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Abstract: This paper is devoted to the spectral analysis of one class of integral operators, associated
with the boundary-value problems for differential equations of fractional order. In particular, we
show the positive definiteness of studying operators, which makes it possible to select areas in the
complex plane where there are no eigenvalues for these operators.
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1. Introduction

As known (this was noted in reference [1]) in fractional calculus and in the theory of
mixed-type equations, an important role is played by the potential

1
2

1∫
0

u(t)dt
|x− t|1/ρ

with density u(t) and a power kernel 1
|x−t|1/ρ , which is positive-definite for 0 < 1

ρ < 1; this
fact was established in [2] by Tricomi. There are papers where various generalizations of
this result are given. First of all, we should note the paper of Gellerstedt [3], where an
operator of the following form was investigated for positive definiteness

Pφ
01u(x) =

1∫
0

ϕ(|x− t|)u(t)dt

where
ϕ(|x− t|) = |x− t|m/(m+2)P0(c|x− t|4/(m+2))

which is a generalization of the operator

1
2

1∫
0

u(t)dt
|x− t|1/ρ

.

Another direction was started in [4,5], where, in particular, it was shown that the
operator Ãρ : L2 → L2, for 0 < 1

ρ < 1, is sectorial and also the values of the form (Ãρu, u),

for 1 < 1
ρ < ∞, fill the whole complex plane [4]. This manuscript is devoted to studying

the positive definiteness of operators in the form
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A[α,β]
γ u(x) = cα

x∫
0

(x− t)1/α−1u(t)dt + cα,β

1∫
0

x1/ρ−1(1− t)1/γ−1u(t)dt.

which are finite-dimensional perturbations (finite-dimensional perturbations of a special
kind) of a fractional-integration operator of a special kind.

We suggest a principally new wide class of positive-definite operators, which play an
important role in fractional calculus and their applications (the beginning of the spectral
analysis is presented in [1]). Obtained results are used to study some very important
properties of functions of the Mittag–Leffler type.

2. On the Positive Definiteness of Operators of the Kind A[α,β]
γ

Let us consider

A[α,β]
γ u(x) = cα

x∫
0

(x− t)1/α−1u(t)dt + cα,β

1∫
0

x1/ρ−1(1− t)1/γ−1u(t)dt,

where α, β,γ, cα,β, cγ are real numbers and α, β,γ are positive .
Consider the operator arising in the solution of boundary-value problems for fractional-

differential equations [6].
Let us show that this operator (for specific α, γ, ρ) is positive-definite. To highlight the

main ideas, et us consider the simplest cases. Let us consider in space L2(0, 1) the operator
A[α,β]

γ for α = β = γ = ρ, 0 < ρ < 2, i.e., we consider the operator Aρ (how significant the
role of the operator Aρ is in fractional calculus is described in detail in the monograph [7]).
The case for 0 < ρ < 1 is more important, as in this case the operator Aρ corresponds to the
differential equations of order more than 1. The case for 1 < ρ < ∞ in fractional calculus is
not so interesting, but to complete our investigation, we will consider some results for this
case too.

First of all, we note that the first term of operator Aρ is fractional integral J1/ρ of
order 1/ρ.

Let us designate

Ãρu =

x∫
0

(x− t)1/ρ−1u(t)dt.

It is obvious that the operator Ãρ is different from the operator J1/ρ by the positive con-
stant. But in the future, to reduce the amount of text and thus make for easier reading, we
will use the operator Ãρ and will not paid attention to this. As is known in fractional calcu-
lus and in the theory of mixed-type equations, an important role is played by the potential

1
2

1∫
0

u(t)dt
|x− t|(1/ρ)

(1)

with density u(t) and with a power kernel 1
|x−t|(1/ρ) which is positive-definite, for

0 < 1/ρ < 1; this fact was established by F. Tricomi [2].
F. Tricomi [2] showed that the real component of the operator Aρ, i.e.,

ÃρR u =
1
2

1∫
0

u(t)dt
|x− t|1/ρ

,

is fixed-sign, i.e.,
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(ÃρR u, u) =
1
2

1∫
0

1∫
0

u(t)u(x)dtdx
|x− t|1/ρ

≥ 0

is positive-definite, i.e., (ÃρR u, u) ≥ 0. It should be noted that the operator Ãρ is strictly
definite (Ãρu, u) > 0 (the equality sign holds if and only if u = 0). Aittleater, Matsaev and
Palant [5] showed that the operator Ãρ is sectorial (0 < 1/ρ < 1); that is, the values of the
form (Ãρu, u)ies in the angle

|argλ| < π

2ρ
.

