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Abstract: In this paper, we consider a failed cold standby system and obtain stochastic bounds on
the idle time of such systems. We state and prove that if the last spare in the system is exponentially
distributed and if the components have log-concave lifetime distributions, then the idle time of
a failed cold standby system is smaller than the sum of the idle times of the components in the
system according to the likelihood ratio order. In order to compare the idle time of two cold standby
systems with different numbers of spares and different observation times of the failure in terms of
the likelihood ratio order, an additional result is presented. Finally, we establish sufficient conditions
for the usual stochastic ordering between the idle time of a cold standby system of size two and the
sum of the idle times of the components in the system. We provide several examples to show that the
results are achievable.
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1. Introduction

Consider n components operating sequentially with random lifetimes X1, X2, · · · , Xn
such that the first component starts operating at time τ = 0 and has random lifetime X1
while the remaining (n − 1) components do not operate and remain in standby mode.
At time τ = X1, when the first component fails, the second component immediately
starts working and has a random lifetime X2; at time τ = X1 + X2, when the second
component fails, the third component immediately starts working, etc., such that at time
τ = X1 + X2 + · · · + Xn the system fails. This is called a cold standby system with n
units, in which the components work one after another until then the last component
fails. Suppose that at the time τ = t, when an operator has performed an inspection, it
is determined that the cold standby system is inactive. The idle time of the cold standby
system is a dynamic random variable of the system that depends on the time t at which the
system was found to be inactive. Thus, it is assumed that an interval of time has elapsed
since the system was found to be inactive, implying that the observation of the system’s
failure was lagged. It is assumed that X1, X2, · · · , Xn are independent; however, in general,
they may not be identically distributed, for instance, if different types of components are
installed in the system.

Single- and dual-unit redundant systems have been the subject of extensive research in
the reliability literature because of their widespread use in modern business and industrial
systems. Parallel and standby redundancy are the two main forms. In a standby system, the
redundant units are not included in the system from the beginning, and are only included
when they are needed, whereas in a parallel system they are included from the beginning.
There are three types of standby units: cold, warm, and hot. Cold standby sparing is a
reliable way to ensure that a system can continue to function as intended even if some of
its components fail. In this technique, redundant standby elements are kept in a powerless
cold mode to conserve resources and protect them from workloads. If an online component
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fails, a cold standby component can be activated to take over. Because a cold standby
unit is unplugged and completely inactive, it cannot fail until the primary unit is replaced.
Because it is only partially energized, a warm standby unit has a lower load. Although
redundant, a hot standby device is fully functional in the system. The lifespan of cold
standby systems can be described as being longer than other types of backup systems
because they are not actively operated and as such are subject to less wear and tear. This
can result in cost savings for organizations, as they do not need to replace or upgrade the
system as frequently. However, the life of the system can be affected by factors such as
the quality of the hardware and software used, maintenance practices, and frequency of
use. Cold standby systems are commonly used in reliability to support critical systems and
processes. Example applications of cold standby systems in reliability include:

(1) Data backup and recovery: cold standby systems can be used to store backup data
and ensure its availability in the event of a system failure or malfunction.

(2) Emergency power supply: cold standby systems can be used as a backup power
supply in the event of a power failure or malfunction to ensure that critical systems
remain operational.

(3) Network redundancy: cold standby systems can be used for network redundancy
to ensure that critical network services remain available in the event of a network outage
or failure.

(4) Server redundancy: cold standby systems can be used for server redundancy to
ensure that critical applications and services remain available in the event of a server failure
or defect.

(5) Disaster recovery: cold standby systems can be used as part of a disaster recovery
plan to provide backup support for critical systems and processes in the event of a natural
disaster or other catastrophic event.

Overall, cold standby systems are an important tool for ensuring the reliability and
availability of critical systems and processes. They can help organizations to minimize
downtime and maintain continuity in the face of unexpected events. For example, k-out-of-
n systems are a type of reliability system in which a system is considered functional as long
as k or more of n components are functioning properly; in other words, the system fails only
when fewer than k components are functioning properly. This type of system is often used
in engineering and manufacturing applications where redundancy is required to ensure
the system’s continued functionality even if some of its components fail. The values of k
and n can vary depending on the specific application and the level of reliability required.
A situation in which such a standby system is used is that of k-out-of-n systems (see,
e.g., Levitin et al. [1], Fernández [2], Barron and Yechiali [3], Barron [4], Levitin et al. [5],
Bian et al. [6], and references therein). The method of cold standby has been widely utilized
in crucial scenarios such as flight controls, satellites, chemical process controls, telecommu-
nication systems, and nuclear power plants (see, for instance, Mathur [7], Wang [8], Johnson
and Julich [9], Sinaki [10], Pandey et al. [11], Coit [12], Hsieh and Hsieh [13], Elerath and
Pecht [14], and Wang et al. [15]).

Cold standby systems have recently attracted the attention of many researchers in
the field of reliability enginerring (see, e.g., Wang and Ye [16], Ramezani Dobani et al. [17],
Danjuma et al. [18], Malhotra et al. [19], and Lin et al. [20]).

In contrast to the residual life of a system, one aspect of engineering systems is
their idle time. The idle time is sometimes called the inactivity time or reversed resid-
ual lifetime. In view of the idle time, the stochastic properties of coherent systems, a
large and well-known class of systems in reliability, have been widely studied during
the past decades (see, for instance, Bayramoglu and Ozkut [21], Zhang and Balakrish-
nan [22], Navarro et al. [23], Kayid et al. [24], Navarro and Calì [25], Salehi and Tavan-
gar [26], Toomaj and Di Crescenzo [27], Amini-Seresht et al. [28], Guo et al. [29], and Kayid
and Shrahili [30]). However, the study of stochastic comparisons between idle (or inactive)
time of cold standby systems has not been conducted in literature to date.
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In this paper, we present results on a failed cold standby system. Two scenarios using
different strategies are compared based on their idle time. The first scenario assumes that
a cold standby system with n units (with the first unit being the underlying component
in the system and the remaining (n− 1) components the spare components) has failed
before a time t at which the operator found the system to be in failure state, resulting in an
idle time on the part of the cold standby system. In the second scenario, we assume that n
components were used separately in n independent experiments, in which all components
failed before t and the idle time of all components was measured at time t; we then consider
the sum of the idle times of the n components. The goal of this work is to derive lower
and upper bounds for the idle time of the cold standby system with n components with
heterogeneous lifetime distributions by using the sum of the idle time of these n components
separately.

The remainder of the paper is divided as follows. Section 2 discusses related research
in the relevant fields. In Section 3, preliminary notion and basic formulas and definitions
are provided. Section 4 presents the main results of the paper. In Section 5, we conclude
the paper with a summary of our results and findings along with further directions for
possible future studies.

2. Further Descriptions and Related Works

The concept of stochastic comparisons of the residual life of the convolution of random
variables has attracted the attention of many researchers in the context of reliability theory
and risk analysis. Thus, Ahmed and Kayid [31] considered the residual lifetime of convo-
lutions of random lifetimes and derived sufficient conditions under which convolution
residuals are preserved under the Laplace transform order. Amiripour et al. [32] used
folding residuals based on observations from one or two samples to construct a set of
stochastic orderings. In this way, they found computable constraints on both the predicted
values of the convolution residuals and the survival functions. In addition, their work
discussed applications in queueing theory and reliability theory. In the same direction,
Kayid and Alshehri [33] recently developed stochastic comparisons between the lifetime
of a used cold standby system with a certain age t (which is still working) and the sum of
the remaining lifetimes of the components in the system. They used the usual stochastic
order and likelihood ratio order to derive their main results. They obtained a result and
presented sufficient conditions under which a used cold standby system is less reliable in
terms of likelihood ratio order than a cold standby system with used components when the
used components have a common age t.

In the context of reversed residual lifetime or inactivity time of the convolution of
random variables, the stochastic comparisons obtained in the literature are based on mean
inactivity time functions. For example, Ahmad et al. [34] derived a preservation property
of the mean inactivity time order under the convolution of random lifetimes. Ortega [35]
presented findings that provide guidelines for the total loss amounts for two insurance
portfolios under the collective risk model (random sums). In this way, it is possible to
analyze the idle time of a cold standby system using the mean values according to the
results of Ahmad et al. [34] and Ortega [35]. However, there is a research gap in this area
in that there have been no studies analyzing the idle time of cold standby systems using
more general distribution measures such as the distribution of inactivity time; thus, there is
much room for further research in this area.

