem u(m)(0) = u(m)
0 ∈ [0; max k j]

N ,
m = 1, 2. If we have u(1)(0) ≤ u(2)(0) then for all t ≥ 0 we have u(1)(t) ≤ u(2)(t).

Proof. If u(1)(0) = u(2)(0) then it is obviously true. The case u(1)(0) 6= u(2)(0) follows
from the previous corollary.

Corollary 3. Let U ⊂ RN . We define a set u(t, U) = {v ∈ RN | there is u0 ∈ U : v = u(t, u0)}.
Then the dynamical system u(t, ξ) is strongly order-preserving, meaning that for u(1)(0) < u(2)(0)
there are neighborhoods U1 and U2 respectively such that for all t ≥ 0 u(t, U1) ≤ u(t, U2).

Proof. The proof is done in the proof of Corollary 1.

Corollary 4. If for two solutions u(1)(t), u(2)(t) we have u(1)
i (t0)Ru(2)

i (t0) for R ∈ {≤,<,�}
and some t0 ∈ R then u(1)

i (t)Ru(2)
i (t) for all t ≥ t0.

Proof. Let v(m)(t) = u(m)(t + t0), m = 1, 2. Then dv(m)

dt (t) = du(m)

dt (t + t0) = F(u(m)(t +

t0)) = F(v(m)(t)), v(m)(0) = u(m)(t0), m = 1, 2. For all i we have v(1)i (0) = u(1)
i (t0)Ru(2)

i (t0)

= v(2)i (0).

Theorem 8. Let the function of two variables u(t, u0) represent the solution of the Cauchy prob-
lem (10). Then setting for all i ∈ 1, N u0i = max k j there is a limit lim

t→∞
u(t, u0) = û which is a

steady-state of the system (9), lim
t→∞

du
dt (t, u0) = 0. Moreover, for all e ∈ E (the set of all equilibrium

points) we have û ≥ e.

Proof. u(t, u0) ∈ [0, max k j]
N for all t ≥ 0, hence, there is t0 > 0 such that for all T ∈ (0, t0)

we have u(T, u0) ≤ u0. Hence, there is a limit lim
t→∞

u(t, u0) = û; see [60], p. 248, Theorem

1.4 (Convergence Criterion).
For all v0 ∈ [0, max k j]

N we have v0 ≤ u0, hence, u(t, v0) ≤ u(t, u0) for all t ≥ 0. For
v0 ∈ E we have v0 ≤ u(t, u0), and as t→ ∞ we have v0 ≤ û.

Theorem 9. If for the Cauchy problem (10) there is at least one point u0 > 0 such that du
dt (0)� 0

then there is a non-zero steady-state point û such that lim
t→∞

u(t, u0) = û.

Proof. The function du
dt is continuous as a derivative of a solution to the problem (10), hence,

there is T > 0 such that du
dt (t) � 0 for all t ∈ [0; T], hence, u(T, u0) � u0, in particular,

u(T, u0) > u0. But by the corollary 3 the dynamical system u is strongly order-preserving,
hence, there is a limit lim

t→∞
u(t, u0) = û > u0 > 0 ([60], Theorem 1.4).
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5. Computer Simulations

Here we will consider a system of N equations representing a chain of populations:

du1

dt
= f1(u1) + qd(u2, u1),

dui
dt

= fi(ui) + qd(ui−1, ui) + qd(ui+1, ui), i ∈ 2, N − 1,

duN
dt

= fN(uN) + qd(uN−1, uN),

where fi(ui) = αiui(ui − βi)(1− ui
ki
) and d(y, x) = y− x or d(y, x) = y2 − x2.

