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Abstract: This paper is devoted to the analysis of mathematical models of chemotherapy for malig-
nant tumors growing according to the Gompertz law or the generalized logistic law. The influence
of the therapeutic agent on the tumor dynamics is determined by a therapy function depending
on the time-varying concentration of the drug in the patient’s body. The case of a non-monotonic
therapy function with two maxima is studied. It reflects the use of two different therapeutic agents.
The state variables of the dynamics are the tumor volume and the amount of the therapeutic agent
able to suppress malignant cells (concentration of the drug in the body). The treatment protocol (the
rate of administration of the therapeutic agent) is the control in the dynamics. The optimal control
problem for this models is considered. It is the problem of the construction of treatment protocols
that provide the minimal tumor volume at the end of the treatment. The solution of this problem was
obtained by the authors in previous works via the optimal control theory. The form of the considered
therapy functions provides a specific structure for the optimal controls. The managerial insights of
this structure are discussed. In this paper, the structure of the viability set is described for the model
according to the generalized logistic law. It is the set of the initial states of the model for which one
can find a treatment protocol that guarantees that the tumor volume remains within the prescribed
limits throughout the treatment. The description of the viability set’s structure is based on the optimal
control theory and the theory of Hamilton–Jacobi equations. An inverse problem of therapy is also
considered, namely the problem of reconstruction of the treatment protocol and identification of the
unknown parameter of the intensity of the tumor growth. Reconstruction is carried out by processing
information about the observations of the tumor volume dynamics and the measurements of the drug
concentration in the body. A solution to this problem is obtained through the use of a method based on
the calculus of variations. The results of the numerical simulations are presented herein.

Keywords: malignant tumor; chemotherapy; therapy function; optimal therapy strategies; viability set;
inverse therapy problems

MSC: 49N45; 49L12; 93C95

1. Introduction

This paper is devoted to the study of mathematical models of chemotherapy of malig-
nant tumors with different laws of the growth of the tumor volume (the generalized logistic
law and Gompertz’s law). The research focuses on solid tumors, such as breast, lung, liver,
colon, pancreas and prostate cancers. As known, a malignant tumor formed in an organ
is capable of uncontrolled or poorly controlled rapid growth of its cells and can penetrate
into adjacent tissues, damage them and penetrate further into other organs, resulting in
metastases. Spatially homogeneous mathematical models of the growth of solid avascular
tumors are considered (on this theme, see, for example, [1,2]).

Usually, in such mathematical models, the total volume of the tumor is considered.
The tumor’s dynamics are described using ordinary or partial differential equations. In
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this paper, we consider tumors with dynamics described by ordinary differential equations
that obey the generalized logistic law or the Gompertz law [2–4].

Chemotherapy is one of the most effective ways to fight cancer. The effect of a
therapeutic agent on a tumor is defined by adding a therapy function to equations of the
tumor’s dynamics. This function depends on the time-varying concentration of the drug
in the body. The case of a non-monotonic therapy function with two maxima is studied.
It reflects the use of two different therapeutic agents. This case has not been previously
considered. The infusion and the dissipation of the drug in the body are described in the
considered model by ordinary differential equations.

Let us also note another well-known mathematical model of cancer therapy: the
Lotka–Volterra predator–prey model. In this model, the therapeutic agent plays the role of
the predator, and the tumor plays the role of the victim. For further information on this
model, see, for example, [5–7].

The tumor growth dynamics are considered over a certain fixed period of time. At the
final time instant (the control point), the total tumor volume is estimated. The state variables
of the dynamics are the tumor volume and the amount of the therapeutic agent able the to
suppress malignant cells (concentration of the drug in the body). The treatment protocol
(the rate of administration of the therapeutic agent) is the control in the dynamics.

The optimal control problem is considered. The problem is to construct a treatment
protocol (a control) for any initial state of the model (the tumor volume and the concen-
tration of the drug in the body at the beginning of the treatment) such that the tumor
volume is minimal at the control point. An optimal treatment strategy and optimal pro-
tocols were suggested in [8,9]. Their construction is based on the results of the optimal
control theory [10] and the theory of generalized solutions of partial differential equations
of the first order [11,12]. The optimal treatment strategy is a feedback depending on the
current state of the model: the tumor volume and the concentration of the drug in the body.
The optimal treatment protocol is formed on the basis of information about the current state
of the model according to the optimal strategy. For any fixed initial state of the model, the
optimal treatment protocol ensures the minimal tumor volume at the end of the treatment.
It is has been proven that the optimal protocol has a piecewise constant structure with no
more than one switch. Construction of optimal therapy strategies and optimal treatment
protocols has been previously discussed, for example, in [3,5–7,13–18]. The innovation of
the research presented in this paper is that a new type of therapy function is considered,
namely a non-monotonic therapy function with two maxima. It reflects the use of two
different therapeutic agents. Such a therapy function provides a specific structure of the
optimal control. The managerial insights of such an optimal control are discussed in this
paper.

The viability set [19] is described for the model according to the generalized logistic
law. It is the set of initial states of the model for which one can find a treatment protocol
that guarantees that the tumor volume remains within the prescribed limits and is com-
patible with life throughout the treatment. In this paper, we propose and substantiate the
description of the structure of the viability set for the model according to the generalized
logistic law. The justifications of the constructions are based on the theory of generalized
solutions of partial differential equations of the first order [11,12]. The viability set for the
dynamics according to the Gompertz law was described in [20].

Research on models of chemotherapy of malignant tumors is also of interest to solve
inverse problems, for example, identification of the parameter of the model characterizing
the intensity of the tumor’s growth and reconstruction of the treatment protocol (the
control) for a given patient using the observations of the tumor volume dynamics and the
current measurements of the concentration of the drug in the body.