In the present paper we consider the idle time of a failed cold standby system to obtain
lower and upper bounds for it in terms of the idle time of the failed components in the
system. As pointed out and clearly shown by Ahmad et al. [34], the results for the idle
variable (the inactivity time) cannot be concluded from the similar results on the residual
lifetime variable. Thus, there is room to fill another gap in the literature, which is the
starting point for our study in this paper. Another focus is that the properties we obtain
in this paper are quite different from and cannot be acquired using the results in Kayid
and Alshehri [33]. An interesting point is that, in general, in the remaining lifetime of a
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functioning coherent system. This is because the idle variable takes values at [0, t), while
the residual lifetime variable takes values at (t,+∞); thus, the former is obviously more
predictable than the latter. Therefore, the problem of finding the stochastic bounds of the
idle time of a cold standby system has a complementary role in refining our knowledge
about the lifetime of the system.

It is worth mentioning that the results obtained in this work play a complementary
role compared to the previous works in this field (i.e., Kayid and Alshehri [33]). In that
work, the authors were concerned with the remaining lifetime of cold standby systems. In
contrast, in the current study we focus on the inactivity time of cold standby systems and
the comparison of systems from the point of view of the idle time. The results obtained
in this work can be useful in practice for several purposes. The observation time at which
a cold standby system is classified as inactive may not correspond exactly to the time at
which it actually failed. As a result, there is a time interval during which the system is
inactive, which can lead to further costs and losses. Therefore, it is important to control the
situation and use an appropriate number of components in the system or even components
with a certain reliability level to minimize the idle time of the cold standby system. In this
direction, the results of this paper can provide further guidance for engineers to design
suitable structures for cold standby systems. The assumptions made in this paper include
aging properties of the lifetime distributions of the components of the system along with
ordering properties and relationships with the lifetime distributions of the components.
Because equipping any system or its components with standby spare parts is a relevant
method to increase the reliability of systems with different structures, in the case where a
cold standby system with two units or components is considered, the results of this paper
may be useful to maintain other kinds of systems to ensure that the main unit is considered
as a system with any structure (i.e., not exactly a cold standby system) or a component
within it.

The problem of finding stochastic upper and lower bounds for the distribution of
convolution of random variables (Sn = ∑n

i=1 Xi, see Section 3 for further descriptions),
and more generally the mathematical expectations of functions of Sn, is of particular in-
terest in the context of risk theory and actuarial analysis. This is particularly useful; it is
not plain to derive the distribution function of the convolution of random variables, as
they ordinarily have no closed tractable forms. As mentioned by Ramsay [36], while the
Pareto distribution is an important candidate for actuaries and economists, an exact ex-
pression for the distribution of the sum of n i.i.d. (independent and identically distributed)
Pareto random variables is generally difficult to obtain. In the actuarial literature, there
is increasing worry about the impact of dependence between individual risks X1, · · · , Xn
on the distribution of the total claim Sn. Research by Dhaene et al. [37] has resulted in,
among other things, the identification of the portfolio producing the smallest and largest
stop-loss premiums, resulting in bounds on E(Sn) for any arbitrary non-decreasing and
convex functions in circumstances of dependence between the Xis. In order to further these
findings, Denuit et al. [38] demonstrated how to calculate constraints on P(Sn > s), and
more broadly on E(Sn), for monotone functions that are not always convex.

There has been an increasing interest in evaluating claims and risks in the context of
conditional distributions. In risk analysis, the conditional tail expectation is an important
metric for right-tailed risk. It indicates the expected level of risk that may occur when an
expected risk exceeds a threshold t. Cai and Li [39] studied the convolution and extreme
values of dependent risks that follow a multivariate phase type distribution; they derived
explicit formulas for a set of conditional tail expectations of the convolution and extreme
values for such dependent risks. Their method provided structural information about these
distributions while providing novel distributional properties for multivariate phase-type
distributions by exploiting the underlying Markovian property of these distributions. In
another work by Sordo et al. [40], they studied the marginal behavior of the i-th risk in a
risk portfolio in the presence of adversity, such as a disproportionate loss to the portfolio or,
in the case of a portfolio with a positive dependence structure, a disproportionate loss to
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another risk. They formalized the notion that the i-th component of the portfolio is riskier
when it is part of a positive-dependent random vector than when it is considered alone,
which they did in several ways by considering specific conditional risk distributions. In
addition, they acquired conditions under which, given two random vectors with a defined
dependence structure, the existence of specific stochastic orderings between their marginals
implies an ordering between the corresponding conditional risk distributions.

3. Preliminaries

In the remaining parts of the paper, we use the following notation. Let X
¯
= (X1, . . . , Xn)

be a random vector, denote Sn = ∑n
i=1 Xi, and consider a cold standby system comprising

n components. First, one component begins to work and the residual n− 1 components
are in standby and ready to lie in the system. Upon the failure of the first component, the
components that are in queue in standby mode are replaced one by one until all compo-
nents become inactive and the cold standby system fails. Suppose that X1, . . . , Xn represent
the lifetimes of n described components having cumulative distribution functions (CDFs)
FX1 , . . . , FXn . It is assumed that X1, . . . , Xn are independent. The lifetime of the cold standby
system is then identified as

Sn = X1 + X2 + . . . + Xn. (1)

Although in this paper we use the random variable (rv) Sn in (1) as the lifetime of an
n-fold cold standby system, there is another description for this rv from the perspective of
insurance and risk theory. In such frameworks, convolution manifests itself naturally. In
this case, the portfolio consists of a fixed number of different insurance policies and the
total loss of the portfolio is the sum (convolution) of the random losses of the individual
policies, which is consistent with the model of individual risk. For example, we are
interested in how the sum Sn of claims is distributed across different insurance policies,
where Xi, i = 1, 2, . . . , n represents the payout on policy i. It is assumed that the risks Xi
are independent random variables. The risks should be combined into one term in (1) if
this assumption is broken for certain risks, such as fire insurance policies for different floors
of the same building. The CDF of the lifetime of the cold standby system is

FSn(t) = P(X1 + X2 + . . . + Xn ≤ t) = FX1(t) ∗ FX2(t) ∗ . . . ∗ FXn(t), (2)

in which ∗ stands for the convolution operator. It is acknowledged that when Xi and Xj,
for i 6= j are independent, then FXi (t) ∗ FXj(t) =

∫ +∞
−∞ FXi (t− x) fXj(x) dx, where fXj is the

probability density function (PDF) of Xj, which is the CDF of the convolution of Xi and Xj,
that is, the CDF of Xi + Xj. From (2), we can develop the following:

FSn(t) = FSn−1(t) ∗ FXn(t) =
∫ +∞

−∞
FSn−1(t− x) fXn(x) dx. (3)

Suppose that X denotes the life length of a lifetime organism. We assume that at the
time t at which an inspection is carried out, it is found that the organism is not alive or the
system is not working. This situation is frequently encountered in different contexts; there
is no process to accurately determine the time point at which the organism failed, though
there may be signs from which can be realized that the organism has failed. There are many
situations in which the observation of events is postponed. Thus; the time t may be the
first time at which a sign has observed. We utilize the rv X(t) = (t− X|X ≤ t), which is
well-defined for every t ≥ 0 for which FX(t) > 0. The rv X(t) is called the inactivity time of
the organism (which has a random lifetime X) at time t. The rv X(t) has the following CDF.

FX(t)
(x) =


0, x < 0
1− FX(t−x)

FX(t)
, 0 ≤ x < t

1, x ≥ t
(4)
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The associated reliability function of X(t) is obviously

F̄X(t)
(x) =


1, x < 0
FX(t−x)

FX(t)
, 0 ≤ x < t

0, x ≥ t
(5)

and the PDF of X(t) is derived by taking derivation of Equation (4), as shown below.

fX(t)
(x) =

{
fX(t−x)

FX(t)
: 0 ≤ x < t

0 : x ≥ t or x < 0
(6)

Note that FX(t) is the normalizing constant, as in view of Equation (6) we have FX(t) =∫ t
0 fX(t− x)dx. There are two well-known reliability measures which are constructed using

the rv X(t), namely, the reversed hazard rate (RHR) function and the mean inactivity (MIT)
time function. In view of (6), the RHR of a lifetime rv (FX(0−) = 0) is defined as

h̃X(t) = fX(t)
(0) =

fX(t)
FX(t)

, for all t : FX(t) > 0.

The MIT function of X, as the mathematical expectation of the rv X(t), is derived as
follows:

m̃X(t) = E[X(t)] =

∫ t
0 FX(x)dx

FX(t)
, for all t : FX(t) > 0.

For the preliminary properties of the RHR function, we refer readers to Block et al. [41]
and Finkelstein [42]; for the initial aspects and properties of MIT functions, see Kayid and
Izadkhah [43] and Khan et al. [44].

Stochastic orders which have been utilized to compare probability distributions pro-
vide useful procedures for comparing reliability systems. Two reputable and frequently
used stochastic orders are adopted in this paper to construct stochastic orders between
the idle times of inactive systems. The following definition is adopted from Shaked and
Shanthikumar [45]. Suppose that X and Y have CDFs FX and FY, respectively, for which
the survival functions (SFs) of X and Y are defined as F̄X ≡ 1 − FX and F̄Y ≡ 1 − FY,
respectively.

