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Abstract: This article is based on chapters 9 and 19 of the new neural network approximation
monograph written by the first author. We use the approximation properties coming from the
parametrized and deformed neural networks based on the parametrized error and g-deformed and
B-parametrized half-hyperbolic tangent activation functions. So, we implement a univariate theory
on a compact interval that is ordinary and fractional. The result is the quantitative approximation
of Brownian motion on simple graphs: in particular over a system S of semiaxes emanating from a
common origin radially arranged and a particle moving randomly on S. We produce a large variety
of Jackson-type inequalities, calculating the degree of approximation of the engaged neural network
operators to a general expectation function of this kind of Brownian motion. We finish with a
detailed list of approximation applications related to the expectation of important functions of this
Brownian motion. The differentiability of our functions is taken into account, producing higher
speeds of approximation.

Keywords: neural network operators; Brownian motion on simple graphs; expectation; quantitative
approximation

MSC: 26A33; 41A17; 41A25; 60G15; 60G22

1. Introduction

The first author in [1,2], see Sections 2-5, was the first researcher to derive quantita-
tive neural network approximation to continuous functions by precisely defined neural
network operators of Cardaliaguet-Euvrard and ‘Squasing’ types, by using the modulus
of continuity of the engaged function or its high-order derivative and obtaining almost
attained Jackson-type inequalities. He took care of both the univariate and multivariate
cases. Defining these operators as ‘bell-shaped” and ‘squashing’ functions is supposed to
provide compact support.

Furthermore, the first author (motivated by [3]) continued his studies on neural
networks approximation by introducing and using the appropriate quasi-interpolation
operators of sigmoidal and hyperbolic tangent type, which resulted in [4], by treating both
the univariate and multivariate cases. He dealt also with the corresponding fractional
cases [5-7]. The authors also are motivated by the seminal works [8-13].

In [14,15], the first author extended his studies for Banach space-valued functions for
activation functions induced by the parametrized error and g-deformed and B-parametrized
half-hyperbolic tangent sigmoid functions. The authors, motivated by [16], created neural
network quantitative approximations to Brownian motion over a simple graph of a system
of semiaxes.

They obtained a collection of Jackson-type inequalities, calculating the error of ap-
proximation to a general expectation function of this Brownian motion and its derivative.
They present ordinary and fractional calculus results. They finish with a plethora of
interesting applications.
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2. Basics
2.1. About the Parametrized (Gauss) Error Special Activation Function
Here, we follow [17].
We consider here the parametrized (Gauss) error special activation function
2 Az 2 J
er)tz:—/ e "dt, A>0,z€eR, 1
f /7 Jo @

which is a sigmoidal-type function and a strictly increasing function.

Of special interest in neural network theory is when 0 < A < 1; see Section 1—
Introduction.

It has the basic properties

erf(0) =0, erf(—Ax) = —erf(Ax),forevery 0 < A <1

(2)
erf(+o0) =1, erf(—oo) = —1,
and 9
2
(erf(Ax)) = ﬁe—W) , x€R. ©)
We consider the function
1
x(x) = glerf(Alx+1)) —erf(A(x —1))), x € R, 4)
and we notice that
x(=x) = x(x). )
Thus, x is an even function.
Sincex +1 > x —1,thenerf(A(x+1)) >erf(A(x —1)),and x(x) > 0,all x € R.
We see 1
er
x(0) = 2. ©)
Let x > 0; then, we have that
2 2 2
. A A (x=1)7 _ pA%(x+1)
x(x) = 2T\ A (x+1)? pA2(x—1)? <0 @

proving x’(x) < 0, for x > 0. That is, x is strictly decreasing on [0, o), and it is strictly
increasing on (—oo,0], and x’(0) = 0.

Clearly, the x-axis is the horizontal asymptote of x.

Concluding, x is a bell symmetric function with maximum

_erfA
Theorem 1. If holds -
Y x(x—i)=1, VxeR. (8)
j=—c0
We have
Theorem 2. We have that -
/ x(x)dx =1. )

Hence, x(x) is a density function on R. We need
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Theorem 3. Let 0 < o < 1, and n € Nwithnl=* > 2, A > 0. It holds
o 1— A 1-a _ 2
) x(nx —k) < (1 —erf( (2n ))), (10)
k= —o0
:nx — k| > nl-®
with )
1-— Aln'~* =2
i (Lerf(A(n ) _o.
n—+oo 2
Denote by | -] the integral part and by [-] the ceiling of a number.
Furthermore, we need
Theorem 4. Let x € [a,b] C R, A > 0and n € Nso that [na| < |nb|. Then,
1 1 4
< = . (11)
b
Z}|€n: Hna] X(nx — k) X(l) erf(Z/\)
Remark 1. As in [18], we have that
[nb]
lim ) x(nx—k) #1. (12)

n—o0

k=[na]

Note 1. For large enough n, we always obtain [na] < |nb]. Also, a < % <biff [na] <k <
|nb|. As in [18], we obtain that

E x(nx—k) <1 (13)

Definition 1. Let f € C([a,b]) and n € N : [na| < |nb|. We introduce and define the X-valued
linear neural network operators

An(fx) = L ()20 = 1)
T e — k)
k=[na]

, X € [a,b]. (14)

Clearly here, A, (f,x) € C([a, b]). We study here the pointwise and uniform conver-
gence of A, (f, x) to f(x) with rates.
For convenience, also, we call

[nb)
A= % ]f@)x(nx ), (15)
k=[na
hat i
that is An(f,x) ) A?;(f,x) | )
E;&Zanﬂ x(nx —k)
So that

An(f,x)
An 7 - = -
()= 9 = s )

A %) = () (B x(nx =) W)
Ly X (nx = k)
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Consequently, we derive
4 . (b
[An(f,x) = f(x)| < o f(20) An(f,x) = f(x) k:%uw?((”x*k) (18)
That is
4 | Rk
45,0501 < s B (7(5) - rw)xwmr-n]. a9
We will estimate the right-hand side of (19).
For that, we need, for f € C([a, b)), the first modulus of continuity
wi1(f ) = wi(f,0) = sup [f(x) = f(y)], 6>0. (20)
X,y € [a,b]
[x—yl <o