Further, Gokhberg and Krein [4] showed that the values of the form (Ãρu, u) for
(1 < 1/ρ < ∞) fill the whole complex plane. This paper provides further analysis of these
operators. Let us formulate some theorems:

Theorem 1. The operator Aρ, for 1 < ρ < 2 for (Aρ : L2 → L2), is positive-definite.

Proof. We need to show that the numerical form (Aρu, u) > 0. Let

v(x) =
x∫

0

(x− t)1/ρ−1u(t)dt−
1∫

0

x1/ρ−1(1− t)1/ρ−1u(t)dt. (2)

As seen, the first term in expression (2) is a fractional-integration operator of order 1/ρ
for 1/2 < 1/ρ < 1. We act on both sides of expression (8) by the fractional-differentiation
operator D(1/ρ)u of order 1/ρ, 1/2 < 1/ρ < 1.

Then, we obtain

D1/ρv(x) = D1/ρ(

x∫
0

(x− t)1/ρ−1u(t)dt)− D1/ρ(

1∫
0

x1/ρ−1(1− t)1/ρ−1u(t)dt) =

= u(t)− cD1/ρx1/ρ−1

where c =
1∫

0
(1− t)1/ρ−1u(t)dt i.e., D1/ρv(x) = u(t).

So
(Aρu, u) = (D1/ρv, v).

It is known [5] that for 1/2 < 1/ρ < 1, the numerical form (D1/ρv, v) ≥ 0 ((D1/ρv, v) > 0
for v ∈ Aα

0 [0, 1] where Aα
0 [0, 1] is a set of all functions v(x) having absolutely continuous

fractional integral of order 1− α on [0,1] and for x = 0 equals 0. Therefore, the operator Aρ

is also positive-definite for 1 < ρ < 2.

Remark 1. This theorem shows that under a perturbation of the operator Ãρ (using a special
finite-dimensional perturbation), the numerical form (Aρu, u) > 0 preserves positive definiteness.
Before formulating the next theorem, note that for 1/2 < 1/ρ < 1 the operator Aρ accompa-
nies the following boundary-value problem (boundary-value problem, for a “model” fractional
differential equation):

1
Γ(1− (1/ρ))

d
dx

x∫
0

u′(t)dt
(x− t)1/ρ−1 = λu, (3)

u(0) = 0, u(1) = 0. (4)
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It was shown [8] that the kernel of the operator Aρ is positive and persymmetric. Now
we show that for 1/2 < 1/ρ < 1, the operator −Aρ is positive-definite.

Theorem 2. The operator −Aρ, for 1/2 < 1/ρ < 1, where (Aρ : L2 → L2), is positive-definite.

Proof. Let us carry out the proof of this theorem similarly to the proof of Theorem 1.
Obviously, the first term in expression (2) is a fractional-integration operator of order
1/ρ, where 1 < 1/ρ < 2. Let us act on both sides of expression (2) with the fractional-
differentiation operator D(1/ρ), where 1 < 1/ρ < 2. We obtain

D(1/ρ)v(x) = D(1/ρ)(

x∫
0

(x− t)(1/ρ−1)u(t)dt)− D(1/ρ)(

1∫
0

x(1/ρ−1)(1− t)(1/ρ−1)u(t)dt) =

= u(t)− cD(1/ρ)x(1/ρ−1),

where c =
1∫

0
(1− t)(1/ρ−1)u(t)dt, i.e.,

D(1/ρ)v(x) = u(t).