Definition 1. Suppose that X and Y are two non-negative rvs with PDFs fX and fY and survival
functions F̄X and F̄Y, respectively. Then, we say that X is smaller than or equal to Y in:

(i) the likelihood ratio order (denoted as X ≤lr Y) if fY(t)
fX(t)

is increasing in t ≥ 0;
(ii) the usual stochastic order (denoted as X ≤st Y) if F̄X(t) ≤ F̄Y(t) for all t ≥ 0.

The two stochastic orders provided in Definition 1 are in a relation with each other
such that X ≤lr Y yields X ≤st Y (for an example, see Theorem 1.C.1 in Shaked and
Shanthikumar [45]). The usual stochastic ordering is useful for comparing the reliability
of two systems directly and completely in the whole time interval. On the other hand,
the likelihood ratio ordering is a powerful tool for comparing the strengths of random
variables such that X ≤lr Y holds if and only if

[X|a < X ≤ b] ≤st [Y|a < Y ≤ b] for all a < b,

that is, the likelihood ratio order is able to compare two systems with lifetimes X and Y
based on their reliability functions at specific times. The likelihood ratio order is useful
for constructing rejection regions when testing certain statistical hypotheses in a paramet-
ric family of distribution in order to choose between two values of the parameter. For
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more properties and details on these stochastic orders, we refer readers to Shaked and
Shanthikumar [45].

New classes of lifetime distributions can be generated in accordance with the compari-
son between X(t1)

and X(t2)
for all t1 ≤ t2 ∈ R+ according to the likelihood ratio order and

the usual stochastic order. In the sequel to the above-cited paper, the following classes are
used.

Definition 2. The rv X with PDF fX is said to have the following:
(i) The increasing likelihood ratio property (denoted by X ∈ ILR) whenever fX(t) is log-

concave in t ≥ 0;
(ii) A decreasing reversed hazard rate (denoted by X ∈ DRHR) whenever FX(t) is log-concave

in t ≥ 0.

For instance, as a standard lifetime distribution, the exponential distribution fulfills
both the ILR and DRHR properties. The Weibull distribution with a shape parameter
α, scale parameter λ, and reliability function (SF) F̄X(t) = exp(−(λt)α) has the ILR and
DRHR properties if α > 1. For further properties of the ILR and the DRHR classes of
lifetime distributions, readers are referred to Lai and Xie [46]. The following definition is
from to Karlin [47].

Definition 3. Let g(x, y) be a non-negative function defined for x ∈ X ⊆ R and y ∈ Y ⊆ R;
then, g(x, y) is said to be totally positive with order 2 (denoted as TP2) in (x, y) ∈ X×Y provided
that g(x1, y1)g(x2, y2) ≥ g(x1, y2)g(x2, y1) for all x1 ≤ x2 ∈ X and for all y1 ≤ y2 ∈ Y.

4. Main Results

Our main results are stated in this section. It is assumed that while the failure of the
cold standby system is recognized at time t, the actual time of failure is a time prior to t.
The idle time of the inactive cold standby system is measured as the time between the exact
time of failure, which is a random variable, and the time t. Here, we use the idle times
of the components of the system to obtain lower and upper bounds on the lifetime of the
standby system within which they are assembled. Specifically, we show that the idle time of
a failed cold standby system with n components at time t is greater than the sum of the idle
times of the components in the system minus (n− 1)t in the sense of the usual stochastic
ordering. The idle time of a cold standby system with n components (one of which active
with a random lifetime X1 and the remaining inactive ones n− 1 with random lifetimes
X2, . . . , Xn are ready to function upon the failure of the active component) is characterized
by the rv:

(Sn)(t) := (t− Sn | Sn ≤ t), for all t : FSn(t) > 0 (7)

where t is the time at which the failure of the system is first observed. The results obtained in
this paper are derived based on techniques in probability and distribution theory, including
the total probability formula.

4.1. Usual Stochastic Order-Based Bounds for the Idle Time of Cold Standby Systems with
n Components

In the following theorem we derive a lower bound for the inactivity time of a standby
system, in the sense of the usual stochastic order, in terms of the inactivity time of its
components.

Theorem 1. Let X1, X2, . . . , Xn be independent and non-negative rvs such that (X1)(t), (X2)(t), . . . ,
(Xn)(t) are independent as well; then, for fixed t ≥ 0,(

n

∑
i=1

Xi

)
(t)

≥st

n

∑
i=1

(Xi)(t) − (n− 1)t. (8)
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Proof. We proceed to prove the above theorem using the method of induction. Let n = 2
and denote Wn = (∑n

i=1 Xi)(t) and Vn = ∑n
i=1(Xi)(t) − (n− 1)t, where t ≥ 0 is a fixed time.

First, we show that F̄W2(a) ≥ F̄V2(a) for all a ∈ R. Because for every n ∈ N, SWn = [0, t]
and SVn = [−(n− 1)t, t], we have F̄W2(a) ≥ F̄V2(a) for all a ≤ 0, as well as for all a ≥ t.
This is sufficient to show that F̄W2(a) ≥ F̄V2(a) holds true for all a ∈ [0, t], which in turn is
sufficient to claim that

W2 := (X1 + X2)(t) ≥st (X1)(t) + (X2)(t) − t := V2. (9)

For a ∈ [0, t], we can obtain

F̄W2(a) =
FX1+X2(t− a)

FX1+X2(t)

=

∫ t−a
0 FX2(t− a− x1) fX1(x1)dx1∫ t

0 FX2(t− x1) fX1(x1)dx1

=

∫ t
a FX2(x− a) fX1(t− x)dx∫ t

0 FX2(x) fX1(t− x)dx
,

where the first identity follows from Equation (4), the second is obtained using the total
probability formula along with the fact that X1 and X2 are independent, and the third is
acquired after changing of variable x = t− x1. On the other hand,

F̄V2(a) = P((X1)(t) + (X2)(t) > t + a)

=
∫ t

0
F̄(X2)(t)

(a + t− x1) f(X1)(t)
(x1)dx1

=

∫ t
a FX2(x1 − a) fX1(t− x1)dx1

FX1(t)FX2(t)
,

in which the second equality is due to the total probability formula, (X1)(t) and (X2)(t) are
independent, and the second equality is obtained using Equations (5) and (6). Because we
have FX2(x) ≤ FX2(t) for x ≤ t,

∫ t

0
FX2(x) fX1(t− x)dx ≤

∫ t

0
FX2(t) fX1(t− x)dx

= FX2(t)
∫ t

0
fX1(t− x)dx = FX2(t)FX1(t).

Therefore, for all a ∈ [0, t],

F̄W2(a) =

∫ t
a FX2(x− a) fX1(t− x)dx∫ t

0 FX2(x) fX1(t− x)dx

≥
∫ t

a FX2(x− a) fX1(t− x)dx
FX2(t)FX1(t)

= F̄V2(a).

Let us assume now that (8) holds for n = m, that is,(
m

∑
i=1

Xi

)
(t)

≥st

m

∑
i=1

(Xi)(t) − (m− 1)t. (10)
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We can now prove that (8) holds for n = m + 1. We observe that(
m+1

∑
i=1

Xi

)
(t)

=st

(
m

∑
i=1

Xi + Xm+1

)
(t)

≥st

(
m

∑
i=1

Xi

)
(t)

+ (Xm+1)(t) − t

≥st

m

∑
i=1

(Xi)(t) − (m− 1)t + (Xm+1)(t) − t

=st

m+1

∑
i=1

(Xi)(t) −mt,

where the first stochastic order is due to (9), the second stochastic order follows from (10),
and =st means the equality in the distribution. Thus, the proof is validated.

The lower bound in (8) in Theorem 1 can take negative values for certain t ≥ 0. If the
lower bound is negative for a given t ≥ 0, the result of Theorem 1 becomes trivial; however,
in the following example we present a situation in which (8) produces a meaningful lower
bound for the MIT of a gamma-distributed random lifetime.

Example 1. Suppose that Xi ∼ E(λ), i = 1, 2, an exponential distribution with mean 1/λi. Then,
Xi has MIT

m̃Xi (t) =
t

1− exp(−λt)
− 1

λ
.

It is known that X1 + X2 has a gamma distribution with shape α = 2 and scale λ. From
Theorem 1, as the usual stochastic order implies the expectation order, we obtain a lower bound for
the MIT of X1 + X2, as follows:

E(X1 + X2)(t) ≥ E((X1)(t)) + E((X2)(t))− t

= m̃X1(t) + m̃X2(t)− t

=
2t

1− exp(−λt)
− 2

λ
− t.