In this section we focus on finding one global parameter p(β, k) which somewhat
characterize the system for all q. Here we will let αi = 1 for all i. We consider {ki} to be
uniformly distributed on interval [kmin, kmax], {βi} to be uniformly distribited, where each
βi is uniformly distributed on interval [0; ki], {ki} and {βi} are independent. So {ki} and
{βi} can be defined by the following formulas:

ki = kmin + (kmax − kmin)φ,

βi = kiψ, i ∈ 1, N,

where φ, ψ are two independent random variables uniformly distributed on [0, 1].
Let p = k− 2β = 1

N ((k1 + ... + kN)− 2(β1 + ... + βN)). By the weak law of large num-
bers [61] we have p ≈ E(k)− 2E(β) = kmax+kmin

2 − 2(kminE(ψ) + (kmax− kmin)E(φ)E(ψ)) =
kmax+kmin

2 − kmin − kmax−kmin
2 = 0. Here we will show that slightly changing p around 0 leads

to bifurcation in most of the systems, in particular, there is a “small” constant p∗ > 0 such
that if p > p∗ then we can guarantee the persistence. Analytically the constant is still
unknown, but here we try to find it approximately using examples.

An optimal value for N is 100, for this N the parameter p is not too large, not too
small. We simulate both types of coupling using the RK45 method, which is programmed
in Python using scipy.integrate.solve_ivp. We let ui(0) = max k j and change q with a step
size of 0.5 from 0.5 to 20. It was checked in simulations that t = 200 was sufficiently large
to ensure the system’s convergence to its steady-state distribution, for linear case we had to
set the value of related tolerance to an error rtol = 10−6 instead of default rtol = 10−3 to
ensure the convergence for large q.

For the quadratic coupling we have 5 test trials then we generate 5 random values
of k and β in a predetermined range of p. From the data we conclude that the constant
p2 ≈ 0.52 and p2 > 0.514.

For linear coupling we run the simulation on the same data then add other trials in a
predetermined range of p. For linear coupling we have p1 ≈ 0.0164.

We focus on the asymptotical steady-state behaviour of the system and hence show
only the final metapopulation distribution. Figure 2 shows the examples of persistence and
extinction.

q = 0.5 q = 5 q = 15

(a) Persistence, linear, p = 0.01655.

Figure 2. Cont.
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q = 5 q = 11 q = 11.5

(b) Extinction, linear, p = 0.0164.

Figure 2. On the graphs the black line represents the population on each site when t = 200. The blue
line is a carrying capacity of each site. The orange line is an Allee threshold of each site. The steady
state is generally near the corresponding value of k for a small q, it can drop to 0 on a rare occasion.
An increase in the coupling strength q eventually leads to the formation of clusters. The populations
of the same cluster tend to align as q increases.

Below are Table 1 with cases which demonstrated persistence and Table 2 with extinct
cases for q = 20 with their last q which gave the persistence, we also may show the
distribution for a smaller parameter q. We note that for a better precision in a linear case
we have to consider larger qs or more examples because in a quadratic model the absolute
value of a coupling term grows faster. Here for the sake of uniformity we have chosen
the second option. We begin both tables with the quadratic model as it is simpler in these
ranges. We skip some of the examples.

Table 1. Persistence cases. The letter in the index in the column "Which k(m), β(m)" represents the
dataset we use (L for linear, Q for quadratic), the number represents the iteration, the test dataset is
marked by just a number.

Case No. Model q Which k(m), β(m) k β p

1 Quadratic 20 7Q 6.0829 2.7824 0.5180
2 Quadratic 20 8Q 6.3336 2.9024 0.5287
3 Quadratic 20 9Q 6.1039 2.7939 0.5161
4 Linear 5 1 5.9931 2.7475 0.4981
5 Linear 20 1 5.9931 2.7475 0.4981
6 Linear 5 5 6.1951 3.2314 −0.2678
7 Linear 20 5 6.1951 3.2314 −0.2678
8 Linear 5 6L 5.8518 2.9176 0.0166
9 Linear 20 6L 5.8518 2.9176 0.0166
10 Linear 5 9L 5.9594 2.9715 0.0163
11 Linear 20 9L 5.9594 2.9715 0.0163
12 Linear 20 10L 6.1707 3.0772 0.0162
13 Linear 20 11L 5.9465 2.9655 0.0155
14 Linear 5 13L 5.9663 2.9750 0.0163
15 Linear 20 13L 5.9663 2.9750 0.0163
16 Linear 5 14L 5.7967 2.8902 0.0164
17 Linear 20 14L 5.7967 2.8902 0.0164
18 Linear 20 15L 5.8942 2.9389 0.0165
19 Linear 5 17L 6.1019 3.0428 0.0163
20 Linear 20 17L 6.1019 3.0428 0.0163
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Table 2. Extinction cases. The letter in the index in the column "Which k(m), β(m)" represents the
dataset we use (L for linear, Q for quadratic), the number represents the iteration, the test dataset is
marked by just a number. NI marks trivial cases that are not interesting.