The results of the numerical simulations of the solution of such inverse problems are
presented in this paper. They were obtained using a numerical method [21] based on the
theory of calculus of variations [22].
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It should be noted that a process as complex as the growth and suppression of ma-
lignant cells is presented in the models in a simplified, idealized form. Still, the obtained
results may be of use for the analysis of experimental data or for the study of new effective
therapy methods.

2. Materials and Methods
2.1. Dynamics of the Model

The state variables of the dynamics are the tumor volume (m(t)) and the amount of
the chemotherapy drug (h(t)) that is able to suppress malignant cells. The therapy function
( f (h)) describes the effect of the drug on the malignant cells. The control (the treatment
protocol) (u(t)) is the amount of the drug injected within the time unit.

The dynamics of the malignant tumor and the concentration of the drug are described
by the known model [2–4]:

dm(t)
dt

= g(m(t))− γm(t) f (h(t)),

dh(t)
dt

= −αh(t) + u(t),

m(t0) = m0, h(t0) = h0, t ∈ [t0, T].

(1)

where 0 ≤ t0 < T < ∞ are the starting and control points, γ > 0 is the effectiveness
coefficient of the therapy and α > 0 is the dissipation coefficient. The feasible controls are
measurable (piecewise constant) bounded functions:

u(·) : [t0, T]→ U , [0, Q], (2)

where Q is the maximum allowed value.
In the model (1), the function g(m) describes the law of the tumor’s growth. In this

paper, two different models of this law are considered.

1. The Gompertz law:
g1(m) = rm− θm ln(m), (3)

where the parameter r > 0 characterizes the speed of the tumor’s growth, and θ > 0
characterizes the speed of tumor suppression.

2. The generalized logistic law:

g2(m) = rm
(

1−
[m

θ

]β
)

, (4)

where the parameter r > 0 again characterizes the speed of the tumor’s growth, θ > 0
characterizes the threshold tumor volume and 0 < β ≤ 1 changes the steepness of the
model’s curve.

These models are described in [2–4].
In the both models, the following restrictions are considered:

0 ≤ m0 ≤ M, 0 ≤ h0 ≤ L,

where M is the threshold tumor volume compatible with life, and L is the maximum
allowed amount of the drug in the body.

2.2. The Therapy Function

The therapy function ( f (h)) describes the effect of the drug on the malignant cells
and is an important part of the considered model (1). In this paper, we consider a non-
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monotonic, continuously differentiable, positive therapy function such that its derivative
( f ′(h)) has three different roots:

0 < ĥ1 < ĥ2 < ĥ3 ≤ L, f ′(ĥ1,2,3) = 0.

We assume that f (h) satisfies the following conditions:

A1. f ′(h) > 0 ∀h < ĥ1, f ′(h) < 0 ∀h > ĥ3.
A2. 0 < αĥ1,2,3 < Q.
A3. f (ĥ1) = f (ĥ3).
A4. f ′(h) < 0 ∀h ∈ (ĥ1, ĥ2), f ′(h) > 0 ∀h ∈ (ĥ2, ĥ3).

It follows from conditions A1–A4 that the roots ĥ1 and ĥ3 are the maximum points
and that root ĥ2 is the minimum point of the therapy function ( f (h)).

2.3. Optimal Control Problem

The optimal control problem consists of constructing feasible (piecewise constant)
feedback that minimizes the terminal therapy quality index (the value function) (σ(m(T))).
It is different for the two considered models.

1. For the Gompertz law (3):

σ1(m1(T)) = m1
2(T; t0, h0, m0, u(·))→ min

u(·)
. (5)

2. For the generalized logistic law (4):

σ2(m2(T)) = m2
β(T; t0, h0, m0, u(·))→ min

u(·)
. (6)

where m1,2(t) = m1,2(t; t0, h0, m0, u(·)) are the solutions of the system (1), that are generated
by a feasible control (u(t)) for g(m) = g1(m) (3) and g(m) = g2(m) (4), respectively, for the
boundary conditions (t0, h0, m0).

The system (1) can be integrated analytically for both g1 and g2. The solutions are:

1. For the Gompertz law (3):

m1(t) = m−θ(t−t0)
0 exp

 t∫
t0

e−θ(t−τ)
(
r− γ f (h(τ))

)
dτ

.

2. For the generalized logistic law (4):

m2(t) =

θm0 exp

 t∫
t0

[r− γ f (h(τ))]dτ


θβ + βmβ

0 r
t∫

t0

exp

β

T∫
τ

[r− γ f (h(y))]dy

dτ


1
β

. (7)

In each case, h(t) = h(t; t0, h0, u(·)) is the solution of the second independent equation
of (1).
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2.4. Value Function and Optimal Synthesis

We introduce the value function in problems (1), (5) and (1), (6). It matches each
boundary condition ((t0, h0, m0) ∈ [0, T]× [0, L]× [0, M]) with the optimal values Val1,2
respectively for (5) and (6):

Val1,2(t0, h0, m0) = min
u(·)

σ1,2(m1,2(T))

According to [8,9],:

1. For the Gompertz law (3) [8]:

Val1(t0, h0, m0) = m2
0e−θ(T−t0) exp

[
2

r
θ
(1− e−θ(T−t0))

]
exp[−2γV1(t0, h0)]; (8)

2. For the generalized logistic law (4) [8]:

Val2(t0, h0, m0) =
θβmβ

0 e−βγV2(t0,h0)

θβe−β(r(T−t0)) + βmβ
0 r

T∫
t0

exp[−β(r(τ − t0) + γV2(τ, h0(τ)))]dτ

. (9)

Here,
V1,2(t0, h0) = max

u(·)
J1,2(t0, h0, u(·)) (10)

is the optimal value in the reduced optimal control problem:

dh(t)
dt

= −αh(t) + u(t), h(t0) = h0.