We show that the obtained lower bound for the MIT of X1 + X2 is non-negative. It can
be readily seen that 2t

1−exp(−λt) −
2
λ − t ≥ 0 for all t ≥ 0 if and only if (2 + λt) exp(−λt)−

(2 − λt) ≥ 0 for all t ≥ 0. Because exp(x) ≥ (1 + x) for all x ≥ 0, it is the case that
1− (1 + x) exp(−x) ≥ 0 for all x ≥ 0.

Therefore,

(2 + λt) exp(−λt)− (2− λt) =
∫ λt

0
(1− (1 + x) exp(−x))dx ≥ 0, for all t ≥ 0.

The following example clarifies another utilization of the result of Theorem 1.

Example 2. We say that X has a gamma distribution with shape parameter α > 0 and the
scale parameter λ and denote it by X ∼ G(α, λ) whenever X has a PDF fX(x) = λαxα−1e−λx

Γ(α) .
Considering two lifetime organisms or devices working one after another in a system (a standby
structure) and letting Xi denote the lifetime of the ith organism, we can consider two situations
for i = 1, 2: first, when both organisms fail before time t = 1, and second when the system fails
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before time t = 1. Suppose that X1 ∼ G(2, 3) and X2 ∼ G(3, 3). Note that if X ∼ G(k, λ), where
k ∈ N, the the CDF of X is derived via

FX(x) = 1−
k

∑
n=0

exp(−λx)
(λx)n

n!
. (11)

Denote P4(a) = 27a4 − 144a3 + 306a2 − 312a + 131. In the spirit of the Equation (11), we
find the CDF of the rv W2 := (X1 + X2)(t) when t = 1 as follows:

F̄W2(a) =

∫ 1−a
0 FX2(1− a− x) fX1(x)dx∫ 1

0 FX2(1− x) fX1(x)dx

=
P4(a) exp(3(a− 1))− 8

131 exp(−3)− 8
,

On the other hand, from (11), the rv V2 := (X1)(t) + (X2)(t) − t for t = 1 has the following
SF:

F̄V2(a) =

∫ 1
a FX2(x− a) fX1(1− x)dx

FX1(1)FX2(1)

=
P4(a) exp(3a)− 8 exp(3)

8(4− exp(3))(68− exp(3))
.

From Theorem 1, W2 ≥st V2; thus, F̄W2(a) ≥ F̄V2(a) for all a ∈ R. Figure 1 plots the graphs
of F̄W2(a) and F̄V2(a) for a ∈ [0, 1] (for the values out of [0, 1], the ordering relation is obviously
fulfilled) to exhibit the stochastic ordering property.
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Figure 1. Plot of the reliability function of (X1 + X2)(t) (solid line) and the reliability function of
(X1)(t) + (X2)(t) − t (dot-dashed line) for t = 1 and x ∈ (0, 1).

4.2. Likelihood Ratio Order-Based Bounds for the Idle Time of Cold Standby Systems with
n Components

Before stating the next result, we need to introduce additional notation. We assume
that Xi(t) := t− (Xi)(t), which is known in the literature as the past lifetime of Xi, i = 1, 2.
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Note that Xi(t) has a distribution which corresponds to the conditional distribution of Xi,
given that Xi ≤ t for any i = 1, 2. In what follows, we take

Sn =
n

∑
i=1

Xi

Sn(t) =
n

∑
i=1

(Xi)(ti)

(Sn)(t) = (
n

∑
i=1

Xi)(t)

Sn(t) =

(
n

∑
i=1

Xi
∣∣ n

∑
i=1

Xi ≤ t

)

Sn,t =
n

∑
i=1

Xi(ti).

In the following result, it is demonstrated that at a certain time t, for a cold standby
system where the system and all the components in it are inactive, the overall idle time of
the components is stochastically greater (with respect to likelihood ratio order) than the
idle time of the cold standby unit.

Theorem 2. Let X1, X2, . . . , Xn be independent rvs such that Xn follows an exponential distribu-
tion with parameter λn. In addition, let (X1)(t), (X2)(t), . . . , (Xn)(t) be independent for a fixed
t ≥ 0. Then,

(
n

∑
i=1

Xi)(t) ≤lr

n

∑
i=1

(Xi)(t).

Proof. Notice that (Sn)(t) := (∑n
i=1 Xi)(t) has support [0, t], while Sn(t) := ∑n

i=1(Xi)(t) has

support [0, nt]. Thus, we need to prove that
fSn(t)

(s)

f(Sn)(t)
(s) is increasing in s ≥ 0 for every s ≤ t,

as for s > t we have
fSn(t)

(s)

f(Sn)(t)
(s) = +∞. Thus, we have

f(Sn)(t)
(s) =

fSn(t− s)
FSn(t)

I[0 ≤ s ≤ t], and fSn(t)
(s) =

∫ +∞

0
f(Xn)(t)

(s− y) fSn−1(t)
(y)dy.

Using Equation (6) and then applying the convolution formula on the density function
of Sn, for every s ∈ [0, t) we obtain

f(Sn)(t)
(s) =

fSn(t− s)
FSn(t)

=

∫ +∞
0 fXn(t− s− y) fSn−1(y) dy

FSn(t)
.

Next, by imposing the convolution formula on the density function of Sn(t), we have

fSn(t)
(s) =

∫ +∞

0
fXn(t)

(s− y) fSn−1(t)
(y)dy.
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Therefore,

fSn(t)
(s)

f(Sn)(t)
(s)

= FSn(t).

∫ +∞
0 fXn(t)

(s− y) fSn−1(t)
(y)dy∫ +∞

0 fXn(t− s− y) fSn−1(y)dy

=
FSn(t)
FXn(t)

.

∫ s
0 fXn(t− s + y) fSn−1(t)

(y)dy∫ t−s
0 fXn(t− s− y) fSn−1(y)dy

=
FSn(t)
FXn(t)

.

∫ s
0 fXn(t− s + y) fSn−1(t)

(y)dy∫ t
s fXn(u− s) fSn−1(t− u)du

,

where a change in the variable u = t − y is made to derive the last equality. Because
Xn ∼ E(λn),

fSn(t)
(s)

f(Sn)(t)
(s)

=
FSn(t)
FXn(t)

.

∫ s
0 λn exp(−λn(t− s + y)) fSn−1(t)

(y)dy∫ t
s λn exp(−λn(u− s)) fSn−1(t− u)du

=
exp(λnt).FSn(t)

FXn(t)
.

∫ s
0 exp(−λny) fSn−1(t)

(y)dy∫ t
s exp(−λnu) fSn−1(t− u)du

.

Hence, for all 0 ≤ s ≤ t we obtain

∂

∂s
log

(
fSn(t)

(s)

f(Sn)(t)
(s)

)
=

∂

∂s
log

( ∫ s
0 exp(−λny) fSn−1(t)

(y)dy∫ t
s exp(−λnu) fSn−1(t− u)du

)

=
exp(−λns) fSn−1(t)

(s)∫ s
0 exp(−λny) fSn−1(t)

(y)dy
+

exp(−λns) fSn−1(t− s)∫ t
s exp(−λny) fSn−1(t− y)dy

,

which is non-negative. Thus, the proof of theorem is completed.

We provide a situation to examine the result of Theorem 2 in Example 3 below.

Example 3. Suppose that X1 ∼ E(λ) and X2 ∼ E(2λ) with λ > 0. Following Arnold and
Villaseñor [48], we can deduce that S2 := X1 + X2 has a PDF

fS2(s) = 2λ exp(−λs)(1− exp(−λs))

and CDF

FS2(s) = 1− 2 exp(−λs) + exp(−2λs).

For all w ∈ (0, t), the rv W2 := (X1 + X2)(t) has a PDF

fW2(w) =
2λ

1− 2 exp(−λt) + exp(−2λt)
(exp(−λ(t− w))− exp(−2λ(t− w))).

The rv W3 = (X1)(t) + (X2)(t) has a PDF

fW3(w) =
2λ exp(−3λt)

(1 + exp(−λt))(1− exp(−λt))2 (exp(2λw)− exp(λw)).

Therefore, W2 ≤lr W3 if and only if

Rλ(w, t) =
exp(2λw)− exp(λw)

exp(−λ(t− w))− exp(−2λ(t− w))
.

Let us choose λ = 4 and t = 2. We show in Figure 2 that R4(w, 2) is an increasing function.
This confirms the result of Theorem 2.
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Figure 2. Plot of the function R4(w, 2) for w ∈ (0, 2), with re + 0s = r · 10+s.

Consider a cold standby system composed of a single component with a general con-
tinuous lifetime distribution equipped with one additional component with an exponential
distribution lifetime. In this case, it can be realized from Theorem 2 that the idle time of the
cold standby system is smaller with respect to the likelihood ratio order than the sum of
the inactivity times of both components measured at a specified time t. Note that the time t
is considered to be the time at which the system and its components are inactive and not
functioning.