Case No. Model q Which k(m), β(m) k β p

21 Quadratic 5 1 5.9931 2.7475 0.4981
22 Quadratic 11.5 1 5.9931 2.7475 0.4981

23 (NI) Quadratic 1.5 2 5.8322 3.2905 −0.7489
24 (NI) Quadratic 0.5 3 5.9883 3.0180 −0.0477
25 (NI) Quadratic 1 3 5.9883 3.0180 −0.0477
26 (NI) Quadratic 3.5 4 6.4793 3.2230 0.0333

27 Quadratic 0.5 5 6.1951 3.2314 −0.2678
28 Quadratic 4.5 5 6.1951 3.2314 −0.2678
29 Quadratic 4.5 6Q 6.0280 2.7574 0.5132
30 Quadratic 7.5 10Q 6.0660 2.7756 0.5147
31 Linear 9.5 2 5.8322 3.2905 −0.7489
32 Linear 5 3 5.9883 3.0180 −0.0477
33 Linear 5 4 6.4792 3.2230 0.0333
34 Linear 13 4 6.4792 3.2230 0.0333

35 (NI) Linear 13 7L 5.4677 2.7261 0.0156
36 Linear 10 8L 5.9101 2.9469 0.0163
37 Linear 12 8L 5.9101 2.9469 0.0163

38 (NI) Linear 8.5 12L 5.9783 2.9812 0.0159
39 Linear 5 16L 5.6687 2.8261 0.0164
40 Linear 11 16L 5.6687 2.8261 0.0164

Now we show Figure 3 corresponding to Table 1 and Figure 4 corresponding to Table 2.

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9
Figure 3. Cont.
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Case 10 Case 11 Case 12

Case 13 Case 14 Case 15

Case 16 Case 17 Case 18

Case 19 Case 20
Figure 3. Persistence cases. On the graphs the black line represents the population on each site when
t = 200. The blue line is a carrying capacity of each site. The orange line is an Allee threshold of
each site.

Case 21 Case 22 Case 27

Case 28 Case 29 Case 30
Figure 4. Cont.
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Case 31 Case 32 Case 33

Case 34 Case 36 Case 37

Case 39 Case 40
Figure 4. Extinction cases. On the graphs the black line represents the population on each site when
t = 200. The blue line is a carrying capacity of each site. The orange line is an Allee threshold of
each site.

6. Discussion and Concluding Remarks

Nature has many complex and fragmented environments and there are still many
open theoretical problems [11,12,15,22,32,46,62]; conditions resulting in population collapse
and species extinction in a fragmented habitat have long been a focus of the metapopu-
lation theory. Previous research has identified specific factors, such as habitat geometry
and demographic/environmental stochasticity, which can contribute to metapopulation
collapse under certain conditions [31–34]. This study aims to contribute to this ongoing
discourse by presenting another factor that could potentially result in metapopulation
extinction. We investigate a system of arbitrary connected populations; we are primarily
concerned with the conditions which correspond to persistaince and extinction.

We first considered a baseline two-patch metapopulation. We continued the research
done in [50] giving more sufficient conditions which can be subdivided into a condition on
a system type (systems without Allee effect), a condition on extrema of growth functions
fi, conditions on q. Then we considered an arbitrary multi-patch system and showed that
some of the conditions on q can be extended on the multi-patch system. We showed that
the solution to the Cauchy problem exists and is unique, analytic and bounded. We showed
that the model belongs to the class of so called monotone dynamical systems, which is
very common in mathematical biology [60], and got some important corollaries from that,
including another sufficient condition.