For the Gompertz law (3), the cost value functional is

J1(t0, h0, u(·)) =
T∫

t0

e−θ(T−τ) f (h(t; t0, h0, u(·)))dt→ max
u(·)

. (11)

For the generalized logistic law (4),

J2(t0, h0, u(·)) =
T∫

t0

f (h(t; t0, h0, u(·)))dt→ max
u(·)

. (12)

The value functions (10) are constructed piecewise from several functions (ϕi(·)):

V1,2(t, h) =


ϕ1(t, h), (t, h) ∈ G1,
ϕ2(t, h), (t, h) ∈ G2,
ϕ3(t, h), (t, h) ∈ Π1,
ϕ4(t, h), (t, h) ∈ Π2,
ϕ5(t, h), (t, h) ∈ Π3.

(13)

The geometric regions are

G1 = {(t, h) : t ∈ [0, T], h = ĥ1}, G2 = {(t, h) : t ∈ [0, T], h = ĥ3},
Π1 = [0, T]× [0, ĥ1), Π2 = [0, T]× (ĥ3, L],

Π3 = [0, T]× (ĥ1, x(t)], Π4 = [0, T]× (x(t), ĥ3).

(14)

For visualization, see Figure 1. The graph of the x(·) function is the Rankine–Hugoniot
line

Γ = {(t, x(t)) : t ∈ [0, T], x(T) = ĥ2},
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as defined by the points where

ϕ5(t, x(t)) = ϕ6(t, x(t)).

It is shown in [9] that the Γ line satisfies the Rankine–Hugoniot conditions with a
boundary condition of x(T) = ĥ2 and has the following form:

dx
dt

= −αx(t) + Q
s6

h(t)
s6

h(t)− s5
h(t)

, (15)

where

s5
h(t) =

∂ϕ5(t, x(t))
∂h

, s6
h(t) =

∂ϕ6(t, x(t))
∂h

.

The functions ϕi(t, h), i = 1, 6 are constructed by the Cauchy characteristic method
for the auxiliary linear Hamilton–Jacobi equations with boundary conditions of the special
form [9].

It was proven in [8,20] that the optimal strategy in problems (1), (5) and (1), (6) has the
following form:

u0(t, h) =



αĥ1, (t, h) ∈ G1,
αĥ3, (t, h) ∈ G2,
Q, (t, h) ∈ Π1,
0, (t, h) ∈ Π2,
0, (t, h) ∈ Π3,
Q, (t, h) ∈ Π4 \ Γ.

(16)

Note that all optimal controls (u0(t) = u0(t, h0(t))) satisfy the Pontryagin maximum
principle.

Figure 1. Construction of the ϕi(·) and the optimal strategy (u0(t, h)).

Remark 1. The process of construction of the optimal treatment strategy (16) is explained and
justified in [8,20]. The optimal strategy is a feedback, so the optimal protocols are defined by the
current state of the system (m(t), h(t)). Their values are chosen following (16).

When the state of the system is in each of the regions (Π1, Π2, Π3, Π4), the control is either
minimal (0) or maximal (Q). When the state of the model transfers from one region to another, the
control is switched. The specifics are that the border between regions Π3 and Π4 is defined by the
Rankine-Hugoniot line (Γ). The conditions that determine this line are non-trivial (15).
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The other feature is that the optimal control does not always have a maximal or minimal value.
If the state of the system belongs to lines G1 and G2, the optimal control corresponds to special
regimes u0(t, h) = αĥ1 and u0(t, h) = αĥ3. These regimes are stable and provide the optimal effect
of the drug, which is achieved at the maximum points of the therapy function.

It follows from Pontryagin’s maximum principle, which provides the basis for the optimal
strategy construction, that this control provides the optimal terminal therapy quality index (5)
and (6). In other words, it minimizes the tumor volume (m(T)) at the control point.

The Rankine-Hugoniot line (Γ) plays an important role in the construction of the optimal
protocols. The selection of the therapeutic agent depends on what regions the initial state of the
model belongs to: Π2, Π4, G2 or Π1, Π3, G1.

2.5. The Viability Set

We now define the viability set for the generalized logistic law (1), (6).
Let m0

2(t) = m(t; t0, h0, m0, u0(·))) be the solution of system (1), (6) with boundary
conditions (t0, h0, m0) that is generated by the optimal control (u0(t)).

Definition 1. The viability set for problem (1), (6) according to the generalized logistic law is a set
of the points ((t0, h0, m0) ∈ [0, T]× [0, L]× [0, M2]) such that

m0
2(t; t0, h0, m0, u0(·)) ≤ M2, t ∈ [t0, T],

where M2 is the threshold tumor volume compatible with life specified for the model according to the
generalized logistic law.

The parameter M2 is the stable equilibrium point of the dynamics (1) when the drug
effectiveness (that is, the therapy function ( f (h))) is maximal [3]. Thus, consider the
following equation:

dm
dt

= rm
(

1−
[m

θ

]β
)
− γmF, (17)

where
F = f (ĥ1) = f (ĥ3) = max

h∈[0,L]
f (h).

Let us find the roots of the right side of (17). The trivial zero root provides an unstable
equilibrium. Stable equilibrium takes place when m = m̃,

m̃ = θ

[
1− γF

r

] 1
β

. (18)

Therefore, we assume
M2 = m̃.