The following technical lemma is useful and is applied in the following.

Lemma 1. Suppose that τ1, τ2, . . . , τm are m points in time with a mean τ̄ and that X1, X2, . . . , Xm
are m non-negative rvs; then, mτ̄ − (Sm)(mτ̄) =st Sm(τ), where =st refers to the equality in the
distribution.

Theorem 3. Let X1, X2, . . . Xm be independent non-negative rvs such that X1(t1), X2(t2), . . . ,
Xm(tm) and X1(τ1), X2(τ2), . . . , Xn(τn), where m > n are independent and where t1, t2, . . . ,
tm are m fixed time points, and as such are τ1, τ2, . . . , τn. Let Xi ∈ ILR, i = 1, 2, . . . , n, then if

(i) mt̄ ≥ nτ̄, where tm ≥ nτ̄, in which τ̄ = ∑n
i=1 τi
n and t̄ = ∑m

i=1 ti
m ,

(ii) Xm and Xn have identical distributions, and
(iii) ∑m−1

i=1 Xi(ti) ≥lr ∑n
i=1 Xi for ti ≥ 0, i = 1, 2, . . . , m,

We have

(
n

∑
i=1

Xi)(nτ̄) ≥lr

m

∑
i=1

(Xi)(ti)
−mt̄ + nτ̄. (12)

Proof. We first prove that Sn(nτ̄) := (∑n
i=1 Xi)(nτ̄) ≤lr ∑m

i=1(Xi)(ti)
:= Sm,t. The result is

then proved following our discussions here. From Theorem 1.C.8 in Shaked and Shanthiku-
mar [45], if ψ is a decreasing function, then X ≤lr Y implies that ψ(X) ≥lr ψ(Y). Thus, if
ψ(x) = mt̄− x, because Sn(nτ̄) ≤lr Sm,t, it follows that mt̄− Sn(nτ̄) ≥lr mt̄− Sm,t. Using
Lemma 1, it can be realized that mt̄ − Sn(nτ̄) =st mt̄ − nτ̄ + (Sn)(nτ̄)), and in addition
that mt̄− Sm,t =st Sm(t). Hence, it follows that (Sn)(nτ̄) ≥lr Sm(t) − mt̄ + nτ̄. Thus, it is

sufficient to prove that
fSm,t (s)

fSn(nτ̄)(s)
is increasing in 0 < s ≤ nτ̄. We assume that I[x ∈ A] is

the indicator function of the set [x ∈ A], which is equal to one if x ∈ A and is equal to 0 if
x ∈ Ac, where Ac is the complement of the set A. For every s ∈ (0, nτ̄], we can write
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fSm,t (s)
fSn(nτ̄)(s)

=
FSn(nτ̄)

∫ +∞
0 fXm(tm)(s− y) fSm−1,t (y)dy∫ +∞

0 fXn(s− y) fSn−1(y)dy

=
FSn(nτ̄)

FXm(tm)
.

∫ +∞
0 fXm(s− y)I[s− y ≤ tm] fSm−1,t (y)I[y > 0]dy∫ +∞

0 fXn(s− y) fSn−1(y)dy

=
FSn(nτ̄)

FXm(tm)
.

∫ +∞
(s−tm)∨0 fXm(s− y) fSm−1,t (y)dy∫ +∞

0 fXn(s− y) fSn−1(y)dy

=
FSn(nτ̄)

FXm(tm)
.

∫ +∞
0 fXm(s− y) fSm−1,t (y)dy∫ +∞
0 fXn(s− y) fSn−1(y)dy

,

where a ∨ b stands for the maximum of a and b and the last identity follows from the fact
that for all s ∈ (0, nt̄], from assumption (i) above we have s− tm ≤ s− nt̄ ≤ 0, meaning
that (s− tm) ∨ 0 = 0. Therefore, because Xm and Xn are identical in distribution (assump-
tion (ii)), for every s ∈ (0, nt̄] we have

fSm,t (s)
fSn(nτ̄)(s)

=
FSn(nτ̄)

FXm(tm)
.
∫ +∞

0

fXm(s− y)
fXn(s− y)

.
fSm−1,t (y)
fSn−1(y)

fXn(s− y) fSn−1(y)∫ +∞
0 fXn(s− y) fSn−1(y)dy

dy

=
FSn(nτ̄)

FXm(tm)

∫ +∞

0

fSm−1,t (y)
fSn−1(y)

fXn |Sn=s(s− y|s)dy

=
FSn(nτ̄)

FXm(tm)

∫ +∞

0
Ψ(y) fSn−1|Sn=s(y|s)dy

=
FSn(nτ̄)

FXm(tm)
E(Ψ(Sn−1) | Sn = s), (13)

where Ψ(y) =
fSm−1,t

(y)
fSn−1

(y) . From assumption (iii), Xi ∈ ILR for all i = 1, 2, . . . , n; thus, because

the convolution of log-concave densities is log-concave, Sn−1 ∈ ILR. From Theorem 1.C.53
of Shaked and Shanthikumar [45], we conclude that

[Sn−1|Sn = s1] ≤lr [Sn−1|Sn = s2], for all s1 ≤ s2 ∈ R+,

Moreover, because ≤lr implies that ≤st, we have

[Sn−1|Sn = s1] ≤st [Sn−1|Sn = s2] for all s1 ≤ s2 ∈ R+. (14)

Furthermore, from assumption (iii), the function Ψ(y) is increasing in y > 0. From (13)

and (14), it follows that
fSm,t (s)

fSn(nτ̄)(s)
is increasing in s > 0, which validates the proof.

The following example shows that the conditions in Theorem 3 are accessible.

Example 4. Choose m = 3 and n = 2 such that t1 = 1, t2 = 2, t3 = 1.5 and τ1 = 0.25, τ2 = 1.
It can be readily seen that mt̄ > nτ̄ and tm > nτ̄, that is, condition (i) in Theorem 3 holds.
Further, let Xi ∼ U(0, 2), i = 1, 2, 3, i.e., the Xis are distributed uniformly over (0, 2). Thus, X3
and X2 are equal in distribution, and condition (ii) in Theorem 3 is satisfied. It can be seen that
fXi (x) = I[0 < x < 2]/2 is log-concave in x, i.e., Xi ∈ ILR, for all i = 1, 2, 3; therefore, another
sufficient condition in Theorem 3 holds true. It is not hard to prove that Xi(ti) := (Xi|Xi ≤ ti) ∼
U(0, ti), i = 1, 2, 3. In addition, we can prove after calculation that

fX1(t1)+X2(t2)
(s) =

s
t1t2
· I[0 < s ≤ t1] +

1
t2
· I[t1 < s ≤ t2] +

t1 + t2 − s
t1t2

· I[t2 < s ≤ t1 + t2].
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It is easily observable that fX1(t1)+X2(t2)
(s)/ fX1(s) is non-decreasing in s ∈ (0, 2), meaning

that condition (iii) in Theorem 3 is valid. Therefore, as follows from Theorem 3, we can conclude
that the ordering relation provided in (12) is satisfied.

4.3. Further Bounds for the Idle Time of Cold Standby Systems with 2 Components

Cold standby systems with two components are very important in reliability and
systems analysis. This is because redundancy methods usually assume that there is only
one spare part for certain components of a given system with a specified structure, as the
first unit is considered the main working unit and the second component the standby unit.
The following lemma is useful in proving the next result.

Lemma 2. Let X1, X2, . . . , Xm be m dependent rvs which are non-negative; further, let Xi(τi), i =
1, 2, . . . , m be independent. Then,

m

∑
i=1

Xi(τi) =st (
m

∑
i=1

Xi | X1 ≤ τ1, · · · , Xm ≤ τm),

in which τ1, . . . , τm are m points of time such that ∏m
i=1 FXi (τi) > 0.

Proof. It suffices to prove that Sm(τ) := ∑m
i=1 Xi(τi) and (Sm | Xi ≤ τi, i = 1, . . . , m) have

a common moment generating function. Denote X = (X1, . . . , Xm) and let (X|Xi ≤ τi,
i = 1, . . . , m) have a conditional PDF f(X|Xi≤τi ,i=1,...,m). Because the Xis are independent,
for all x = (x1, . . . , xm) ∈ Rm we have

f(X|Xi≤τi ,i=1,...,m)(x1, . . . , xm) =
fX(x).I[x1 ≤ τ1, . . . , xm ≤ τm]

P(X1 ≤ τ1, · · · , Xm ≤ τm)

=
m

∏
i=1

(
fXi (xi)

FXi (τi)

)
I[x1 ≤ τ1, . . . , xm ≤ τm].