The fact f € C([a, b]) is equivalent to (lsirr(l)w1 (f,0) = 0; see [19].
—

We present a series of real-valued neural network approximations to a function given
with rates.
We first give

Theorem 5. Let f € C([a,b]),0 <a<1,n € N:n'"% >2, A1 >0,x € [a,b]. Then,
(i)

Aulf0) = F) £ s [ (£ ) + (L= erf (A0 =2) ) )£1la] =0, 2

and
(ii)
14n(f) = flleo < p- (22)
We notice lim An( f) = f, pointwise and uniformly.
The speed of convergence is max{ L 1—erf(A(n7 —2)) }
We need

Definition 2 ([20]). Let [a,b] C R, o > 0; m = [a] € N ([-] is the ceiling of the number),
f: [a,b] — R. We assume that f") € Li([a,b]). We call the left Caputo fractional derivative of

order «:
1

(DLaf)(x) == Ton—a) /ax(x — )" (e, Y x € [a, b]. (23)

Ifa € N, weset DY, f := f") the ordinary real-valued derivative (defined similar to numerical
one, see [21], p. 83), and set DY, f := f. See also [22-25].

By [20], (D%,f)(x) exists almost everywhere in x € [a,b] and D%,f € Li([a, b]).

’f ‘Loo (b)) < oo, then by [20], D%, f € C([a, b]), hence |DS,f| € C([a,b]).

We mention the following.

Lemma 1 ([19]). Leta >0, ¢ N, m = [a], f € C" " 1([a,b]) and ") € Les([a,b]). Then,
Do f(a) =

We also mention the following.
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Definition 3 ([26]). Let [a,b] C R, a > 0, m := [«]. We assume that f") € Li([a, b]), where
f : [a,b] — R. We call the right Caputo fractional derivative of order :

(D f)(x) _“)/ (z = x)" 1 F0M (2)dz, ¥ x € [a,b]. (24)

We observe that (Dg”if) (x) = (—1)mf(’”)(x),f0r m e N, and (Dgif) (x) = f(x).

By [26], (DZ‘_ f ) (x) exists almost everywhere on [a, b] and (D;’;_ f) € Ly([a, b]).
If ’f<m) gy < oand e & N, by [26], Df_f € C([a,b]), hence ‘Dg_f‘ € C([a, b]).

See also [27].
We need

Lemma 2 ([19]). Let f € C" 1([a,b]), f™) € Leo([a,b]), m = [a], &« > 0, & ¢ N. Then,
Dy f(b) =0,

We present the following real-valued fractional approximation result by er f A-based
neural networks.

Theorem 6. Let 0 < a, f* < 1, f € C'([a,b]), x € [a,b], n € N:n'"F" > 2, A > 0. Then,

(i)
[An(f,x) = f(x)] <
4 (wl (D;’;_f, n%) o T (Di’“f’ n%) [x,b])
erf(2A)T(a+1) n*b* +

—er nl=F" —
(1 f(A(z 2)))(||D"‘ Pl = 0 + D% g x>"‘)}, @

and

(i) !
l4nf =l = T3 Dyerreny

( sup wq (D"‘ f, W) 0] + sup wy (Di‘xf/ n%) [x,b])

x€[a,b] x€a,b]

nap* +

—er nl=p" —
(1 f(A(z 2)))<b ><sup 108 Flleo o) + 5P 102 f L )} (26)

x€[a,b] x€|a,b]
When a = %, we derive
Corollary 1. Let 0 < g* < 1, f € C'([a,b]), x € [a,b], n € N:n'=F" > 2, A > 0. Then,

(i)
[An(f, %) = f()] =
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1 1
wy | D2_f, 1*> +w (DE ,1*>
8 ( 1( i ax of ]

erf(2A) v/ LS

(D) | s

and

(ii)

\ (b x)) , @)
0, [x,b]

8
”Anf_fHoo < W

1 1
( sup wq (Df_f, nb) + sup wy (Dfx , n}) )
x€la,b] [ax]  x€[ab] [x,b] "

n
‘ ) < 00. (28)
00,[x,b]

2.2. About g-Deformed and B-Parametrized Half-Hyperbolic Tangent Function ¢y

NI

1
Dixf

(1—erf(A(:“5*—2)>> (b_a)<sup

x€(a,b]

1
DﬁfH + sup

Jax] xeab]

All the next background comes from [28].
Here, we describe the properties of the activation function

1—ge Pt
t)i= ———, VteR, 29
(Pq( ) 1 +q€7ﬁt € ( )
where g, 8 > 0.
We have that .
0)=—1
94(0) 1+g
and
Pq(—t) = —@i(t), VI ER, (30)
q
hence
<P’%(f) = @y(—t). (31)
Itis
JAm 9q(t) = gg(+o00) =1, (32)
and
Jm gq(t) = @q(—00) = 1. (33)
Furthermore g
2
Py (t) = Lz >0, VteR, (34)
(P +7)

therefore, ¢ is striclty increasing. Moreover, in case of t < l%q, we have that ¢, is strictly

concave up, with ¢ (1%‘7> = 0.

And in case of t > l%q, we have that ¢ is strictly concave down.
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Clearly, ¢, is a shifted sigmoid function with ¢4(0) = }%Z, and @q(—x) = —¢,1(x),
V x € R, (a semi-odd function); see also [28].
We consider the function
1
Pg(x) = Z((pq(x—f-l)—(pq(x—l)) >0, (35)

Vx € R; B,q > 0. Notice that ¢,(+c0) = 0, so the x-axis is horizontal asymptote. We
have that
¢g(—x) = ¢1(x), VX €R, (36)
q

which is a deformed symmetry.

Next, we have that

@q is striclty increasing over (—oo,l%q - 1) and it is strictly decreasing over

(3 +1.50).

Moreover, ¢, is concave down over [lan -1, lan + 1} , and it is strictly concave down

over (lan — ,l%q+1).
Consequently, ¢, has a bell-type shape over R.