Thus, (Aρu, u) = (D(1/ρ)v, v), or−(Au, u) = −(D(1/ρ)v, v). Let us show that the form
−(D(1/ρ)u, u) > 0. We have

(D(1/ρ)v, v) =
1

Γ(1/ρ)

1∫
0

d
dx

x∫
0

(v′(t)dt)
(x− t)(1/ρ−1)

v(t)dt =

=

1∫
0

(v(x)d(
x∫

0

v′(t)dt
(x− t)(1/ρ−1)

) =

(v(x)
x∫

0

v′(t)dt
(x− t)(1/ρ−1)

∣∣∣∣1
0
−

1∫
0

(

x∫
0

v′(t)dt
(x− t)(1/ρ−1))

dv(x)) =

−
1∫

0

(

x∫
0

v′(t)dt/((x− t)(1/ρ−1)))v′(x)dx =

−
1∫

0

(

x∫
0

z(t)dt/((x− t)(1/ρ−1)))z(t)dt⇐ (J(2−1/ρ)z, z) < 0,

(here z = v′). That is, by the theorem of V. I. Matsaev and Yu. A. Palant [5], the operator
−Aρ is positive-definite for 1/2 < ρ < 1.

Remark 2. Let us make a very interesting and important remark. A special finite-dimensional
perturbation makes the indefinite form (Aρu, u) definite.

The trick proposed here can be used to prove that the operator−Aρ is positive-definite
also in the cases 1/3 < ρ < 0. In particular, we have the following theorem.

Theorem 3. For 1/3 < ρ < 1/2, the operator −Aρ where (Aρ : L2 → L2) is positive-definite.
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Proof. Note that the operator Aρ accompanies the following boundary-value problem

1
(Γ(3− 1/ρ))

d3

(dx3)

x∫
0

u(t)dt
(x− t)(1/ρ−2)

= λu (5)

u(0) = 0, u′(0) = 0, u(1) = 0 (6)

The first term in expression (2) is a fractional-integration operator of order 1/ρ, where
2 < 1/ρ < 3. Let us act on both sides of expression (2) using the fractional-differentiation
operator D(1/ρ) where 2 < 1/ρ < 3. We obtain

D(1/ρ)v(x) = D(1/ρ)(

x∫
0

(x− t)(1/ρ−1)u(t)dt− D(1/ρ)(

1∫
0

x(1/ρ−1)(1− t)(1/ρ−1)u(t)dt) =

= u(t)− cD(1/ρ)x(1/ρ−1),

where c =
1∫

0
(1− t)(1/ρ−1)u(t)dt, i.e.,

D(1/ρ)v(x) = u(t).

Thus,
(Aρu, u) = (D(1/ρ)v, v).

Now we will show that with the form −(D(1/ρ)u, u) > 0 we have

(D(1/ρ)v, v) =
1∫

0

(
d3

dx3

x∫
0

v(t)dt
(x− t)(1/ρ−2)

v(x)dx) =

1∫
0

(

x∫
0

v(t)dt
(x− t)(1/ρ−2)

)′′′v(x)dx =

1∫
0

v(x)d(
x∫

0

v(t)dt
(x− t)(1/ρ−2)

)′′ =

v(x)(
x∫

0

v(t)dt
(x− t)(1ρ−2)

∣∣∣∣1
0
)′′ −

1∫
0

(

x∫
0

v(t)dt
(x− t)(1/ρ−2)

)′′v′(x)dx =

−
x∫

0

(

1∫
0

v(t)dt
(x− t)1/ρ−2 )

′′,

where

(

x∫
0

v(t)dt
(x− t)(1/ρ−2)

)′′ =
d2

dx2

x∫
0

v(t)dt
(x− t)(1/ρ−2)

=

d
dx

(
d

dx

x∫
0

v(t)dt
(x− t)(1/ρ−2)

).

According to the well-known formula

d
dx

x∫
0

v(t)dt
(x− t)(1/ρ−2)

=
v(0)

Γ(3− 1/ρ)x−(1/ρ−2)
+
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+
1

Γ(3− 1/ρ)

x∫
0

(x− t)−(1/ρ−2)v′(t)dt =

=

x∫
0

v′(t)dt
(x− t)(1/ρ−2)

,

we obtain

−
1∫

0

(
d

dx

x∫
0

v′(t)dt
(x− t)(1/ρ−2)

)v′(x)dx =

−
1∫

0

(
d

dx
−

1∫
0

z(t)dt
(x− t)(1/ρ−2)

z(x)dx) = (J(3−1/ρ)z, z) < 0.