Now, we can write

M(Sm |Xi≤τi ,i=1,...,m)(t) = E(exp(tSm)|Xi ≤ τi, i = 1, . . . , m)

= E(
m

∏
i=1

exp(tXi) | Xi ≤ τi, i = 1, . . . , m)

=
∫ +∞

0
· · ·

∫ +∞

0

(
m

∏
i=1

exp(txi)

)
f(X|Xi≤τi ,i=1,...,m)(x1, . . . , xm) dxm . . . dx1

=
∫ τ1

0
· · ·

∫ τm

0

m

∏
i=1

(
exp(txi)

fXi (xi)

FXi (τi)

)
=

m

∏
i=1

(∫ τi

0

exp(txi) fXi (xi)

FXi (τi)
dxi

)
=

m

∏
i=1

E(exp(tXi(τi)))

= MSm(τ)(t), for all t ∈ R,

where the last identity follows from the assumption that X1(τ1), · · · , Xm(τm) are indepen-
dent. The proof is completed.

The following result presents a sufficient condition for the usual stochastic ordering
between the idle time of an inactive standby system of size two and the sum of the idle
times of the inactive components. It is worth mentioning that as standby systems of size two
are very important as an effective redundancy method in engineering reliability systems,
the previous results are of particular interest when n = 2.
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Theorem 4. Let X1 and X2 be two independent rvs such that (X1)(τ1)
and (X2)(τ2)

are indepen-
dent for τ1 ≤ τ2 as two specified points of time. Suppose that h̃X2(s− τ1) ≤ h̃X1+X2(s), for all
s ∈ [τ1, τ1 + τ2]; then,

(X1 + X2)(τ1+τ2)
≤st (X1)(τ1)

+ (X2)(τ2)
.

Proof. In a similar manner as in the proof of Theorem 3, it is sufficient to show that
(S2)(τ1 + τ2) ≥st S2,τ . From Lemma 2, when m = 2, because X1 and X2 as well as X1(τ1)
and X2(τ2) are independent, we have S2,τ =st (S2 | X1 ≤ τ1, X2 ≤ τ2). Thus, we can prove
that

(S2)(τ1 + τ2) ≥st (S2 | X1 ≤ τ1, X2 ≤ τ2). (15)

By routine calculation, it is evident that (15) is satisfied if and only if

P(S2 ≤ s | S2 ≤ τ1 + τ2) ≤ P(S2 ≤ s | X1 ≤ τ1, X2 ≤ τ2), for all s ∈ (0, τ1 + τ2],

which holds if and only if

P(X1 ≤ τ1, X2 ≤ τ2 | S2 ≤ τ1 + τ2) ≤ P(X1 ≤ τ1, X2 ≤ τ2 | S2 ≤ s) for all s ∈ (0, τ1 + τ2]. (16)

The inequality in (16) holds true for s ∈ (0, τ1], as it can be obviously seen that

P(X1 ≤ τ1, X2 ≤ τ2 | S2 ≤ τ1 + τ2) =
P(X1 ≤ τ1, X2 ≤ τ2)

P(S2 ≤ τ1 + τ2)

≤ P(X1 ≤ τ1, X2 ≤ τ2)

P(S2 ≤ s)
= P(X1 ≤ τ1, X2 ≤ τ2 | S2 ≤ s).

Thus, we only need to prove that the inequality in (16) is satisfied for
s ∈ (τ1, τ1 + τ2]. Note that∫ τ2

0

fX2(x2)I[x2 ≤ s− x1]

FS2(s)
dx2 = P(X2(s− x1) ≤ τ2)FX2(s− x1)

= FX2((s− x1) ∧ τ2),

where a ∧ b = min{a, b}. Thus, we can obtain

P(X1 ≤ τ1, X2 ≤ τ2 | S2 ≤ s) =
∫ τ1

0

∫ τ2

0

fX1(x1) fX2(x2)I[x1 + x2 ≤ s]
FX1+X2(s)

dx2dx1

=
∫ τ1

0
fX1(x1)

(∫ τ2

0

fX2(x2)I[x2 ≤ s− x1]

FX1+X2(s)
dx2

)
dx1

=
∫ τ1

0
fX1(x1)

FX2((s− x1) ∧ τ2)

FX1+X2(s)
dx1.

Therefore, to prove (15) it is sufficient to show the following for all s ∈ (τ1, τ1 + τ2]:∫ τ1

0
fX1(x1)

FX2((s− x1) ∧ τ2)

FS2(s)
dx1 ≥

∫ τ1

0
fX1(x1)

FX2((τ1 + τ2 − x1) ∧ τ2)

FS2(τ1 + τ2)
dx1.

Because we have (τ1 + τ2 − x1) ∧ τ2 = τ2 for all x1 ≤ τ1, it suffices to prove that

∫ τ1

0
fX1(x1)

FX2((s− x1) ∧ τ2)

FS2(s)
dx1 ≥

∫ τ1

0
fX1(x1)

FX2(τ2)

FS2(τ1 + τ2)
dx1

holds for all s ∈ (τ1, τ1 + τ2], that is, it is enough to demonstrate that for all s ∈ (τ1, τ1 + τ2]
we have
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∫ τ1

0
fX1(x1)Φ(x1, s, τ1, τ2)dx1 ≥ 0,

where

Φ(x1, s, τ1, τ2) =

[
FX2((s− x1) ∧ τ2)

FS2(s)
−

FX2(τ2)

FS2(τ1 + τ2)

]
.

Let us assume that τ1 ≤ s < τ2; then, we can show that∫ τ1

0
fX1(x)Ψ(x1, s, τ1, τ2)dx1 ≥ 0, for all s ∈ [τ1, τ2).

Because s < τ2, it is the case that s − x1 ≤ τ2 − x1 ≤ τ2 for all x1 ∈ (0, τ1); hence,
(s− x1) ∧ τ2 = s− x1. Therefore,

Ψ(x1, s, τ1, τ2) =

[
FX2(s− x1)

FS2(s)
−

FX2(τ2)

FS2(τ1 + τ2)

]
≥
[

FX2(s− τ1)

FS2(s)
−

FX2(τ2)

FS2(τ1 + τ2)

]
,

which is non-negative if
FX2 (s−τ1)

FS2 (s)
is decreasing in s ∈ [τ1, τ2). This is additionally satisfied if

the assumption that h̃X2(s− τ1) ≤ h̃X1+X2(s) for all s ∈ [τ1, τ1 + τ2] holds. Now, assuming
that τ2 ≤ s < τ1 + τ2,∫ s−τ2

0
Ψ(x1, s, τ1, τ2)dx1 ≥

∫ s−τ2

0
FX2(τ2) fX1(x1)

(
1

FS2(s)
− 1

FS2(τ1 + τ2)

)
dx1 ≥ 0.

In a similar manner to the case when τ1 ≤ s2 < τ2, we can now establish that∫ τ1

s−τ2

Ψ(x1, s, τ1, τ2)dx1 ≥ 0.

As a result, we have
∫ τ1

0 Ψ(x1, s, τ1, τ2)dx1 ≥ 0 for all s ∈ [τ2, τ1 + τ2]. The proof of the
theorem is now completed.

In the context of the conditions of Theorem 4, it is possible to question whether the
assumption that h̃X2(s− τ1) ≤ h̃X1+X2(s) for all s ∈ [τ1, τ1 + τ2] is attainable. The following
remark clarifies this issue.

Remark 1. Suppose that X1 and X2 respectively represent the lifetime of a component and the
lifetime of the standby unit which, are assumed to be independent. Note that for all x < 0 we have
fXi (x) = FXi (x) = 0, i = 1, 2. We can write

h̃X1+X2(s) :=
fX1+X2(s)
FX1+X2(s)

=

∫ +∞
0 fX2(s− x1) fX1(x1)dx1∫ +∞
0 FX2(s− x1) fX1(x1)dx1

=
∫ s

0

fX2(s− x1)

FX2(s− x1)

FX2(s− x1) fX1(x1)∫ +∞
0 FX2(s− x1) fX1(x1)dx1

dx1

=
∫ s

0
h̃X2(s− x1) f ?(x1|s)dx1

= E[h̃X2(s− X?
s )],
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where X?
s is a non-negative rv with a PDF f ?(·|s) provided by

f ?(x1|s) =
FX2(s− x1) fX1(x1)∫ +∞

0 FX2(s− x1) fX1(x1)dx1
. (17)

Note that E(X∗s ) ≤ s. Now, consider an s0 > 0 such that s0 < s < τ1 + τ2 and for which
τ1 = E(X∗s0

) ≤ E(X∗s ). Supposing that X2 has a decreasing convex reversed hazard rate function,
on using Jensen’s inequality, for all s < τ1 + τ2 we have

h̃X1+X2(s) = E[h̃X2(s− X?
s )],

≥ h̃X2(s− E(X?
s )),

≥ h̃X2(s− τ1).