Of course, it holds (/)[’7’ (l%q) < 0. Thus, atx = l%q, we have the maximum value of ¢,

Ing\ _ (1—-eP)  ¢i(1)
w() =2~ @)

which is

We mention

Theorem 7 ([29]). We have that

i $g(x—i) =1, VxR,V q,p>0. (38)

It follows

Theorem 8 ([29]). It holds ‘
/ ongq(x)alx =1, 49,6>0. (39)

So that ¢, is a density function on R; g, 8 > 0.
We need the following result,

Theorem 9 ([29]). Let 0 < a < 1, and n € N with nl= > 2; q,B > 0. Then,

[e9)

) Pq(nx —k) < max{q, ;}ewe_ﬁ”(l“) — Ke B (40)
k= —o0
{ :nx — k| > nl=®
where K := max{q, %}ezﬁ.

Let [-] be the ceiling of the number, and let |- | be the integral part of the number.
We mention the following result:



Mathematics 2023, 11, 4329

8 of 27

Theorem 10 ([29]). Let x € [a,b] C Rand n € N so that [na| < |nb|. For q > 0, we consider
the number Ag > zo > 0 with ¢g4(z0) = ¢4(0) and B, Aq > 1. Then,

! < max L L =:6(q). (41)

R

We also mention

Remark 2 ([29]). (i) We have that

nb]
lim Z gbq nx —k) # 1, forat least some x € [a, b], (42)

n%Jroo

where B,q > 0.
(ii) Let [a,b] C R. For large n, we always have [na] < |nb|. Also, a < % < b, if
[na] <k < |nb]|. In general, it holds

Y pg(nx—k) < 1. (43)

We need

Definition 4. Let f € C([a,b]) and n € N : [na] < |nb]. We introduce and define the
real-valued linear neural network operators

k? f( >d>q(nx—k)
Hyu(f, x) = ib] , x €a,bl;q,B>0. (44)
Y Dy(nx—k)
k=[na|

Clearly, Hy(f) € C([a, b]).
We study here the pointwise and uniform convergence of Hy(f,x) to f(x) with rates.

For convenience, also we call

|nb]
H(f, x) Z f( )cb,, nx —k),. (45)
That is =
Hi(f, %) = — alht) (46)
Y Oy(nx—k)
k=[na)
So that H: ()
Haf, %) = () = — ~ flx) = )
Y Oy(nx—k)
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. Lnb]
Hi(fox) = f(x)| X ®g(nx —k)
k=[na]
Lnb] '
Y Oy(nx—k)
k=[na]
Consequently, we derive that
b
[Hu(f,x) = f(x)| < 6(q) |Hu(f, %) — 2 Qq(nx —k) || =
[nb] k
o] ¥ (£(5) - 5) @y -n), )
k=[na)

where 6(g) as in (41). We will estimate the right-hand side of the last quantity.
We present a set of real-valued neural network approximations to a function given
with rates.

Theorem 11. Let f € C([a,b]),0<a <1, n€N:n'"*>2,4,8 >0, x € [a,b]. Then,

(i)
1 1—«a
Hu(f3) = £ < 000 | (£, ) 20 fllke 7 =, 9
where K as in (40),
and
(i1)
1B ()~ fllo < = 50

We observe that nh_r)r(}o H,(f) = f, pointwise and uniformly.

Next, we present the following.

Theorem 12. Let 0 < a, * < 1,4, >0, f € C'([a,b]), x € [a,b], n € N: n'F" > 2. Then,

(1)
[Hu(f,2) — £(2)] <
6(9) (wl (P25 ) 1 (P5F ) [mb])
T(a+1) 1 +
Ke P (108 o= 0)° + 1D o0 = 20°) | &)
and
(ii) ]
R

( sup wq (D"‘ f, ”'B*)[a,x] + sup wi (Di‘xf/ n%) [x,b])

x€[a,b] x€(a,b]
n*p*

_|_

_gn(1-p*
(b — a)*Ke P )<sup ID8 Fllay o + sup D%, xb]>} 52)

x€a,b] x€a,b]
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When a = %, we derive

Corollary 2. Let 0 < f* < 1,4, >0, f € C'([a,b]), x € [a,b], n € N: n'=F" > 2. Then,

(i)
|Hu(f,x) = f(x)] <
1 1
w1 <D2_f/1*> +wy (Df f,l*> >
20(q) ( T ) e
VT N
Ke— PP <HD2 fH v (x—a)+ HDéxf ’ (b— x)) },
00,[a,x] 00,[x,b]
and
(i1) o
20(q
Inf = fllos < 2
(sup w1 (DZ 1, ﬁ*) + sup wi (D,}xf ﬁ*) )
x€[a,b] [a,x]  xelab] VArY) N

nz

V(b - a)Ke P ) ( sup D2,

x€(a,b]

D2 fH + sup
Ja,x] x€lab)

3. Combine 2.1 and 2.2
Leta,b € Rwitha <b, f € C([a,b]). Letalsog, A, B > 0,7 = max{q,%}.
For the next theorems, we call

1La(f, x) := Au(f, x),x € [a,]]

2Lu(f,x) := Hu(f,x),x € [a,b].

Also, we set
4

erf(2A)
Ko = Ka(q) = 0(q).

Ky =K (A) =

Furthermore, we set

~ P

Bin=Bia(A,p") =1 —erf(A(nlfﬁ* —z)),n ENA>00<p <1

Pl P * —Bnl-p"* *
Pon = Pon(q,B,B") =27 P " neN,g,p>00<p <1
We present the following.

e
00, [x,b]

(53)

(54)

Theorem 13. Let f € C([a,b]),0 < B* <1, n € N:n'"F" >2,q,A,8 >0, x € [a,b]. Then,

fori=1,2,
(i) .
Lol ) = F1 < K- (£, ) + Bl ] =

and

(55)
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(i1)
[iLn(f) = flleo < pi- (56)
We observe that nlgn iLn(f) = f, pointwise and uniformly.
Proof. From Theorems 5 and 11. [

Next, we present

Theorem 14. Let 0 < &, * < 1,4,A,8 > 0, f € C'([a,b]), x € [a,b], n € N: n!=F" > 2,
Then, fori =1,2

(i)
liLn(f,x) — f(x)] <
K; ( (D“ f nﬁ*)[a,x]+w1(Dﬁxf ’né*)[x,b]>
Ta+1) 1o +
%(HD“ Flloo g (= @) + [1D%f oo, (B — )“) } (57)
and
(ii)

Ki
”iL”f_f”oo < r(“_i_l)