We introduce set W2:

W2 =

{
(t0, h0, m0) ∈ [0, T]× [0, L]× [0, M2] : Val2(t0, h0, m0) ∈ [0, M2

β]

}
. (19)

We will show that this set is the maximal viability set for problem (1), (6).

Definition 2. Set W is the maximal viability set for problem (1), (6) if, for any point (w =
(t0, h0, m0) /∈W) and any measurable function (u(·) : [t0, T]→ [0, Q]), there exists t∗ ∈ (t0, T)
such that

m(t∗; t0, h0, m0, u(·)) > M2.
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3. Results
3.1. Construction of Set W2

In this section, we describe the structure of set W2.
First, we transform the expression (9) for Val2(t0, h0, m0) into a simpler form. It follows

from (12) that in expression (9),

V2(t0, h0) = max
u(·)

J2
t0,h0

(u(·)) =
T∫

t0

f (h0(t))dt,

where h0(t) = h(t; t0, h0, u0(·)) is the solution of the second independent equation of the
system (1) that is generated by the optimal feedback control (u0(t, h) (16)). Also note that
Val2(T, h0) = 0. Then,

Val2(t0, h0, m0) =
θβmβ

0 exp[−βγV2(t0, h0)]

θβe−β(r(T−t0)) + βmβ
0 r

T∫
t0

exp[−β(r(τ − t0) + γV2(τ, h0(τ)))]dτ

=

θβmβ
0 exp

[
T∫

t0

β[r− γ f (h0(τ))]dτ

]

θβ + βmβ
0 r

T∫
t0

exp

β

T∫
τ

[r− γ f (h0(y))]dy

dτ

,

(20)

where h0(·) is the solution of system (1) that is generated by the optimal feedback control
(u0(t, h)) (16).

Note that (t0, h0, m0) ∈W2 if

m0
2(T; t0, h0, m0, u0(·)) =

[
Val2(t0, h0, m0)

]− 1
β ≤ M2.

Thus, it follows from (20) that m0 ∈W2 if

m0 ≤
θM2[

Mβ
2 βr

T∫
t0

exp

[
β

T∫
τ

[
r− γ f (h0(y))

]
dy

]
dτ − θβ exp

[
β

T∫
t0

[
r− γ f (h0(τ))

]
dτ

]] 1
β

, m̃(h0(·)).

(21)

We now successively consider the regions (14) of set [0, T] × [0, L] to describe the
construction of set W2.

(1) Consider the following points:

(t0, h0, m0) ⊂ G1 × [0, M2], (22)

where set G1 is defined in (14).
It follows from the form of the optimal control (16) that in system (1),

u0(t, h) = αĥ1, h0(t) = h0(t; t0, h0, u0(·)) = h0(t; t0, ĥ1, αĥ1) ≡ ĥ1.

Then, it follows from (21) that

{(t0, h0, m0) : (t0, h0) ∈ G1, m0 ∈ [0, m̃(ĥ1)]} ⊂W2. (23)

(2) Consider the following points:
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(t0, h0, m0) ⊂ G2 × [0, M2], (24)

where set G2 is defined in (14).
It follows from the form of the optimal control (16) that in system (1),

u0(t, h) = αĥ3, h0(t) = h0(t; t0, h0, u0(·)) = h0(t; t0, ĥ3, αĥ3) ≡ ĥ3.

Then, it follows from (21) that

{(t0, h0, m0) : (t0, h0) ∈ G2, m0 ∈ [0, m̃(ĥ3)]} ⊂W2. (25)

(3) Consider the following points:

(t0, h0, m0) ⊂ Π1 × [0, M2], (26)

where set Π1 is defined in (14).
There exist two cases:
(3.a) The graph of h0(t) does not reach ĥ1 on [t0, T].
Then, it follows from the form of the optimal control (16) that the solution of (1) is

h0(t; t0, h0, u0(·)) = h0(t; t0, h0, Q) =

(
h0 −

Q
α

)
e−α(t−t0) +

Q
α

. (27)

It follows from (27) that case 3.a occurs when

h0 < h∗3(t0) ,
(

ĥ1 −
Q
α

)
eα(T−t0) +

Q
α

.

Therefore, it follows from (21) that

{(t0, h0, m0) : t0 ∈ [t0, T], h0 ∈ [0, h∗3(t0)),

m0 ∈
[

0, m̃
((

h0 −
Q
α

)
e−α(t−t0) +

Q
α

)]
} ⊂W2.

(28)

(3.b) The graph of h0(t) reaches ĥ1:

∃t∗3 ∈ (t0, T] : h0(t∗3 ; t0, h0, u0(·)) = h0(t∗3 ; t0, h0, Q) = ĥ1.

It follows from (27) that this case occurs when

h0 ≥ h∗3(t0)

and

t∗3 =
1
α

ln
h0 − Q

α

ĥ1 − Q
α

+ t0.

It follows from the optimality principle that

Val2(t0, h0, m0) = Val2(t∗3 , ĥ1, m∗2(t
∗
3)),

where
m∗2(t) , m0

2(t; t0, h0, m0, u0(·)) = m0
2(t; t0, h0, m0, Q).

Therefore, in case 3.b, (t0, h0, m0) ∈W2 when

m0
2(T; t0, h0, m0, u0(·)) = m0

2(T; t∗3 , ĥ1, m∗2(t
∗
3), αĥ1) ≤ M2.



Mathematics 2023, 11, 4301 10 of 20

However, it follows from case 1 that the latter expression is true when

(t∗3 , ĥ1, m∗2(t
∗
3)) ∈ G1 × [0, m̃(ĥ1)].