Now, Theorem 4 is applicable, as the sufficient condition of this theorem is satisfied.

We provide the next example to fulfill the conditions in Theorem 4 in the case of
heterogenous exponential components.

Example 5. Suppose that X1 and X2 have an exponential distribution with parameters λ1 and λ2,
respectively. It can be checked that the reversed hazard rate function of exponential distribution is
decreasing and convex. Thus, h̃X2(x) = λ2

exp(λ2x)−1 is a decreasing function in x which is further
convex in x. The rv X?

s , as introduced in Remark 1 with PDF (17), has a PDF

f ?(x1|s) =
exp(−λ1x)− exp(−λ2s + (λ2 − λ1)x)

1
λ1
(1− exp(−λ1s)) + 1

λ2−λ1
(exp(−λ2s)− exp(−λ1s))

, 0 ≤ x ≤ s.

It is straightforward that if X2 ∈ DRHR, then FX2(s− x1) is TP2 in (x1, s) ∈ R+ ×R+.
As a result, from (17), f ∗(x1|s) is TP2 in (x1, s) ∈ R+ × R+, that is, X∗s1

≤lr X∗s2
for every

0 < s1 ≤ s2. Because ≤lr implies ≤st, we can conclude that X∗s1
≤st X∗s2

for all 0 < s1 ≤ s2.
Therefore, E(X∗s1

) ≤ E(X∗s2
) for all s1 ≤ s2 ∈ R+. For example, if λ1 = 2 and λ2 = 3, then after

calculation we can obtain

E(X?
s ) =

exp(3s) + (3− 6s) exp(s)− 4
2 exp(3s)− 6 exp(s) + 4

,

which is an increasing function. Hence, if one chooses τ1 = E(X∗0 ) = 0, following the discussion
in Remark 1 and noting that for all s > τ1 we have E(X∗s ) ≥ E(X∗τ1

) ≥ 0, the assumption in
Theorem 4 that h̃X2(s− τ1) ≤ h̃X1+X2(s) for all s ∈ [τ1, τ1 + τ2] is fulfilled on this account, and
consequently, (X1 + X2)(τ1+τ2)

≤st (X1)(τ1)
+ (X2)(τ2)

, or more accurately, (X1 + X2)(τ2)
≤st

(X2)(τ2)
.

Before concluding the paper, we would like to point out that the study conducted in
this paper has a number of limitations. For example, the random variables representing
the component lifetime in a cold standby system are considered to be independent. In the
literature, this condition is usually associated with the problem of convolution of random
variables. There is another limitation to the research conducted in this study, namely, that
we considered general cold standby systems and not specific ones installed in a particular
interconnected system (e.g., systems with parallel or series structures containing redundant
standby units). This could represent helpful approach to determine whether the results of
the present work are useful for coherent systems as well.

5. Conclusions

In this study, we have presented results for obtaining upper and lower stochastic
bounds for the idle time of standby systems after their failure in the context of random
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lifetimes. These bounds are in fact functions of the idle times of the components of the
standby system. In this way, it is possible to evaluate whether it is reasonable to equip a
component with redundant standby units in order to minimize the idle time of a standby
system. We used two informative and commonly applied stochastic orderings, namely, the
likelihood ratio ordering and the usual stochastic ordering. The problem of maintaining
systems and replacing them with new systems, along with the similar problem of tuning
their components, plays an important role in reliability engineering. This is because there
are certain systems, e.g., systems that gradually fail under certain degradation processes,
that need to be in operation uniformly, and it is very beneficial for such systems to have less
idle time. The results obtained in this work may be useful in identifying situations where
the idle time of inactive standby systems and the idle time of components in the system
(or a function thereof) have a stochastic ordering property. Because the number of standby
units can play a key role in reducing or even increasing costs and preventing further losses
due to early component failures, it becomes increasingly important to identify whether
a standby system is highly survivable, or equivalently whether it has lower inactivity
compared to components that failed earlier.

In future additions to this study, we intend to consider two standby systems with
different component lifetimes and possibly different numbers of components, and to
investigate stochastic comparisons between the idle time of one system and the sum of the
idle times of the components in the other system. We intend to look for the conditions for
stochastic comparisons between the idle times of two standby systems. To provide further
guidance for future research, the results of this paper can be taken up and, for example, the
upper or lower bounds obtained in this paper for the idle time of standby systems can be
considered to obtain sharper bounds.

Author Contributions: Methodology, M.S.; Software, M.S.; Validation, M.S.; Formal analysis, M.S.;
Investigation, M.K.; Resources, M.S.; Writing—original draft, M.K.; Writing—review and editing,
M.K. and M.S.; Visualization, M.K.; Supervision, M.K.; Project administration, M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Researchers Supporting Project number (RSP2023R464),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors thank the three anonymous reviewers for their constructive com-
ments and suggestions. The authors acknowledge financial support from the Researchers Supporting
Project number (RSP2023R464), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Levitin, G.; Xing, L.; Dai, Y. Optimal component loading in 1-out-of-N cold standby systems. Reliab. Eng. Syst. Saf. 2014, 127,

58–64. [CrossRef]
2. Fernández, A.J. Optimum attributes component test plans for k-out-of-n: F Weibull systems using prior information. Eur. J. Oper.

Res. 2015, 240, 688–696. [CrossRef]
3. Barron, Y.; Yechiali, U. Generalized control-limit preventive repair policies for deteriorating cold and warm standby Markovian

systems. Iise Trans. 2017, 49, 1031–1049. [CrossRef]
4. Barron, Y. Group maintenance policies for an R-out-of-N system with phase-type distribution. Ann. Oper. Res. 2018, 261, 79–105.

[CrossRef]
5. Levitin, G.; Xing, L.; Dai, Y. Standby mode transfer schedule minimizing downtime of 1-out-of-N system with storage. Reliab.

Eng. Syst. Saf. 2023, 237, 109322. [CrossRef]
6. Bian, L.; Wang, G.; Liu, P. Reliability analysis for k-out-of-n (G) systems subject to dependent competing failure processes. Comput.

Ind. Eng. 2023, 177, 109084. [CrossRef]
7. Mathur, F.P. On reliability modeling and analysis of ultrareliable fault-tolerant digital systems. IEEE Trans. Comput. 1971, 100,

1376–1382. [CrossRef]

http://doi.org/10.1016/j.ress.2014.03.003
http://dx.doi.org/10.1016/j.ejor.2014.08.027
http://dx.doi.org/10.1080/24725854.2017.1335919
http://dx.doi.org/10.1007/s10479-017-2617-x
http://dx.doi.org/10.1016/j.ress.2023.109322
http://dx.doi.org/10.1016/j.cie.2023.109084
http://dx.doi.org/10.1109/T-C.1971.223142


Mathematics 2023, 11, 4303 20 of 21

8. Wang, Y. A unified reliability model for fault-tolerant computers. IEEE Trans. Comput. 1980, 100, 1002–1011. [CrossRef]
9. Johnson, B.W.; Julich, P.M. Fault tolerant computer system for the A129 helicopter. IEEE Trans. Aerosp. Electron. Syst. 1985, 21,

220–229. [CrossRef]
10. Sinaki, G. Ultra-reliable fault tolerant inertial reference unit for spacecraft. In Proceeding of the Annual Rocky Mountain Guidance

and Control Conference, Keystone, CO, USA, 2–6 February 1994.
11. Pandey, D.; Jacob, M.; Yadav, J. Reliability analysis of a powerloom plant with cold standby for its strategic unit. Microelectron.

Reliab. 1996, 36, 115–119. [CrossRef]
12. Coit, D.W. Cold-standby redundancy optimization for nonrepairable systems. Iie Trans. 2001, 33, 471–478. [CrossRef]
13. Hsieh, C.C.; Hsieh, Y.C. Reliability and cost optimization in distributed computing systems. Comput. Oper. Res. 2003, 30,

1103–1119. [CrossRef]
14. Elerath, J.; Pecht, M. A highly accurate method for assessing reliability of redundant arrays of inexpensive disks (RAID). IEEE

Trans. Comput. 2008, 58, 289–299. [CrossRef]
15. Wang, Y.; Luo, H.; He, K.; Luo, R.; Yang, H.; Xie, Y. Temperature-aware NBTI modeling and the impact of standby leakage

reduction techniques on circuit performance degradation. IEEE Trans. Dependable Secur. Comput. 2010, 8, 756–769. [CrossRef]
16. Wang, J.; Ye, J. A new repair model and its optimization for cold standby system. Oper. Res. 2022, 22, 105–122. [CrossRef]
17. Dobani, E.R.; Juybari, M.N.; Ardakan, M.A. System reliability-redundancy optimization with cold-standby strategy by fitness-

distance balance stochastic fractal search algorithm. J. Stat. Comput. Simul. 2022, 92, 2156–2183. [CrossRef]
18. Danjuma, M.U.; Yusuf, B.; Yusuf, I. Reliability, availability, maintainability, and dependability analysis of cold standby series-

parallel system. J. Comput. Cogn. Eng. 2022, 1, 193–200. [CrossRef]
19. Malhotra, R.; Alamri, F.S.; Khalifa, H.A.E.W. Novel Analysis between Two-Unit Hot and Cold Standby Redundant Systems with

Varied Demand. Symmetry 2023, 15, 1220. [CrossRef]
20. Lin, Z.; Tao, L.; Wang, S.; Chen, C.; Wang, J.; Ge, D. Reliability analysis of cold standby systems using a self-stratifying subset

simulation method. J. Stat. Comput. Simul. 2023, 93, 2257–2275. [CrossRef]
21. Bayramoglu, I.; Ozkut, M. Mean residual life and inactivity time of a coherent system subjected to Marshall—Olkin type shocks.