We then considered a 1D random metapopulation: a string of patches coupled by a
short-distance dispersal (i.e., where each patch is coupled to its immediate neighbours)
where the carrying capacity and the Allee threshold of the local population growth is
a random function of space and stated a one-parameter sufficient condition. Computer
simulations were supported by theoretical results. In particular, Theorem 8 basically tells us
that we indeed converge to some steady-state point in Section 4. From the numerical results
it can be seen that an increase in coupling may either lead to metapopulation collapse and
global species extinction or to the formation of ‘persistence clusters’ (groups of patches
where the subpopulations persist) separated by large stretches of empty space where the
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subpopulations go extinct. We emphasize that the persistence clusters are completely self-
organized, as our model does not include any long-distance correlations. A slight change
in the vector α causes a slight change in the boundary p∗ of the parameter p = k− 2β, so
this sufficient coundition is also applicable to more general systems where α 6= (1, . . . , 1)T .

Thus, the study of this conceptual model can be considered complete. This paper
continues the study done in the paper [50] of the mechanism that may lead to, on one hand,
metapopulation extinction or, on the other hand, pattern formation through creating persis-
tence clusters. Although the model used in this paper is very simple, it may give a rise to
some important ecological interpretations and stimulate further study. Real ecosystems are
usually much more complex: there can be multiple mechanisms; moreover, they can turn on
and off independently from each other under specific conditions. A single-species model is
typically only applicable on certain timescales [63]. Therefore, it is worth considering more
complex models to reveal whether there is similar mechanism as in this model. Despite
useful insights from previous work [15,16,19], this issue remains controversial. For example
adding other species with some interaction laws to the model may cause the appearence
of periodic and chaotic solutions. Coupling different habitats may greatly change the
dynamics leading to appearence of new mechanisms or to synchronization of mechanisms
between the habitats. All these issues should be studied further in future research.
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36. Travis, J.M.J.; Delgado, M.; Bocedi, G.; Baguette, M.; Bartoń, K.; Bonte, D.; Boulangeat, I.; Hodgson, J.A.; Kubisch, A.; Penteriani,

V.; et al. Dispersal and species’ responses to climate change. Oikos 2013, 122, 1532–1540.
37. Edelstein-Keshet, L. Mathematical Models in Biology; McGraw-Hill: New York, NY, USA, 1988.
38. Murray, J. Mathematical Biology; Springer: Berlin/Heidelberg, Germany, 1989.
39. Kot, M. Elements of Mathematical Ecology; Cambridge University Press: Cambridge, UK, 2001.
40. Dennis, B. Allee Effects: Population Growth, Critical Density, and the Chance of Extinction. Nat. Resour. Model. 1989, 3, 481–538.
41. Stephens, P.A.; Sutherland, W.J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 1999,

14, 401–405. [CrossRef] [PubMed]
42. Lidicker, W. The Allee Effect: Its History and Future Importance. Open Ecol. J. 2010, 3, 71–82. [CrossRef]
43. Berec, L. Allee effects under climate change. Oikos 2019, 128, 972–983.
44. Courchamp, F.; Berek, L.; Gascoigne, J. Allee Effects in Ecology and Conservation; Oxford University Press: Oxford, MA, USA, 2008.
45. Lewis, M.; Kareiva, P. Allee Dynamics and the Spread of Invading Organisms. Theor. Popul. Biol. 1993, 43, 141–158. [CrossRef]
46. Keitt, T.H.; Lewis, M.A.; Holt, R.D. Allee Effects, Invasion Pinning, and Species’ Borders. Am. Nat. 2001, 157, 203–216.
47. Boukal, D.S.; Berec, L. Single-species Models of the Allee Effect: Extinction Boundaries, Sex Ratios and Mate Encounters. J. Theor.