Therefore,

{(t0, h0, m0) : t0 ∈ [0, T], h0 ∈ [h∗3(t0), ĥ1), m∗2(t
∗
3) ∈ [0, m̃(ĥ1))]} ⊂W2. (29)

Remark 2. Hereafter, the value of m0
2(t; t0, h0, m0) can be calculated according to Formula (7).

(4) Consider the following points:

(t0, h0, m0) ⊂ Π2 × [0, M2], (30)

where set Π2 is defined in (14).
Similarly to case 3, there exist two cases:
(4.a) The graph of h0(t) does not reach ĥ3 on [t0, T].
Then, it follows from the form of the optimal control (16) that the solution of (1) is

h0(t; t0, h0, u0(·)) = h0(t∗4 ; t0, h0, 0) = h0e−α(t−t0). (31)

It follows from (31) that this case occurs when

h0 > h∗4(t0) , ĥ3eα(T−t0).

Therefore, it follows from (21) that

{(t0, h0, m0) : t0 ∈ [t0, T], h0 ∈ (h∗4(t0), L], m0 ∈
[
0, m̃

(
h0e−α(t−t0)

)]
} ⊂W2. (32)

(4.b) The graph of h0(t) reaches ĥ3 on [t0, T]:

∃t∗4 ∈ (t0, T] : h0(t∗4 ; t0, h0, u0(·)) = h0(t∗4 ; t0, h0, 0) = ĥ3.

It follows from (31) that this case occurs when

h0 ≤ h∗4(t0)

and
t∗4 =

1
α

ln
h0

ĥ1
+ t0.

It follows from the optimality principle that

Val2(t0, h0, m0) = Val2(t∗4 , ĥ3, m∗2(t
∗
4)),

where
m∗2(t) = m0

2(t; t0, h0, m0, u0(·)) = m0
2(t; t0, h0, m0, 0).

Therefore, in case 4.b, (t0, h0, m0) ∈W2 when

m0
2(T; t0, h0, m0, u0(·)) = m0

2(T; t∗4 , ĥ3, m∗2(t
∗
4), αĥ3) ≤ M2.

However, it follows from case 1 that the latter expression is true when

(t∗4 , ĥ3, m∗2(t
∗
4)) ∈ G2 × [0, m̃(ĥ3)].

Therefore,

{(t0, h0, m0) : t0 ∈ [0, T], h0 ∈ [h∗4(t0), ĥ3), m0
2(t
∗
4) ∈ [0, m̃(ĥ3))]} ⊂W2. (33)
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(5) Consider the following points:

(t0, h0, m0) ∈ Π3 × [0, M2], (34)

where set Π3 is defined in (14).
There exist two cases:
(5.a) The graph of h0(t) does not reach ĥ1 on [t0, T].
Then, it follows from the form of the optimal control (16) that the solution of (1) is

h0(t; t0, h0, u0(·)) = h0(t; t0, h0, 0) = h0e−α(t−t0). (35)

It follows from (35) that this case occurs when

h0 > h∗5(t0) , ĥ1eα(T−t0).

Therefore, it follows from (21) that

{(t0, h0, m0) : t0 ∈ [t0, T], h0 ∈ (h∗5(t0), x(t0)], m0 ∈
[
0, m̃

(
h0e−α(t−t0)

)]
} ⊂W2, (36)

where x(t0) is the starting point of Γ curve (see Figure 1).
(5.b) The graph of h0(t) reaches ĥ1 on [t0, T]:

∃t∗5 ∈ (t0, T] : h0(t∗5 ; t0, h0, u0(·)) = h0(t; t0, h0, 0) = ĥ1.

It follows from (35) that this case occurs when

h0 ≤ h∗5(t0)

and
t∗5 =

1
α

ln
h0

ĥ1
+ t0.

It follows from the optimality principle that

Val2(t0, h0, m0) = Val2(t∗5 , ĥ1, m∗2(t
∗
5)),

where
m∗2(t) = m0

2(t; t0, h0, m0, u0(·)) = m0
2(t; t0, h0, m0, 0).

Therefore, in case 2.a, (t0, h0, m0) ∈W2 when

m0
2(T; t0, h0, m0, u0(·)) = m0

2(T; t∗5 , ĥ1, m∗2(t
∗
5), αĥ1) ≤ M2.

However, it follows from case 1 that the latter expression is true when

(t∗5 , ĥ1, m∗2(t
∗
5)) ∈ G1 × [0, m̃(ĥ1)].

Therefore,

{(t0, h0, m0) : t0 ∈ [0, T], h0 ∈ [h∗5(t0), ĥ1), m∗2(t
∗
5) ∈ [0, m̃(ĥ1))]} ⊂W2. (37)

(6) Consider the following points:

(t0, h0, m0) ⊂ Π4 × [0, M2], (38)

where set Π4 is defined in (14).
There exist two cases:
(6.a) The graph of h0(t) does not reach ĥ3 on [t0, T].
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Then, it follows from the form of the optimal control (16) that the solution of (1) is

h0(t; t0, h0, u0(·)) = h0(t; t0, h0, Q) =

(
h0 −

Q
α

)
e−α(t−t0) +

Q
α

. (39)

It follows from (39) that this case occurs when

h0 < h∗6(t0) ,
(

ĥ3 −
Q
α

)
eα(T−t0) +

Q
α

.

Therefore, it follows from (21) that

{(t0, h0, m0) : t0 ∈ [t0, T], h0[0, h∗6(t0)),

m0 ∈
[

0, m̃
((

h0 −
Q
α

)
e−α(t−t0) +

Q
α

)]
} ⊂W2.

(40)

(6.b) The graph of h0(t) reaches ĥ3:

∃t∗6 ∈ (t0, T] : h0(t∗6 ; t0, h0, u0(·)) = h0(t; t0, h0, Q) = ĥ3.