Therefore, the number form, and hence the operator, is positive-definite for the following.

Remark 3. Operators of the form

A[α−1,ρ]
ρ u(x) =

1
Γ(ρ−1)

x∫
0

(x− t)1/ρ−1u(t)dt−

− 1
Γ(ρ−1)

1∫
0

x1/ρ−1(1− t)α−1u(t)dt (7)

can also be studied using the method given above. In the same way as in the case of the operator Aρ,

it can be shown that the operator A[α−1,ρ]
ρ is positive-definite. Here, we note that it is known [6] that

the number λ will be the eigenvalues of the operator A[α−1,ρ]
ρ if and only if Eρ(λ, α) = 0 was used

to study the distribution of the zeros of the function Eρ(λ, α) [9].

3. Application of the Obtained Results to Study the Problem of Distribution of Zeros
of the Mittag–Leffler Function

The distribution of the zeros of a function of the Mittag–Leffler type is the subject
of works by many authors [10,11]. This paper also studies the distribution of zeros for
functions of the Mittag–Leffler type. In fractional calculus, a special role is played by
the function

eλx
1
ρ

= x1/ρ−1Eρ(λx1/ρ−1, 1/ρ)

and zeros of the function
Eρ(λ, 1/ρ).

Therefore, the main focus is on studying the zeros of the function Eρ(λ; 1/ρ) as well
as a system of eigenfunctions

{x1/ρ−1Eρ(λjx1/ρ−1, 1/ρ)}, j = 1, 2, . . . , ∞

of the operator Aρ. Of course, the finite-dimensional perturbation with which the operator

A([α,β])
γ is obtained from the fractional-integration operator depends on two parameters, ρ

and γ

A([α,β])
γ u(x) = cα

x∫
0

(x− t)(1/α−1)u(t)dt + c(β,γ)

1∫
0

x(1/ρ−1)(1− t)(1/γ−1)u(t)dt,
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which allows us to study the distribution of zeros of a wide class of functions of the Mittag–
Leffler type. In this section, the results obtained earlier in Sections 1 and 2 are applied
to study the problem of the distribution of the zeros of a function of the Mittag–Leffler
type. But we will note that it has been proved that the system of main functions of the
operator Aρ is complete in L2(0, 1), or, which is the same, it has been proved that the system
of functions

{x1/ρ−1Eρ(λjx1/ρ−1, 1/ρ)}, j = 1, 2, . . . , ∞

is complete in L2(0, 1).
We shall note the papers of M.M. Malamud [12–15] and his students devoted to the

study of the problem of completeness of systems of eigen and associated functions of
boundary-value problems for fractional-differential equations. These studies are essentially
based on the well-known analogue of M. A. Neimark’s theorem [16]. The method presented
here has not been previously cited by anyone.

4. Distribution of Eigenvalues and Zeros of the Function of Mittag–Leffler Type in
Corner Regions

Next, we need the previously mentioned theorem of M.M. Dzhrbashjan.

Theorem 4 (M.M. Dzhrbashjan). Let ρ > 1/2, ρ 6= 1, Imµ = 0; then, all sufficientlyarge in
modulus zeros of the function Eρ(z, µ) (where ρ > 1/2, ρ 6= 1, Imµ = 0) are simple. The following
asymptotic formulas are valid

γ±k = e(±iπ/(2ρ)(2πk)(1/ρ)(1 + 0(logk /k)), k→ ∞.

The question arises whether all zeros of the function Eρ(z, µ)ie in this domain, and for what ρ
the operator (7) is trace class.

Remark 4. All eigenvalues of the operator Aρ, for 1 < ρ < ∞,ie in the angle |argλ| < π/2.

Proof. Since the operator−Aρ is positive-definite, all characteristic numbers of the operator
Aρie in the same angle, which proves Theorem 3.

Corollary 1. All zeros of the function E(1/ρ)(λ, 1/ρ) for 1 < ρ < ∞ie in the angle |argλ| < π/2.
The following theorem can be proved in the same way.