Biol. 2002, 218, 375–394. [CrossRef]
48. Sun, G.Q. Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 2016, 85, 1–12. [CrossRef]
49. Petrovskii, S.; Li, B.L. Increased Coupling Between Subpopulations in a Spatially Structured Environment Can Lead to Population

Outbreaks. J. Theor. Biol. 2001, 212, 549–562. [CrossRef]

http://dx.doi.org/10.3390/math8010049
http://dx.doi.org/10.1038/20676
http://www.ncbi.nlm.nih.gov/pubmed/10360572
http://dx.doi.org/10.1006/jtbi.1998.0716
http://www.ncbi.nlm.nih.gov/pubmed/9735280
http://dx.doi.org/10.1006/tpbi.1999.1444
http://dx.doi.org/10.1007/s11587-016-0273-0
http://dx.doi.org/10.1071/ZO9530291
http://dx.doi.org/10.1006/tpbi.1999.1422
http://dx.doi.org/10.1038/35008063
http://www.ncbi.nlm.nih.gov/pubmed/10783887
http://dx.doi.org/10.1038/364229a0
http://www.ncbi.nlm.nih.gov/pubmed/8321317
http://dx.doi.org/10.1016/0040-5809(86)90010-9
http://dx.doi.org/10.1016/j.ecolmodel.2010.06.017
http://dx.doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
http://dx.doi.org/10.3354/meps08779
http://dx.doi.org/10.2307/3565613
http://dx.doi.org/10.1016/S0169-5347(99)01684-5
http://www.ncbi.nlm.nih.gov/pubmed/10481204
http://dx.doi.org/10.2174/1874213001003010071
http://dx.doi.org/10.1006/tpbi.1993.1007
http://dx.doi.org/10.1006/jtbi.2002.3084
http://dx.doi.org/10.1007/s11071-016-2671-y
http://dx.doi.org/10.1006/jtbi.2001.2393


Mathematics 2023, 11, 4337 22 of 22

50. Althagafi, H.; Petrovskii, S. Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study.
Mathematics 2021, 9, 2202. [CrossRef]

51. SciPy Documentation. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
(accessed on 12 August 2023).

52. Vinberg, E. A Course in Algebra, 2nd ed.; Factorial Press: Moscow, Russia, 2001. (In Russian)
53. Zorich, V.A. Mathematical Analysis I, 2nd ed.; Universitext; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]
54. Kolmogorov, A.; Fomin, S. Elements of the Theory of Functions and Functional Analysis, 7th ed.; FIZMATLIT: Moscow, Russia, 2004.

(In Russian)
55. Zorich, V.A. Mathematical Analysis II, 2nd ed.; Universitext; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]
56. Kepley, S.; Zhang, T. A constructive proof of the Cauchy–Kovalevskaya theorem for ordinary differential equations. J. Fixed Point

Theory Appl. 2021, 23, 7. [CrossRef]
57. Zeidler, E. Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theorems; Springer: New York, NY, USA, 1986.
58. Feltrin, G.; Zanolin, F. Equilibrium points, periodic solutions and the Brouwer fixed point theorem for convex and non-convex

domains. J. Fixed Point Theory Appl. 2022, 24, 68. [CrossRef]
59. Bhatia, N.P.; Szego, G.P. Dynamical Systems: Stability Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1967.
60. Hirsch, M.W.; Smith, H. Monotone Dynamical Systems; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 4.
61. Ross, S.M. A First Course in Probability, 8th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010.
62. Seno, H. Effect of a singular patch on population persistence in a multi-patch system. Ecol. Model. 1988, 43, 271–286. [CrossRef]
63. Ludwig, D.; Jones, D.D.; Holling, C.S. Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest. J.

Anim. Ecol. 1978, 47, 315–332. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math9182202
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
http://dx.doi.org/10.1007/978-3-662-48792-1
http://dx.doi.org/10.1007/978-3-662-48993-2
http://dx.doi.org/10.1007/s11784-020-00841-1
http://dx.doi.org/10.1007/s11784-022-00984-3
http://dx.doi.org/10.1016/0304-3800(88)90008-7
http://dx.doi.org/10.2307/3939

	Introduction
	Materials and Methods
	Two-Patch System
	Multi-Patch System
	Existence and Uniqueness, Steady-State Points
	Solutions as a Monotone Dynamical System

	Computer Simulations
	Discussion and Concluding Remarks
	References