It follows from (39) that this case occurs when

h0 ≥ h∗6(t0)

and

t∗6 =
1
α

ln
h0 − Q

α

ĥ3 − Q
α

+ t0.

It follows from the optimality principle that

Val2(t0, h0, m0) = Val2(t∗6 , ĥ3, m∗2(t
∗
6)),

where
m∗2(t) = m0

2(t; t0, h0, m0, u0(·)) = m0
2(t; t0, h0, m0, Q).

Therefore, in case 6.b, (t0, h0, m0) ∈W2 when

m0
2(T; t0, h0, m0, u0(·)) = m0

2(T; t∗6 , ĥ3, m∗2(t
∗
6), αĥ3) ≤ M2.

However, it follows from case 1 that the latter expression is true when

(t∗6 , ĥ3, m∗2(t
∗
6)) ∈ G1 × [0, m̃(ĥ3)].

Therefore,

{(t0, h0, m0) : t0 ∈ [0, T], h0 ∈ [h∗6(t0), ĥ3), m∗2(t
∗
6) ∈ [0, m̃(ĥ3))]} ⊂W2. (41)

Note that it is obvious that

W2|t=T = {(T, h0, m0) : (T, h0, m0) ∈W2} = T × [0, L]× [0, M2].

Therefore, expressions (23), (25), (28), (29), (32), (33), (36), (37), (40) and (41) describe the
structure of viability set W2 (19) for problem (1), (6) according to the generalized logistic law.

Remark 3. It was proven in [20] that the viability set for problem (1), (5) according the Gompertz
law has the following form:

W1 =

{
(t0, h0, m0) ∈ [0, T]× [0, M1]× [0, L] : Val1(t0, h0, m0) ≤ M1

2
}

,
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M1 = e
r− γF

θ .

3.2. The Maximal Viability Set

Set W2, as described in the previous section, is the maximal viability set for prob-
lem (1), (6), and the following theorem is true.

Theorem 1. The following statements are true:

1. ∀(t0, h0, m0) ∈W2 m0 ≤ M2.
2. Set W2 (19) is weakly invariant with respect to the differential inclusion: ẇ ∈ Y(w), where

w = (t, h, m)→ Y(w) = (1, g2(m)− γm f (h), −αh + [0, Q])>. (42)

3. Set W2 is the maximal viability set for problem (1), (6).

Proof. (1) Consider a point ((t0, h0, m0) ∈W2). Let

m0
2(T) = m0

2(T; t0, h0, m0, u0(·)) ≤ M2.

Then, one can express m0 from (20) as:

m0
2(T) =

θm0 exp

 T∫
t0

F0(τ)dτ


θβ + βmβ

0 r
T∫

t0

exp

β

T∫
τ

F0(y)dy

dτ


1
β

≤ M2,

where F0(τ) , r − γ f (h0(τ)), and h0(t) is the solution of (1) generated by the optimal
feedback (u0(t) = u0(t, h)) (16).

Also note the expression for M2 (18):

M2 = θ

[
1− γF

r

] 1
β

, (43)

where F = f (ĥ1) = f (ĥ3) = max
h∈[0,L]

f (h). Thus,

m0
2(T)

β
(

θβ + βmβ
0 r

T∫
t0

exp

 T∫
τ

βF0(y)dy

dτ

)
= θβmβ

0 exp

 T∫
t0

βF0(τ)dτ

,

and

mβ
0 =

m0
2(T)

β
θβ

θβ exp

[
T∫

t0

βF0(τ)dτ

]
−m0

2(T)
β
(

βr
T∫

t0

exp

[
T∫
τ

βF0(y)dy

]
dτ

) . (44)

The following estimates are true:

F0(y) = r− γ f (h0(y)) ≥ r− γF > 0, βF0(y) ≥ β(r− γF),

exp

β

T∫
τ

F0(y)dydτ

 ≥ exp[β(r− γF)(T − τ)].
(45)



Mathematics 2023, 11, 4301 14 of 20

Apply (43) and (45) to (44):

mβ
0 ≤

M2
βθβ

θβ exp

[
T∫

t0

βF0(τ)dτ

]
− θβ

(
1− γF

r

)
βr

T∫
t0

exp

[
T∫
τ

βF0(y)dy

]
dτ

≤ M2
β

eβ(r−γF)(T−t0) − (r− γF)β
T∫

t0

eβ(r−γF)(T−τ)dτ

= M2
β.

(46)

Therefore, for any (t0, h0, m0) ∈W2, m0 ≤ M2.
(2) It follows from the construction of W2 that all the trajectories (m0

2(t; t0, h0, m0, u(·)))
that start from the inner points ((t0, h0, m0)) of W2 stay inside this set for any t ∈ [t0, T].

We assume that such a trajectory corresponds to a point (t∗, h∗, m∗) on the boundary
of W2. Then, it follows from the optimality principle that

Val2(t∗, h∗, m∗) = Val2(t, h0(t), m0
2(t)) ≤ M2, t ∈ [t∗, T].

In other words, the trajectory does not leave W2. Thus, set W2 is weakly invariant with
respect to the differential inclusion (42).

(3) Consider the point (t̄, h̄, m̄) /∈W2. Then, it follows from (19) that the value function
Val2(t̄, h̄, m̄) for the optimal control u0(·) is greater than M2:

m0
2(T; t̄, h̄, m̄, u0(·)) > M2.

However, due to the continuity of the trajectory (m0
2(t; t̄, h̄, m̄, u0(·))), there exists

t∗ ∈ [t̄, T) such that
m0

2(t
∗; t̄, h̄, m̄, u0(·)) > M2.