Theorem 5. All eigenvalues of the operator −Aρ for 1/2 < ρ < 1ie in the angle |argλ| ≤
π − π/(2ρ).

Corollary 2. All zeros of the function E(1/ρ)(−λ, 1/ρ) for 1/2 < ρ < 1ie in the same angle.
Finally, we give one more statement, which is a consequence of Theorem 2.

Corollary 3. Since for 1/3 < ρ < 1/2 all zeros of the function are negative, all the eigenvalues
of the operator Aρ are negative, so there is no need to talk about the corner regions where the
eigenvalues of this operatorie in this case. We have presented in detail the distribution of the zeros of
the function E(1/ρ) (λ, 1/ρ) because, as noted earlier, in the same way we can consider the problems
of the distribution and zeros of the function Eρ(λ, α).

Such questions were first studied in [2,5,8]. The first article known to the author [8]
containing results on this topic appeared in 1993. Somewhatater, in 1997, a paper of
Ostrovsky and his students appeared on the same topic. It should be noted that in paper [2]
it was shown that all zeros of the function E(1/ρ)(λ, 1/ρ) for 1/2 < ρ < 1,ie in the right
half-plane, or all the eigenvalues of the operator Aρie in the right half-plane. A much
stronger result was published in [5], where it was shown that all the eigenvalues of the
operator Aρ for 1/2 < ρ < 1ie in the angle |argλ| < π

2π . As noted, these works were
preceded by a 1993 paper [8] devoted to similar questions for the function Eρ(λ; 2).
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Let us also note the paper of A.M.Sedletsky in 2004 [10], where it was shown that for
µ > 1, µ ∈ (1, 1 + 1/ρ) all roots of the function Eρ(z, µ)ie outside the angle |argz| ≤ π/2ρ.

As noted in Remark 3, the author does not aim to describe the widest possible set of
pairs of parameters ρ and µ such that all zeros E(1/ρ)(λ, 1/ρ)ie in the angle |argz| ≤ π/2ρ.
But it is obvious that all the statements formulated and proved are valid for the operator

A([α−1,ρ])
ρ u(x) =

1/Γ(ρ−1)

x∫
0

(x− t)(1/ρ−1)u(t)dt− 1/Γ(ρ−1)

1∫
0

x(1/ρ−1)(1− t)(α−1)u(t)dt.

Note that for 1 < ρ < ∞ the operator Aρ is completely non-self-adjoint, which implies that
for 1 < ρ < ∞ all eigenvalues of the operator Aρ are complex, or all zeros of the function
E(1/ρ)(λ, 1/ρ) are complex [17–20]. From the theorem formulated by M.M. Dzhrbashjan
(directly from the asymptotics) follows Proposition 3.1. The operator Aρ for 1/2 < ρ < 1
is trace class. Nowet us study the completeness of the systems of eigenfunctions and
associated functions of the considered operators. For this, we need the following theorem
of M. S. Livshits [21,22].

Theorem 6 (Livshits). If it is a bounded kernel, the “real part” (K+K∗)
2 of which is a non-negative

kernel, then the inequality
∞

∑
j=1

Re
1
λj
≤

b∫
a

ReK(t, t)dt,

holds, where λj are the characteristic numbers of the kernel K. The system of main eigenfunctions of
the kernel K is complete in the range of values of the integral operator K f if and only if the equality
sign holds in the relation above.

We use the results obtained, along with the well-known theorem of M. S. Livshits, to
prove that the system of eigenfunctions of this operator is complete in L2(0, 1).

Theorem 7. The system of eigenfunctions and associated functions of the operator Aρ is complete
in L2(0, 1).

Proof. Using the theorem of M. S. Livshits, we show that the system of eigenfunctions of the
operator accompanying the boundary-value problem for the model fractional-differential
fractional equation is complete in L2(0, 1). The proof consists of these statements

(1) (Aρu, u) > 0. This inequality was proved in [16];
(2) and

∞

∑
j=1

Re
1
λj

=

b∫
a

ReK(t, t)dt,

where the eigenvalues are of the operator Aρ.