( sup wi (D"‘ f, n?) - + sup w; (Di‘xf P ) [x,b]>

x€[a,b] x€[a,b]
nap”

+

b— aAin a
(6;)‘3,< sup HD f” 00,[a,x] + sup HD Xf“ )} (58)

x€la,b] x€(a,b]
Proof. From Theorems 6 and 12. [

When a = %, we derive

Corollary 3. Let 0 < g* < 1,q,A,8 >0, f € C'([a,b]), x € [a,b], n € N: n'=F" > 2. Then,

fori=1,2
(i)
liLn(f,x) — f(x)] <
1 1
a(Dhfd)  ver(Dhsd) )
2K; ( nf [a,%] nf [x,b] N
VT n'r
(HD 4| \/x—a>+HDéx | <b—x>>}, 9)
0,[a,x] 0, [x,b]
and
(i1)

2K;
||1Lnf_f||oo < \/El
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< sup wq (D%_f, n};* ) + sup wy (Déxf, n}‘*) )
x€la,b] [ax]  x€[ab] [x,0] n

B
nz
7'(17_2%1 ( sup D%f’ + sup Déxf ) } < 0. (60)
x€(a,b] oo,[a,x]  x€[a,b] oo, [x,b]

4. About Random Motion on Simple Graphs

Here, we follow [16].

Suppose we have a system of S semiaxes with a common origin radially arranged and
a particle moving randomly on S. Possible applications include the spread of toxic particles
in a system of channels or vessels or the propagation of information in networks.

The mathematical model is the following: Let S be the set consisting of n semiaxes
S1,...,Su,n > 2, with a common origin 0 and let X; be the Brownian motion process on S:
namely, the diffusion process on S whose infinitesimal generator L is

1
Lu = EM"’ (61)

where
u=(uy, ..., uy),

together with the continuity conditions (a total of n — 1 equations),
u1(0) = ... = uu(0) (62)
and the so-called “Kirchoff condition”
uj(0) +...+u,(0) =0. (63)

This is a Walsh-type Brownian motion (see [30]).

The process X; has a standard Brownian motion on each of the semiaxes and, when it
hits 0, it continues its motion on the j-th semiaxis, 1 < j < n, with probability %

For each semiaxis Sj, 1 <j < n,itis convenient to use the coordinate Xj, 0< xj < oo.
Notice that if u = (uy,...,u,) is a function on §, then its j-th component, uj,isa function
on Sj; thus, u; = u; (x)).

The transition density of X; is

2

2 ()
t,xe, i) = ——=e~ 2, ifk £,
p(t xi, yj) T # ]
and , )
1 (p—vg) n—2 _ (xtw)
t, Xy, =——\| e 2 — e . 64
p(t, X, Yr) o ( m > (64)

We need the following result.

Theorem 15. Let t € [ty, 5], where ty,t, € (0,00) with t; < t; fixed. We consider the function
g : R — R, which is bounded on (0,00), i.e., there exists M > 0 such that |g(x)| < M, for
every x € (0,00), and it is Lebesgue measurable on R. Let also X; be the standard Brownian
motion on each of the semiaxes j = 1,...,n as described above. Here, x. is fixed on Sy semiaxes,
ke {1,...,n}. We consider the related expected value function

r(t) i= Ee(1CX0D) = [ 18 p(t, xp, v+ L I [swplpe v vy, £ € 1t
=L

n
’
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The function r(t) is continuous in t and differentiable.

Proof. First, we observe that for t € [t1,tx] and k,j € {1,...,n} withk # j

2
0< t,xe, ) < —.
p( k ]/]) 27Tt
Also, for t € [t,b],and k € {1,...,n},itis
2

0 t, Xk, .
< p( xkyk><m

It is enough to prove that

1) = [ I8 p(t,xe, ve)dyy

is continuous in t € [ty, tp].
We have that

1g(yr)| < M.
Thus,

2
tl 7 S M .
|8(yk)|P( Xk }/k) \/27'[7
Furthermore, as 0 < ty — t, with N — oo, we obtain
18 [P(tNs Xk, yie) — |8 (vi) | p(t, Xk, i), for every y, > 0.

By the dominating convergence theorem I(t,) — I(t) and thus, I(t) is continuous in t;
consequently, the function

r(t) == Ex(Ig(X1)])

is continuous in t. [

We also need the next theorem.

Theorem 16. Let t € [t, ], where tq,t; € (0,00) with t1 < ty are fixed. We consider function
g R — R, which is bounded on (0, 00) and Lebesgue measurable on R. Let also X; be the standard
Brownian motion on each of the semiaxes j = 1,...,n as described above. Here, xy. is fixed on Sy
semiaxes, k € {1,...,n}. Then, the related expected value function

(1) = B30 = [ sl vddve+ Y [ st plt vy £ 0],

j=1j#k
is differentiable in t, and
or(t ®© 0 t Xk, 1 © ap(t/xk/y')
a(t) :/o |g(yk)|% Kt 12#/0 |8 () [—5,dy;, t € [, 1], (65)
J=Lj

which is continuous in t.

Proof. First, we observe that for t € [t1, 2] and k,j € {1,...,n} withk # j,

ptxy) 1 () <<k+%>2 _ 1)_

o t

ot nt\/ 27t

Also, for t € [i, ], and k € {1,...,n},itis
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op(t, Xk, i)

ot

_ 1 [l (Gemw)® ) (=)l (et d” )|
20/ t ; t

Furthermore, for k # j,

op(t, Xk, yj)
ot

2
< 1 (xk + _1/]) 1
Tltl\/27'(f1 t

for every y; € (0,0),
and

ap(t/ Xk, yk)
ot

L [(ew? )L -2 (Gt
s () ()

for every yy € (0,00).

op(t,xi,y; . .
So, P axtk i) and % (t’aﬁ"’y k) are bounded with respect to f. The bounds are integrable

with respect to y; and yy, respectively.
We have

(o)

n
() = B3 = [Clgolptxwmdn+ Y [ gtp|ptexovdy, ¢ € bl

j=1j#k "0

We apply differentiation under the integral sign.
We notice that

2 2
g(yk>|p<t,xk,yk>gMztljme;yk) +1>+<n—2><<xk+yk> +1) |

and

12y | p(b 30 i) < M——) (xk+yj)2+1
8Wi)IP\L X, Yj) = 1t /2mE h .