For any point ((t0, h0, m0) /∈W2) and any measurable function (u(·) : [t0, T]→ [0, Q]),
according to the definition of the optimal result (Val2(t0, h0, m0)),

σ2(m2(T; t0, h0, m0, u(t))) ≥ Val2(t0, h0, m0) > M2.

Again, it follows from the continuity of the trajectory (m2(t; t0, h0, m0, u(·))) that

m2(t∗; t0, h0, m0, u(·)) > M2, t∗ < T.

In other words, the tumor volume exceeds the threshold compatible with life at
moment t∗, which is earlier than the control point (T).

Therefore, W2 is the maximal viability set for problem (1), (6).

3.3. The Inverse Problem

For models of chemotherapy for malignant tumors, it is often of interest to solve
inverse problems, for example, to identify the growth parameter (r) in the model of this
tumor and to reconstruct the treatment protocol (u(·)) for the patient using the current
measurements of the tumor volume (m(t)) and the amount of drug (h(t)) in the body of
the patient.

Consider a model according to the Gompertz law:

dm
dt

= g1(m)− γm f (h),

dh
dt

= −αh + u(t),

t ∈ [0, T], m(0) = m0, h(0) = h0.

(47)
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The known parameters are:

g1(m) = rm− θmln(m),

f (h) = 0.15(sin[2.2h− 0.5π] + 1),

θ = 10−2, γ = 1, α = 0.03,

T = 8, m0 = 5 ∗ 107, h0 = 0.

The feasible controls are measurable (piecewise constant) functions satisfying the
following restrictions:

u(t) ∈ U = [0, Q]. (48)

The parameters to reconstruct are:

r, u(·). (49)

It is assumed that the process (m∗(·), h∗(·)) generated by some unknown feasible
control (u∗(·)) is observed at the following time interval:

t ∈ [0, T], 0 < T < ∞.

Discrete inaccurate measurements (mδ
i , hδ

i ) of the process arrive in real time with a
uniform time step (4t). The measurement error is δ = (δm, δh):

|mδ
i −m∗(ti)| ≤ δm,

|hδ
i − h∗(ti)| ≤ δh

, ti = i4t, i = 0, . . . , N, N = dT/4te. (50)

The inverse problem is to construct approximations (rδ) of parameter r and piecewise
constant approximating functions (uδ(·)) such that:

1. uδ(t) ∈ U, t ∈ [0, T];

2. uδ(t)
δ→0,4t→0−−−−−−→ u∗(t) almost everywhere on [0, T];

3. rδ δ→0,4t→0−−−−−−→ r;
4. The trajectories (mδ(·), hδ(·)) of the system (47) that are generated by the reconstructed

parameters (rδ and uδ(·)) converge uniformly to the observed process:

max
t∈[0,T]

|mδ(t)−m∗(t)| δ→0,4t→0−−−−−−→ 0,

max
t∈[0,T]

|hδ(t)− h∗(t)| δ→0,4t→0−−−−−−→ 0.
(51)

An approach for constructing such approximations was suggested and justified in [21]
using the constructions from auxiliary problems of calculus of variations. These construc-
tions are the solutions of Hamiltonian systems. The feature of the approach is the use of
non-convex auxiliary variational problems, namely, the integrands of the functionals in
the auxiliary problems are d. c. functions [23]. Such an approach proves the stability of
the methods based on this approach with respect to the measurement and approximation
errors. This approach reduces the inverse problems for dynamical systems to integration of
linear ODE systems.

In this paper, we present the results of the numerical simulation for a method based
on this approach, as explained and justified in [21].

This method was used in two numerical simulations. In the simulations, the parame-
ters to reconstruct were:

r = 0.18, u∗(t) =
{

1, t ∈ [0, 4)
⋃
[6, 8],

0.1, t ∈ [4, 6).
(52)
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The graph of the therapy function f (h) is shown in Figure 2.

Figure 2. The f (h) function.

To obtain the inaccurate measurements (mδ
i , hδ

i ) of process m∗(·), h∗(·) generated by
u∗(·), this process was constructed numerically and randomly perturbed with uniform
distribution for two sets of the parameters of observation (the measurement error (δ)
and the time step (4t)). In the first simulation, (δm, δh) = (5 ∗ 105, 3 ∗ 10−2), 4t =
T/20 = 0.4. In the second simulation, (δm, δh) = (105, 0.6 ∗ 10−2), 4t = T/100 = 0.08.
The approximations of the presumably unknown parameters (52) were constructed based
on these sets of data using the method proposed in [21].

The result of the identification in the first simulation are presented as follows. The ap-
proximation (rδ) of parameter r (52), which characterizes the speed of the tumor’s growth, is

rδ ≈ 0.152, |r− rδ| ≈ 0.028.

The results of the reconstruction of the control u∗(·) in the first simulation are shown
in Figure 3.

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0

u(t)

Legend: the approximation uδ(·)
the control u∗(·)

Figure 3. The approximations (uδ(·)) of the unknown control ((δm, δh) = (5 ∗ 105, 3 ∗ 10−2), 4t =
T/20 = 0.4).

In this figure (and in Figure 4), the black graph is the control (u∗(t)) (52) to be recon-
structed. This control was applied to the model’s system (47) to simulate the inaccurate
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measurements of the basic (observed) trajectory. The red graph is the piecewise constant
control (uδ(t)), which approximates the reconstructed control (u∗(t)). It was constructed
using the variational method suggested in [21].