We denote µj = 1/λj—the eigenvalues of the operator Aρ; then

∞

∑
j=1

Reµj =

b∫
a

ReK(t, t)dt.
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The sum of the eigenvalues µj is the trace of the operator Aρ, i.e.,

spA = spA0 + spA1 = sp(
1∫

0

x1/ρ−1(1− t)1/ρ−1u(t)dt).

Let us find the sum of the eigenvalues (i.e., the operator’s trace). Note the following
important statement:

Let the number λj be an eigenvalue of boundary-value problems (3) and (4) if and
only if it is the zero of the Mittag–Leffler function Eρ(z, µ). This function can have both real
and complex zeros λj = αj + iβ j, since function

Eρ(z, µ) =
∞

∑
k=0

zk

Γ(µ + k/ρ)

is a whole function; then, the conjugate number λj = αj − iβ j will also be the root of this
function. Since

sp(A) =
∞

∑
j=0

λj

(note that the trace includes all roots, both real and complex, taking into account their
multiplicity), then

∞

∑
j=0

λj = (α + iβ) + (α− iβ) + . . . = 2α + γ + . . . =
∞

∑
j=0

Reλj

—is the sum of the real parts of the eigenvalues.
Nowet us show that

∞

∑
j=1

Re
1
λj

=

b∫
a

ReK(t, t)dt.

Beforeooking for the trace of the operator Au, it is necessary to show that the trace
exists, i.e., a series of the form

∞

∑
j=0

λj = λ1 + λ2 + λ3 + . . .

should converge. From the theorem of M. M. Dzhrbashjan [10], the following asymptotics
of the zeros is known for the function Eρ(λ, β)

γ±k = e(±iπ/2ρ)(2πk)(1/ρ)(1 + 0(. . . )), k→ ∞.

This asymptotics is also true for the eigenvalues of the following problem

Dαu = λu, (σ = 2− α) (8)

u(0) = 0, u(1) = 0. (9)

Obviously, a series of the form ∑ 1
(2πk)1/ρ for 1/ρ > 1 converges, and for 1/ρ < 1 it

diverges since
1/ρ− 1 = 1− α, 1/ρ = 2− α,

where 0 < α < 1 i.e., (2− α) > 1. We have shown that the series converges, i.e., the
operator Aρ is nuclear. Nowet us calculate its trace. Obviously, the operators A0 and A1
are nuclear, so their sum is also a nuclear operator [23–29]. Therefore, it is enough for us
to find traces of the operators A0 and A1, respectively. Since the operator A0 is a Volterra
operator, its trace is equal to 0, and the operator A1 transforms the space L2 in functions of
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the form cx1/ρ−1 (the operator A1 is one-dimensional). Thus, the problem was reduced to
determining the only eigenvalue λ1 of the operator A1. It is obvious that

λ1 =

1∫
0

(1− t)1/ρ−1t1/ρ−1dt =
Γ( 1

ρ )

Γ( 2
ρ )

.

Theorem 8. The system of eigenfunctions (and not the system of eigenfunctions and associated
functions) of the operator Aρ for 0 < ρ < 1/2 is complete in L2(0, 1).

Proof. As noted earlier, the zeros of the function Eρ(λ; 1
ρ ) for 0 < ρ < 1/2 are simple;

therefore, the eigenvalues of the operator Aρ are also simple. Therefore, in the cases when
0 < ρ < 1/2, the operator Aρ does not generate eigenfunctions. The positive definiteness
was proved above, and it was also shown there that the relation

∞

∑
j=1

Re
1
λj

=

b∫
a

ReK(t, t)dt

holds for the eigenvalues of the operator Aρ. Therefore, the proof of this theorem follows
from the Livshits theorem.

5. An Estimate for the Spectral Radius of the Operator A([α(−1) ,ρ])
ρ and Some Corollaries

First, et us study the spectral radius of the operator Aρ. The following theorem holds.

Theorem 9. Outside a circle centered at the origin and radius (ρ(ρ + 1))/Γ( 1
ρ ), the operator Aρ

has no eigenvalues, or, which is the same, all zeros of the function Eρ(λ; 1
ρ )ie outside the circle with

this radius.