Therefore, there exists

(t, x,
/ |g £, kryk d _|_ Z / 7ky])dy], [tlltZ]/

j=Lj#k

which is continuous in t (same proof as in Theorem 15). [

5. Main Results

We present the following general approximation results of Brownian motion on
simple graphs.

Theorem 17. We consider function g : R — R, which is bounded on (0,00) and Lebesgue
measurable on R. Let also r(t) := E[g(X})] be the related expected value function.
If 0<B*<1l,neN: nl=F > 2 g,A, B >0, t € [ty, 1], where t1,t, € (0,00) with
ty < tp, then fori=1,2
(i)
Lalr(0) = 0] < K5+ 1 (5 ) + Bl | = (66)

and
(ii)
[iLn(r(£)) = 7(E)lloo [ty 1) < Pi- (67)

We observe that lijn iLn(r) = r, pointwise and uniformly.
n—oo
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Proof. From Theorem 13. [

Next, we present

Theorem 18. We consider function g : R — R, which is bounded on (0,00) and Lebesgue
measurable on R. Let also r(t) := Ej[g(X})] be the related expected value function.

If0 < a,B* <1, qAB > 0,t € [t1,t], where t1,tp € (0,00) with t; < tp, and
neN:n'"F >2 Then, fori=1,2

(i)
iLa(r(£)) = r(8)] <
o 1 a o, 1
KZ <(U1 <Dt r, ) [ . ] + w1 (D*tr’ B ) [t,t2]> N
F(Dé + 1) nap*
P (DI rl (0= 10)* 4 1D 12— ) } (68)
and
(ii)
[|iLnr X

_r”oo,[tl,tz} < F(Dé+1)

( sup wq (D T, ’3*>[t1,t] + sup wi (Di‘trr,ﬁ*%ltz])

telty b te [ty o]
nep*

+

ty — t1)*B;
(221),31n< sup ||Di_r||, Y R % D% o0, [t,t2] )} (69)
teltyta telty,to]

Proof. From Theorem 14. [

When a = %, we derive

Corollary 4. We consider function ¢ : R — R, which is bounded on (0,00) and Lebesgue
measurable on R. Let also r(t) := E[g(X})] be the related expected value function.
IfO< B*<1,q,AB>0,t€[t,ta]andn € N:n'=F" > 2. Then, fori =1,2,

(i)
iLn(r(t)) —r(t)] <
<D% 1 > (D% 1 )
w 71’/ * + w * rr —B¥
2K; T [t1.4] ' Lo [t.t2] +
Vi s
5 T (t f1)+ D*ti’ (tz t) , (70)
00, [t,t] oo, (1]
and
(ii)

2K;
N

||iL”r - r”oo,[tl,tz] S
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1
( sup wi (Dfr,nlﬁ*> + sup w <D2tr, ﬁ*> )
telty bo] [tt]  te[ty b [t.t2] "

IB*
nz

1 1

2y ) } < oo. (71)
0, [t,17]

+ sup
oo, [t,t]  te[ty, by

sup

tG[tl,tz]

V(2 —t1)Bin (
2

Proof. From Corollary 3. [J

We continue with

Theorem 19. We consider function g : R — R, which is bounded on (0,00) and Lebesgue
measurable on R. Let also r(t) := E[g(X¢)] be the related expected value function.

If 0<pB*<1lneN: nl=F > 2 g,A B >0, t € [ty, 1], where t1,t, € (0,00) with
ty < tp, then fori =1,2,

(i)

] =0 (72)
o, [t,t5]

and

or ar
an(at) -

We observe that lign iLn (%) ’3— pointwise and uniformly.
n—oo

< pi- (73)
Oo/[tlrt2]

Proof. From Theorem 13. [

6. Applications
Let a function ¢ : R — R, which is bounded on [t1, £5], where t1,t; > 0with t; < £,

and is Lebesgue measurable on R. For the Brownian Motion on simple graphs X;, we will
use the following notations
r(t) = Ex([g(Xp)]) =

[e9)

(/000\ (i) Ip(t xi yi)dye + ) / 8(w;) | p(t Xk, y))dy; = Ex(|g(Xe)]) . (74)

j=1j#k "0

and

n ) ap(t, xx,
sty $ [l Py o). o

j=1j#k

We can apply our main results to the function g(W) = W. Consider the function ¢ : R — R,
where g(x) = x for every x € R. Let also W = X; be the Brownian motion on simple
graphs. Then, the expectation

n [eS]
Ex(JW[)( / il p(t, i yi)dye + Y / yilp(t 2 yj)dy;
j=1j#k

is continuous in t.
Moreover,
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Corollary 5. Let 0 < p* <1,n € N:n'"F" >2,g,A,8>0,t € [ty,t2], where t;,to € (0,00)
with t1 < ty; then, fori =1,2and j = 0,1

(i)
L (EWDD )0~ EWD 0] < K- o (WD, ) B[O =0 9)
and
(ii) , .
Lo (B(IWDY) ()~ E(WD (0| < 77)

We observe that nh_r)rolo ,-LnEk(|W|)(j) (t) = Ek(|W|)(j), pointwise and uniformly.
Proof. From Theorems 17 and 19. O
Next, we present

Corollary 6. Let 0 < a, B* < 1,9,A,B > 0,t € [t1,t2], where t1,t € (0, 00) with t; < tp, and
neN:nl=F > 2. Then, fori =1,2,

(i)
L (E (W) (1) — E(W)(D)] <
K; (wl (D?‘Ekﬂwl)’ " ) i T (Di‘tEk(‘WD’ " ) [t,tz])
T(a+1) 1oF *
‘3;" (IDEE(IW D)l (£ = 1) + IDEECIW) g 515 (2 = ) } (78)
and
(ii)

K;

L E(IWD = E(W Dl 0 < 70547

( sup w (DggEk(|W|), n‘l‘*)[tl g T sup @ (DitEk(IWDn}a*)[ttz])

te[ty,to] tE[ty to]
nap*

th — 1) Bin 'X
Uﬂﬁ( sup [ID§ Ex(|W) o g + sup ||DgtEk(|W|)||w,[t,tz]>}. 79)