The process (mδ(t), hδ(t)) generated by rδ and uδ(·) in the first simulation is shown
in Figure 5. In this figure (and in Figure 6), the blue graph is the “observed” process
({m∗(t), h∗(t)}). It is the trajectory of the model’s system (47) generated by the “unknown”
control (u∗(·)) (52) (to be reconstructed). It is supposed that the inaccurate measurements
of this trajectory are known. To simulate them, this trajectory was perturbed at discrete
points with random error (with uniform distribution). These data are indicated by black
dots. The red graph is the process {mδ(t), hδ(t)}. It is the trajectory of the model’s sys-
tem (47) generated by the control (uδ(·)) (52) (which is the constructed approximation of
the “unknown” control (u∗(·))). The aim of these figures is to show that the reconstructed
trajectory of the system remains close to the observed trajectory (see condition 4 (51) in the
inverse problem statement).

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0

u(t)

Legend: the approximation uδ(·)
the control u∗(·)

Figure 4. The approximations (uδ(·)) of the unknown control ((δm, δh) = (105, 0.6 ∗ 10−2), 4t =

T/100 = 0.08).

2 4 6 8
t

1× 107

2× 107

3× 107

4× 107

5× 107

m(t)

2 4 6 8
t

1

2

3

4

5

h(t)

Legend:
the reconstructed process {mδ(·), hδ(·)}
the observed process {m∗(·), h∗(·)}

• • • • • • the inaccurate measurements

Figure 5. The reconstructed process {mδ(·), hδ(·)} ((δm, δh) = (5 ∗ 105, 3 ∗ 10−2), 4t = T/20 = 0.4).

The results of identification in the second simulation are reported as follows. The ap-
proximation (rδ) of parameter r (52), which characterizes the speed of the tumor’s growth, is

rδ ≈ 0.174, |r− rδ| ≈ 0.006.
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The results of reconstruction of the control (u∗(·)) in the second simulation are shown
in Figure 4. In this figure, the black graph is the control (u∗(t)) (52) to be reconstructed.
The red graph is the piecewise constant control (uδ(t)), which approximates the recon-
structed control (u∗(t)).

The process (mδ(·), hδ(·)) generated by rδ and uδ(·) in the second simulation is shown
in Figure 6. In this figure, the blue graph is the “observed” process ({m∗(t), h∗(t)}).
The black dots are the inaccurate measurements of this process. The red graph is the
process ({mδ(t), hδ(t)}) generated by the control (uδ(·)) (52). The aim of these figures is to
show that the reconstructed trajectory of the system remains close to the observed trajectory
(see condition 4 (51) in the inverse problem statement).

2 4 6 8
t

1× 107

2× 107

3× 107

4× 107

5× 107

m(t)

2 4 6 8
t

1

2

3

4

5

h(t)

Legend:
the reconstructed process {mδ(·), hδ(·)}
the observed process {m∗(·), h∗(·)}

• • • • • • the inaccurate measurements

Figure 6. The reconstructed process {mδ(·), hδ(·)} ((δm, δh) = (105, 0.6 ∗ 10−2), 4t = T/100 = 0.08).

4. Discussion

In this paper, models of chemotherapy for malignant tumors were studied. In par-
ticular, the problem of constructing the optimal control with the aim of minimizing the
tumor volume at a given time point was considered. Possible directions for future research
may include minimization of the total cost of the drug injected into the patient’s body.
For such cases, the cost functional (which is a treatment quality criterion) should have the
following form:

T∫
t0

u2(t)dt + σ(m(T)).

Another problem to consider in the future is minimization of the total volume of the
drug in the body for the entire period of treatment, i.e., minimization of the quality criterion

T∫
t0

h2(t)dt + σ(m(T)).

All these problems can be solved by following the scheme proposed in this paper.
The viability sets in these problems can also be constructed.

The models of chemotherapy considered in this paper are the simplest ones. They
were previously studied in [3] for the case of a therapy function that is either linear or has
a single maximum point. In this paper, we studied a model with a therapy function that
has two maximum points. It describes a case in which two different therapeutic agents are
used. One maximum point corresponds to maximum efficiency of the first agent and the
second to maximum efficiency of the second agent.

The future development of the research presented in this paper will include the
study of models tumor growth, which include the dynamics of the healthy cells and the
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body’s immune system and their interaction with the cancer cells and the drug (see, for
example, [6,7,16,17]).

The results of the numerical construction of the viability sets will be presented in the
future works.

It should be noted that the studied models are simplified idealizations of real processes.
Therefore, the obtained results are informative and recommendatory in nature and require
further experimental verification.

5. Conclusions

This paper presents the results of a study of a chemotherapy model of a malignant
tumor growing according to the Gompertz law and the generalized logistic law. The optimal
therapy strategy and optimal treatment protocols, which were constructed in previous
works, were discussed with the aim of minimizing the tumor volume at the control point.
We also discussed managerial insights with respect to their structure.

In the model of chemotherapy, a non-monotonic therapy function with two maxima is
considered. This function defines the effect of the therapeutic agents on the tumor. Such a
therapy function leads to a specific form of the optimal controls. They are piecewise constant
functions with no more than one switch. The specifics are that the Rankine-Hugoniot line
plays an important role in the construction of the optimal protocols. The position of the
initial state of the model with respect to this line affects the construction of the optimal
treatment protocols.

The structure of the maximal viability set for the considered model with the gener-
alized logistic law is described. It is the set of the initial states of the model (the tumor
volume and the concentration of the drug in the body) such that there exists a treatment
protocol (a control) that guarantees that the tumor volume will not exceed the threshold
amount compatible with life.

An inverse problem of reconstruction of the protocol of the ongoing treatment and
identification of the parameter of the intensity of the tumor’s growth based on the ob-
servations of the dynamics of the treatment process is considered. Such problems have
never been considered before. A solution to this problem is suggested. The results of the
numerical simulations for this problem are presented herein.
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