Proof. Let us provide an upper estimation of the spectral radius for the operator Aρ

||Aρ||L2 ≤
1

Γ(1/ρ)
(

1∫
0

1∫
0

|(x− t)1/ρ−1 − x1/ρ−1(1− t)1/ρ−1|dxdt) ≤

≤ ρ(ρ + 1)
Γ(1/ρ)

from which follows the proof of this theorem.

Note that the spectral radius of the operator A[α−1,ρ]
ρ can be studied in a similar way,

which allows us to calculate the radius of the circle, inside which the function Eρ(λ, α) = 0
has no zeros.

Note that these statements play an important role in the theory of inverse problems,
and therefore this problem has attracted the attention of many authors.

For the function Eρ(λ, α) with α = 2 and 1
2 < ρ < 1, this problem was studied in

1983 [24,30,31] (it was proven that the function Eρ(λ, 2) has no zeros in a circle of radius
R). Further, for 1/2 < ρ < ∞, the same result is obtained, as shown by A. M. Gachaev in
2005 [32].

We also note the paper of A. Yu. Popov, which also appeared in 2006 [33], where a
similar result was obtained for the case 1

2 < ρ < 1 by other methods (it should be noted that
this result is the basis for the proof of the main result of this (see [33]) and the paper of A. Yu.
Popov and A. M. Sedletskiy, 2011 [34], where it was shown that for ρ > 1, 1 ≤ µ ≤ 1 + 1/ρ

the function Eρ(z; µ) has no roots in the circle |z| ≤ π
1
ρ . If we take into account Remark 3,

where it is said that the number λ will be the eigenvalues of the operator A([α(−1),ρ])
ρ if
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and only if Eρ(λ, α) = 0, it is clear that with the help of Theorem 7 similar results can
be proved for a wide class of functions of the Mittag–Leffler type. Comparison of the
above results shows how effective Theorem 7 is in solving problems of the distribution
of zeros of a function of the Mittag–Leffler type. As noted in Remark 3, the author does
not aim to describe the widest possible set of pairs of parameters ρ and µ such that all
zeros E( 1

ρ )
(λ, 1

ρ )ie in the angle |argz| ≤ π
2ρ o or outside the circle centered at the origin. But

it is obvious that all the statements formulated and proved are valid for operator (7). To
confirm this fact, we present one theorem that generalizes all previously known results in
this direction, and is proved according to the same scheme as Theorem 3.

Theorem 10. All zeros of the function Eρ(λ; µ) for 1 < ρ < 2 and µ > 1
2 ie in the angle π

2 .

Proof. It is necessary to show that the numerical form (A([α−1,ρ])
ρ u, u) > 0. Let

v(x) =
x∫

0

(x− t)(
1
ρ−1)u(t)dt−

1∫
0

x(
1
ρ−1)

(1− t)(α−1))u(t)dt.

As can be seen, the first term of theast expression is a fractional-integration operator
of order 1

ρ , where 1
2 < 1/ρ < 1. We act on both sides of theast expression with the

fractional-differentiation operator D
1
ρ u of order 1

2 < 1/ρ < 1. Then, we obtain

D
1
ρ v(x) = D

1
ρ (

x∫
0

(x− t)(
1
ρ−1)u(t)dt)− D(1/ρ)(

1∫
0

x(
1
ρ−1)

(1− t)(α−1)u(t)dt) =

u(t)− cD
1
ρ x(1/ρ−1)

where c =
1∫

0
(1− t)(α−1)u(t)dt; that is, D

1
ρ v(x) = u(t).

Thus,
(A([α−1,ρ])

ρ u, u) = (D
1
ρ v, v).

It is known [5] that for 1
2 < 1

ρ < 1 the numerical form (D( 1
ρ )v, v) ≥ 0 and, consequently,

the operator A([α(−1),ρ])
ρ is positive-definite for 1 < ρ < 2.

6. Conclusions

In this work, we carry out a spectral analysis of one class of integral operators affected
by boundary-value problems for fractional-differential equations. First of all, we note that
the operators under study are non-self-adjoint and their spectral structure is very complex
and little studied. The manuscript proves the positive definiteness of these operators, which
made it possible to prove the completeness of the system of eigen and associated functions.
The manuscript also devotes significant space to the problem of spectrum localization.
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