2 te(t b] tE[ty,b]
Proof. From Theorem 18. [

When a = %, we derive

Corollary 7. Let0 < p* < 1,q,A,B>0,t € [t,tr]andn € N : nl=F" > 2. Then, fori =1,2,
(i)
liLa (Ex(IW])(£)) — E([W]) (8)] <
1 1
w1 (DZEk(WD, 1*> +(/J] (Df Ek(|W),1*>
2K < t ") A t ")
v o
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’Z’”(HDE_EMWDH (1= )+ | Dz | " (tz_t>>}, (50)

o, [t1,t]
and
(i1) oK
i
[iLnEx(IW]) = Ec(IW D llco, 1y 12] < NG
1 1
( sup (D EIWD, 1)+ sup an(DRE(W, ;) )
te[ty to] [tt]  te[tb] [tt2]
B +
nz
_ A. 1 1
W<5up D E(WD|_+ sup [DEE(WD)| >}<oo. 81
te[ty,b] oo [ty t]  te[ty,ty] oo, [t,t]

Proof. From Corollary 4. [

For the next application, we consider the function g : R — R, where g(x) = cosx
for every x € R. Let also W = X; be the Brownian motion on simple graphs. Then,
the expectation

n
Ex([cos W) (1) = [ Icos(yo)lp(t, e yodve + Y- [ [cos(uy) p(t, o v7)dy
j=1j#k

is continuous in £.
Moreover,

Corollary 8. Let 0 < p* <1,neN:n'"F >2,q,A,8>0,t € [t,ta], where t;, t, € (0,00)
with t1 < ty; then, fori =1,2and j = 0,1
(i) . '
iLa (Ee(lcos WD) (£) = Ex(jcos W) (1) <

N1
K; - |wi ( Ex(Jeos W)Y, =) + By || Ex(|cos W) ])H =: pi, (82)
nb 00,[ty,t2]
and
(i1)
HOO,[tl,tz] S pl (83)

(Ex(jcos W) () = Ex(cos W) P (t)
We observe that nlggo iLnEg(]cos W|)(j) (t) = Ex(|cos W|)(j), pointwise and uniformly.

Proof. From Theorems 17 and 19. [

Next, we present

Corollary 9. Let 0 < a, f* <1,q,A, B >0, t € [t1, 1], where t1,tr € (0,00) with t; < tp, and
neN:nl=F >2 Then, fori=1,2,
(i)
|iLn (Ex(|cos W])(#)) — Ex(lcos W[) (£)[ <
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o 1 o 1
K; (wl (Dt Ex(Jeos W), 13- ) iy T (DiEx(leos W), 13- [t,t2]> +

F(l’(-‘—].) nlxﬂ*
3”(||DfEk<|cosw|>|w,m,ﬂ<tf1>“+HDiﬂEkucosW|>Hoo,v,m<fzf>”‘)}' &
and

(ii)

K;

[[iLnEx(lcos W1) — Ex(|cos W() [l 11, 1] < Tlat1)

sup wi (D% Ex(|cos W), - + sup wi(D%Ex(|cosW|) -
(tG[t1,t2] ( t nt >[t1't] tG[tl,tz] ( ! nP )[trtz]

nep* +

(b2 — 1) Bi (
2

sup [IDE Ex(Jcos W[}l + sup ||sztEk<|coswnnw,[t,tz])}. (55)
tE[tl,tz] tE[tl,tz]

Proof. From Theorem 18. [

When a = %, we derive

Corollary 10. Let 0 < B* < 1, q,A,B > 0,t € [t,tr] and n € N : n'=F" > 2. Then, for

i=1,2,
(i)
L Ex (lcos W) (£)) — Ee(lcos W) (£)| <
1 1
wi| D2 Ei(|cos W), 1*) +w (DfE cos W), 1*>
» <1( eos i) i) e (DiEeos Wi ) )
Ve nE
ﬁin 1 1
i (|ok Eetieoswp|  fe=n)+ |DhEeoswn| i), 9
oo,[tl,t] OO,[t,t2]
and
(i1)

2K;

[liLnEx(|cos W[) = E(Jcos W) lloo 1, 15 < N

.\ 1
( sup w (Df_Ek(|C05W|)fn}3*> + sup wq (thEk(|COSW),né*>[tt]>
2

telt b [tt]  teltyb]
B
nz
V(2 —t)B; 1 :
Vit~ t)Bin 5 1Pin ( sup Df_Ek(|cosW|)H + sup thEk(|cosW|)H )} < co. (87)
t€[t1,t2] Oof[tl't] te[tl,tz] OO,[t,tz]

Proof. From Corollary 4. O
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Let us consider now the function g : R — R, where g(x) = tanh x for every x € R. Let
also W = X; be the Brownian motion on simple graphs. Then, the expectation

n

Ealltanh WI)(1) = [ fanh (o) p(txi v+ 3 [ fanh () (e 3y
j=Lj7k

is continuous in ¢.
Moreover,

Corollary 11. Let 0 < 8* <1, n e N: nl=F > 2 g, A B > 0,t € [ty,tp], where ty,t €
(0, 00) with t1 < ty; then, fori =1,2and j = 0,1,
(i)
[iLa (Ec(|tanh W) D) (1) = Ex(Jtanh W) V) (1) <

1 A
:3*) + ,Bi,}’l

(Ex(jtanh w|)D) (¢) - Ex(Janh W) P (¢)

K; - {wl (Ek(|tanh wpHW,
n

Ei(|tanh W) H } =:pj, (88)
0o, [t,t2]
and
(ii)
< pi. (89)

H 09,[t1,t2]

We observe that nh_r)rolo iLnEx(|tanh W\)(j) (t) = Ex(|tanh W|)(j), pointwise and uniformly.
Proof. From Theorems 17 and 19. O
Next, we present

Corollary 12. Let0 < o, f* < 1,9,A, B > 0, t € [t1, 2], where t1,t, € (0,00) with t; < tp, and
neN:nl=F > 2. Then, fori=1,2,

()

[ Lu(Ex(|tanh W) (1)) — Eg(Jtanh W) (1) <

4 1 &

o | G R GG
I'(e+1) b’
% (HDf—EkUtaﬂh WDlleo, e, (E = 11)" + D% Ex(Jtanh W) oo g1y (F2 = t)a) } o
and
(ii) K
”Z-LnEk(\tanhWD - Ek(|tanhw|)”oo,[t1,t2] < 1"(0(7_:_1)