J. Comput. Appl. Math. 2016, 298, 190–200. [CrossRef]
22. Zhang, Z.; Balakrishnan, N. Representations of the inactivity time for coherent systems with heterogeneous components and

some ordered properties. Metrika 2016, 79, 113–126. [CrossRef]
23. Navarro, J.; Longobardi, M.; Pellerey, F. Comparison results for inactivity times of k-out-of-n and general coherent systems with

dependent components. Test 2017, 26, 822–846. [CrossRef]
24. Kayid, M.; Izadkhah, S.; Abouammoh, A.M. Average inactivity time model, associated orderings and reliability properties. Phys.

A Stat. Mech. Appl. 2018, 492, 1389–1398. [CrossRef]
25. Navarro, J.; Calì, C. Inactivity times of coherent systems with dependent components under periodical inspections. Appl. Stoch.

Model. Bus. Ind. 2019, 35, 871–892. [CrossRef]
26. Salehi, E.; Tavangar, M. Stochastic comparisons on conditional residual lifetime and inactivity time of coherent systems with

exchangeable components. Stat. Probab. Lett. 2019, 145, 327–337. [CrossRef]
27. Toomaj, A.; Di Crescenzo, A. Generalized entropies, variance and applications. Entropy 2020, 22, 709. [CrossRef]
28. Amini-Seresht, E.; Kelkinnama, M.; Zhang, Y. On the residual and past lifetimes of coherent systems under random monitoring.

Probab. Eng. Inform. Sci. 2021, 35, 465–480. [CrossRef]
29. Guo, Z.; Zhang, J.; Yan, R. On inactivity times of failed components of coherent system under double monitoring. Probab. Eng.

Inform. Sci. 2022, 36, 923–940. [CrossRef]
30. Kayid, M.; Shrahili, M. Rényi Entropy for Past Lifetime Distributions with Application in Inactive Coherent Systems. Symmetry

2023, 15, 1310. [CrossRef]
31. Ahmed, H.; Kayid, M. Preservation properties for the Laplace transform ordering of residual lives. Stat. Pap. 2004, 45, 583–590.

[CrossRef]
32. Amiripour, F.; Khaledi, B.E.; Shaked, M. Stochastic orderings of convolution residuals. Metrika 2013, 76, 559–576. [CrossRef]
33. Kayid, M.; Alshehri, M.A. Stochastic Comparisons of Lifetimes of Used Standby Systems. Mathematics 2023, 11, 3042. [CrossRef]
34. Ahmad, I.A.; Kayid, M.; Pellerey, F. Further results involving the MIT order and the IMIT class. Probab. Eng. Inform. Sci. 2005, 19,

377–395. [CrossRef]
35. Ortega, E.M. A note on some functional relationships involving the mean inactivity time order. IEEE Trans. Reliab. 2008, 58,

172–178. [CrossRef]
36. Ramsay, C.M. The distribution of sums of certain iid Pareto variates. Commun. Stat.-Theory Methods 2006, 35, 395–405. [CrossRef]
37. Dhaene, J.; Goovaerts, M.J. Dependency of risks and stop-loss order. Astin Bull. J. IAA 1996, 26, 201–212. [CrossRef]
38. Denuit, M.; Genest, C.; Marceau, É. Stochastic bounds on sums of dependent risks. Insur. Math. Econ. 1999, 25, 85–104. [CrossRef]
39. Cai, J.; Li, H. Conditional tail expectations for multivariate phase-type distributions. J. Appl. Probab. 2005, 42, 810–825. [CrossRef]
40. Sordo, M.A.; Suárez-Llorens, A.; Bello, A.J. Comparison of conditional distributions in portfolios of dependent risks. Insur. Math.

Econ. 2015, 61, 62–69. [CrossRef]
41. Block, H.W.; Savits, T.H.; Singh, H. The reversed hazard rate function. Probab. Eng. Inform. Sci. 1998, 12, 69–90. [CrossRef]
42. Finkelstein, M.S. On the reversed hazard rate. Reliab. Eng. Syst. Saf. 2002, 78, 71–75. [CrossRef]

http://dx.doi.org/10.1109/TC.1980.1675495
http://dx.doi.org/10.1109/TAES.1985.310619
http://dx.doi.org/10.1016/0026-2714(95)00013-R
http://dx.doi.org/10.1080/07408170108936846
http://dx.doi.org/10.1016/S0305-0548(02)00058-8
http://dx.doi.org/10.1109/TC.2008.163
http://dx.doi.org/10.1109/TDSC.2010.41
http://dx.doi.org/10.1007/s12351-020-00545-x
http://dx.doi.org/10.1080/00949655.2021.2022151
http://dx.doi.org/10.47852/bonviewJCCE2202144
http://dx.doi.org/10.3390/sym15061220
http://dx.doi.org/10.1080/00949655.2023.2176505
http://dx.doi.org/10.1016/j.cam.2015.12.009
http://dx.doi.org/10.1007/s00184-015-0546-8
http://dx.doi.org/10.1007/s11749-017-0535-5
http://dx.doi.org/10.1016/j.physa.2017.11.066
http://dx.doi.org/10.1002/asmb.2416
http://dx.doi.org/10.1016/j.spl.2018.10.007
http://dx.doi.org/10.3390/e22060709
http://dx.doi.org/10.1017/S0269964820000078
http://dx.doi.org/10.1017/S0269964821000152
http://dx.doi.org/10.3390/sym15071310
http://dx.doi.org/10.1007/BF02760570
http://dx.doi.org/10.1007/s00184-012-0404-x
http://dx.doi.org/10.3390/math11143042
http://dx.doi.org/10.1017/S0269964805050229
http://dx.doi.org/10.1109/TR.2008.2006576
http://dx.doi.org/10.1080/03610920500476325
http://dx.doi.org/10.2143/AST.26.2.563219
http://dx.doi.org/10.1016/S0167-6687(99)00027-X
http://dx.doi.org/10.1239/jap/1127322029
http://dx.doi.org/10.1016/j.insmatheco.2014.11.008
http://dx.doi.org/10.1017/S0269964800005064
http://dx.doi.org/10.1016/S0951-8320(02)00113-8


Mathematics 2023, 11, 4303 21 of 21

43. Kayid, M.; Izadkhah, S. Mean inactivity time function, associated orderings, and classes of life distributions. IEEE Trans. Reliab.
2014, 63, 593–602. [CrossRef]

44. Khan, R.A.; Bhattacharyya, D.; Mitra, M. On some properties of the mean inactivity time function. Stat. Probab. Lett. 2021,
170, 108993. [CrossRef]

45. Shaked, M.; Shanthikumar, J.G. (Eds.) Stochastic Orders; Springer: New York, NY, USA, 2007.
46. Lai, C.D.; Xie, M. Stochastic Ageing and Dependence for Reliability; Springer Science and Business Media: Berlin/Heidelberg,

Germany, 2006.
47. Karlin, S. Total Positivity; Stanford University Press: Redwood, CA, USA, 1968; Volume 1.
48. Arnold, B.C.; Villasenor, J.A. Exponential characterizations motivated by the structure of order statistics in samples of size two.

Stat. Probab. Lett. 2013, 83, 596–601. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TR.2014.2315954
http://dx.doi.org/10.1016/j.spl.2020.108993
http://dx.doi.org/10.1016/j.spl.2012.10.028

	Introduction
	Further Descriptions and Related Works
	Preliminaries
	Main Results
	Usual Stochastic Order-Based Bounds for the Idle Time of Cold Standby Systems with n Components
	Likelihood Ratio Order-Based Bounds for the Idle Time of Cold Standby Systems with n Components
	Further Bounds for the Idle Time of Cold Standby Systems with 2 Components

	Conclusions
	References