< sup wq (Df‘fEk(\tanhWD,n%)[tlt + sup wq (D*tEk(\tanhWD )[tt2]>

tetytr] tetyto]
n*p*

+

th —t1)*B;
(221)/31”< sup || D Ex(|tanh W), 1, o + sup || Dt Ex([tanh W) [l 111, ) } 1)
telty, o] telty o]

Proof. From Theorem 18. [
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When a = %, we derive

Corollary 13. Let 0 < * < 1,9,A,B > 0,t € [t1,tp] and n € N : nl1=F" > 2. Then, for

1i=1,2,
(i)
L (E¢(tanh W) (1)) — Ex (Jtanh W]) ()] <
1 1
w | DL Ex(Jtanh W), k) +w (D,zE tanh W), 1*>
» <1( (fann Wi e ) (D3B3 ) )
N d

(f—f1)+‘

b (HD}Ek(uanthH thEk(tanthH " (tz—t)>}, 92)
oo, |t,tr

00, [t1,4]

and
(ii)
2K;

oo ft1 1) < NG

! 1
< sup w; (Df_Ek(ItanhWI),,}> + sup w (thEk(|tanhW|),né*) )
te [ty to] [t telt b It
‘B*

2

|iLn Ex(Jtanh W) — E(|tanh W[)

1
D} Ei(Jtanh W|)H + sup
o[t t]  tE[t,b]

sup
te [tlltz]

b T N |
oo,[t,tz]

Proof. From Corollary 4. O

In the following, we consider the function ¢ : R — R, where g(x) = e, 0 >0
for every x € R. Let also W = X; be the Brownian motion on simple graphs. Then, the
expectation

n
Ek(fZW)(f) :/0 e Wep(t, Xy )dye + Y / e~ Yip(t, 2k, yj)dy;
j=Lj#k

is continuous in ¢.
Moreover,

Corollary 14. Let 0 < p* < 1, n € N : n'™F" > 2, g,A,8 > 0, t € [t,t2], where
t,tp € (0,00) with t1 < t; then, fori=1,2and j =0,1,

(i | |
o (B ™) )0 - B (™) 0 <
Ko oo (B () ) o () w[tm]] = OB
and
(i) , |
iLy (Ek (HW)U ) ) () — Ex (HW)(] )(t)H - < o;. (95)
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We observe that nlgn iLnEx (e‘éw) v (t) = Ex (e_éw) (]), pointwise and uniformly.

Proof. From Theorems 17 and 19. [
Next, we present

Corollary 15. Let 0 < a, 8* < 1,q,A,B > 0,t € [t1,t2], where ty,t, € (0,00) with t; < tp, and
neN:nl=F >2. Then, fori=1,2,

! iLn (Ee(e™) () = B (™) ()] <
K; (wl (D?— Ex (64W> ’ n%) i (DgtEk (efew) ’ "%> [trt2}>
Tla+1) B +
B;r" (HD?‘_Ek (™) = 00" | P ™) | 2 t)a> } o0
and
(ii) K

iLnEx (eféw) — Ex (64W> Hoo,[tl,tz] = T(a+1)

|

(tes[tuftz]W1 (PrE(e). 55) A= (D% Ee(e™) 1) [m]) +

nep*

— & A-
(t2 = 1) Pin ( sup HD’;‘,E;( (e_ew) ’ -y + tes[iliz]HDiltEk (e_gw) ’ oo,[t,tz]> } 97)

2 t€ty,ta]

Proof. From Theorem 18. [

When a = %, we derive

Corollary 16. Let 0 < B* < 1, q,A,B > 0,t € [ty to] and n € N : n'=F" > 2. Then, for

i=12
(i
l La(Ee(e ™) () = E(e™) (0] <
2K, (wl (D;_Ek (e—ﬁw), n;* ) " + w1 ( ,%tEk (e_fw>, 1 ) ’ t2]> N
VT n's
ﬁé (HD*Z‘E" (™) Hoo,[tl,t] o ‘ DiE(e ™) Hoo,[t,fz] - ﬂ) } o
and
(ii) 2K,

iLnEi (87£W> ~ (eigw) Hoo,[tl,tz] = N
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1 1
2 —(W 1 2 —(W 1
( sup wq (Dt_Ek<e )’nﬁ*) + sup w1< ftEk(e ),nﬁ*)[tt2]>

te[ty, ba] [tf] ety b n
s

sup
te[ty,to]

_ 3. 1
V (t ztl)ﬁz,n < DE_Ek <67£W> H + sup
oo, [ty,t]  tE[ty,to]

DXE, (MW)H [ ]>} < . (99)
oo, |t,tr

Proof. From Corollary 4. O

Let the generalized logistic sigmoid function g : R — R, where g(x) = (1+ e”‘)é,
6 > 0 for every x € R. Let also W = X; be the Brownian motion on simple graphs. Then,
the expectation

D

n
j=Li#

) © ©
Ek<<1 + e‘w) )(t) = /o (1+ e_yk)(sp(t, Xk, Vi) Ay + /0 (1+ e’yf)(sp(t, Xk, Y)Y,
k

is continuous in ¢.
Moreover,

Corollary 17. Let 0 < p* < 1, n € N : n'™F" > 2, g,A,8 > 0, t € [t,t2], where
t,tp € (0,00) with t; < tp; then, fori=1,2and j =0,1,

' iLn (Ek<(1 + ewy) (i)) (t) - Ek((l + ew)‘5> (j)(f)
K; - [wl <Ek < (1 + EW)J) (j), n’13> +Bin

and

(ii)

<

. ( (o 6W>5) ()

:| = Pis (100)
oo'[tlrtz]

< pi- (101)

Ly <Ek ( (1 + e‘W)J) (j)> (£) — Ex ( (1 + e‘W)‘S) v ()

We observe that lim iLnEk((l + e_w)a) v (t) = Ex ((1 + e_w)5> (]), pointwise and uniformly.

00,[tq,t2]

Proof. From Theorems 17 and 19. [

Next, we present

Corollary 18. Let0 < o, f* < 1,q9,A, B >0, t € [t1, 2], where t1,t, € (0,00) with t; < tp, and
neN:nl=F > 2. Then, fori=1,2,

(i . (Ek< (1 +EW)5)(t)) - Ek((l +6W)5>(t)‘

K; (‘*’1 (Pr-Ee((1+e™)). 5e) g e (PHE(O+7)). ) w)

IN
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5 _ 5
Bin HD‘t"Ek<(1+e_W)o>H (t—t)" + HDi‘tEk((l—i—e_W) )H (-1, (102)
2 S S
and
(ii) 5 X
“w\%\ _ -w i
La (1)) - (@re))| L ST
o —W\9 1 o —wy\9) 1
(tes[ttq:; ]wl (Dt_Ek<(l +e W) )’n5*>[t1,t] +tes[?€ ]wl D*tEk<(1 +e W) )nﬂ'*)[t t2]>
12 142
nep* +
5
+ sup |D%E; (1 +e—W) : (103)
oo,[t,tz]

)
o ke (1))
OO,[tl,t] tE[tlltZ]

p— [)(A'
(tZ tl) ﬁz,n( sup

te[ty,to]

2
Proof. From Theorem 18. [
When a = %, we derive
Corollary 19. Let 0 < B* < 1, q,A,B > 0,t € [t,tr) and n € N : n!=F" > 2. Then, for
i=1,2,
W 5 5
Ly (Ek<(1+ew) )(t)) - Ek((l +e*W) >(t)‘ <
1 ) b
(wl (DgEk((1+e—W) );) + (DzEk<(1+e ) );) )
2K; [t1.t] [tt2] i
v e
Bin 3 -w)? 3 “w)°
Fin D Ee (1+e ) (t—t) + || DLEg (1+e ) (tr — ) (104)
o0, [t1,1] oo, [t,t)]
and
(ii)
5 ‘
L Ek((l—i-ew) >—Ek<<l+ew) )H < 2K
00, [t1,t5] T
1 1
( sup wq <D5Ek((1 +e‘W)5), n#) + sup w; (thEk((l +e‘w)§>, - ) )
te [ty 1] [tt]  teltyto] [tt2]
* +
nz
(105)

Ek<<1 + ew)é) Hm/[t/t2]> } < co.

1
DfEk( 1+e >H + sup
t1 te tl tz

V (t2 _ztl),Bi,n ( sup

te[tl,tz]
Proof. From Corollary 4. O
When ¢ = 1, we have the usual logistic sigmoid function
For the last application, we consider the Gompertz function g : R — R, where
g(x) = eM" "u < 0 for every x € R. The Gompertz function is also a sigmoid function
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which describes growth as being slowest at the start and end of a given time period. Let
also W = X; be the Brownian motion on simple graphs. Then, the expectation

n .
), / e p(t, Xk, y;)dy;

Ey (erW)(t) :/0 e " p(t, i, yi)dyx +
J=Lj#k

is continuous in ¢.
Moreover,

Corollary 20. Let 0 < f* < 1, n € N: nl=F" > 2 oA B > 0, t € [ty,tp], where
t,tp € (0,00) with t; < tp, then fori =1,2and j =0,1,

(i) , .
(B ™)) - (o) o) <
K- |w (E (eﬂf’w)(j) ! )+B E (eﬂfw)(j)‘ ] = p (106)
i’ 1 k T in k —- Vi
nﬂ oo,[tl,tz]
and
(ii) ‘ ‘
Ly (Ek (™) (”) (5) — Ee (e ") o) H < pr. (107)
00,[t1,t2]

—w\ () W\ .
We observe that nlgn iLnEx (e?“’ W) ! (t) = Ex (e”e W) ! , pointwise and uniformly.
Proof. From Theorems 17 and 19. O
Next, we present

Corollary 21. Let 0 < &, * < 1,q,A,B > 0,t € [t1,t2], where ty,t, € (0,00) with t; < tp, and
neN:nl=F >2 Then, fori=1,2,

’ (5 (o)) (e
K; (w1 (D‘tx— Ei (eye_w> ’ n%) [t1,4] T (Dngk (eye_w> ’ n%) [t,tz])
T(a+1) nof’ +

ﬁé’" <HD?—Ek (EIMW) Hoo,[tl,t] (#=1)"+ HDi‘tEk (ewa) HOO,[t,tz] (f2 - t)"‘) } 10

and
(i -W -w K;
(e7") = B )Hw,[tl,tﬂﬁm

(1 nore(e") ), 0 o (3m)),,)

te[ty,to] te[ty to]
nap*

2

w,[t,t2]> } (109)

i o)y 58
te[ty to) bt ety by]
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Proof. From Theorem 18. [

When a = %, we derive

Corollary 22. Let 0 < B* < 1, 9,A,B > 0,t € [ty to) andn € N : n'=F" > 2. Then, for
i=1,2,
(i)

o (Be(er) ) — Ee(e ) )] <

1 W 1 -W 1
w1 (DZEk et , 1*> + wq (D2 Ei (et , )
2K; ( t ( ) "’ [t1,t] N ( ) "’ [t.ta]

= +

% &

(=) + |Dhes (o))

oor[tlrt]

(t2— t)) }, (110)
0, [t,t5]

% (Jok e

and
(ii)
2K;

<
HOO,[tl,tz] - \/E

1 —-W 1 -W
2 ue 1 2 e 1
( sup wi <Dt_Ek (e ), nﬁ*>[t1,t] + sup ws (D*tEk (e ), nﬁ*>[t,t2]>
+

te[tyty] te(tyt]
) } < o0, (111)
o0, [t ts]

’iLnEk (Byeiw) — Ek (ewiw)

,3*

nz

sup
tE[ty to]

2

1 _
phe(e)

1 W
th, Ek (eye ) H —+ sup
o [t t] tE[t b]

Proof. From Corollary 4. O

7. Conclusions

Here, we employ two important parametrized and deformed activation function neu-
ral network approximators with their establish approximation properties. The parametrized
activation functions kill far fewer neurons than the original ones. The asymmetry of the
brain is best described by deformed activation functions. We derive quantitative stochastic
approximations to Brownian motion over a set of semiaxes emanating from a fixed point.
We finish with a very wide variety of interesting applications. This article is intended for
interested mathematicians, probabilists and engineers.
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