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Abstract: The paper addresses a parameter identification problem for discrete-time stochastic systems
models with multiplicative and additive noises. Stochastic systems with additive and multiplicative
noises are considered when solving many practical problems related to the processing of mea-
surements information. The purpose of this work is to develop a numerically stable gradient-free
instrumental method for solving the parameter identification problems for a class of mathemati-
cal models described by discrete-time linear stochastic systems with multiplicative and additive
noises on the basis of metaheuristic optimization and singular value decomposition. We construct
an identification criterion in the form of the negative log-likelihood function based on the values
calculated by the newly proposed SVD-based Kalman-type filtering algorithm, taking into account
the multiplicative noises in the equations of the state and measurements. Metaheuristic optimization
algorithms such as the GA (genetic algorithm) and SA (simulated annealing) are used to minimize
the identification criterion. Numerical experiments confirm the validity of the proposed method and
its numerical stability compared with the usage of the conventional Kalman-type filtering algorithm.

Keywords: discrete-time stochastic systems with additive and multiplicative noises; parameter
identification; quadratic identification criterion; metaheuristics; Kalman filter; SVD filter

MSC: 93E12

1. Introduction

Discrete-time stochastic systems with additive and multiplicative noises are consid-
ered when solving many practical problems related to the processing of measurement
information (for example, image and signal processing problems, financial mathematics,
tracking problems, etc.). The reasons for the appearance of multiplicative noises in the
system may have a different nature depending on the problem being solved, or the object
or the process being modeled. For example, there are linearization and modeling errors,
quantization, physical phenomena such as fading in communication channels, random
disturbances in the dynamics of the system or in sensors.

It is well known that, for systems with additive noises, a conventional Kalman filter
may suffer from numerical instability caused by machine roundoff errors [1]. This is also
true for systems with multiplicative noises [2].

The purpose of this work is to develop a numerically stable instrumental method
for solving the parameter identification problem for a class of mathematical models de-
scribed by discrete-time linear stochastic systems with multiplicative and additive noises
based on metaheuristic optimization of the quadratic identification criterion [3] and newly
constructed SVD-based Kalman-type filtering algorithm.

Mathematics 2023, 11, 4292. https://doi.org/10.3390/math11204292 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204292
https://doi.org/10.3390/math11204292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4173-5199
https://orcid.org/0000-0001-8812-6035
https://doi.org/10.3390/math11204292
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204292?type=check_update&version=3


Mathematics 2023, 11, 4292 2 of 13

Metaheuristics are one of the powerful classes of gradient-free optimization methods
used in parameter identification algorithms. They are high-level solution search strategies
that can be used to solve a wide range of optimization problems in which the objective
function may be nonsmooth, discontinuous, or highly nonlinear. A feature of metaheuristics
is that almost all of them are nondeterministic [4].

The singular value decomposition method (or SVD factorization) is known as the
most accurate method of matrix factorization, especially for matrices close to singular ones.
Moreover, the singular value decomposition exists for any matrix, which cannot be said,
for example, about the Cholesky or modified Cholesky decompositions [5]. Therefore, SVD
factorization-based modifications of the Kalman filter (KF) have the same improved numer-
ical robustness to machine roundoff errors as all known square-root modifications [1,6]. In
addition, as mentioned in [7], SVD filters have additional advantages such as:

(1) All eigenvalues of the error covariance matrices are automatically computed at each
step of the filtering algorithm and can be used for automatic analysis and/or reduction
of the original model;

(2) The information matrices (inverse of the covariance matrices) are easily computed by
inverting the diagonal factors in the SVD decomposition, which creates an elegant
way to construct information-type algorithms and mixed-type filters with automatic
switching from the covariance filtering mode to the information filtering mode.

As far as the authors of this paper know, the idea of constructing a numerically
stable modification of the Kalman filter using singular value decomposition was first
proposed by Oshman and Bar-Itzhack [8]. The authors named their variant of the SVD
filter as the V-Λ filter. To implement the algorithm, both the SVD decomposition and
the Cholesky decomposition must be performed, as well as at least three matrix inverse
operations. Oshman then proposed an information form of the V-Λ filter [9]. In [10], the V-
Λ filter was applied to solve the parameter identification problem of a linear discrete-time
stochastic system.

Later, other authors proposed their own variants of the SVD filter corresponding
to the standard Kalman [11] and extended Kalman [12] filters. The above modifications
are similar to the V-Λ filter in many aspects. The limitation of their application is the
requirement of positive definiteness of the noise covariance matrices in the state and the
sensor models equations at each iteration of the algorithm, since it is necessary to apply
the Cholesky decomposition to compute the square root of the covariance matrix. It is also
necessary to perform a minimum of three matrix inversions.

In order to eliminate these drawbacks of the previous versions of the SVD filter, a new,
improved version of the SVD Kalman filter was proposed in [13]. Its difference from other
known variants is that this modification of the Kalman filter is free from the conditions
Qk ≥ 0 and Rk > 0, required both in the standard Kalman filter and in all its square-root
modifications [6]. Another significant numerical advantage of the above modification is
the presence of only one diagonal matrix inversion in the filter equations. As shown in [13],
according to the results of comparative analysis, this variant of the SVD filter showed the
best results in terms of numerical stability against machine roundoff errors.

It should also be noted that the SVD filter confirmed its efficiency in solving the
problems of parameter identification [14], the problem of estimating the state and the flight
parameters of an aircraft [12], the problem of Kalman filtering of inertial measurement unit
readings [15], and others.

The main idea of this paper is to develop a new numerically stable parameter identifica-
tion method that combines the benefits of metaheuristic optimization and SVD factorization.
The paper has the following structure. Section 2 provides basic definitions associated with
the conventional Kalman-type filtering algorithm for discrete-time stochastic systems with
multiplicative and additive noises. Also, the problem of parameter identification is de-
scribed. Section 3 contains the main result of the paper—the newly constructed SVD-based
Kalman-type filtering algorithm for systems with multiplicative and additive noises. Two
lemmas that state algebraic equivalence between the SVD-based and conventional Kalman-
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type filtering algorithms are proved. Section 4 demonstrates how the proposed method can
be applied for solving the parameter identification problems of the considered stochastic
system models and its numerical superiority in dealing with machine roundoff errors
compared with the usage of conventional Kalman-type algorithms. Section 5 concludes the
paper.

2. Methodology
2.1. Conventional Kalman-Type Filtering Algorithm for Discrete-Time Stochastic Systems with
Multiplicative and Additive Noises

Consider a discrete-time linear stochastic system with multiplicative and additive noises{
xk = (Fk−1 + F̃k−1ξk−1)xk−1 + Gk−1wk−1,

zk = (Hk + H̃kζk)xk + vk, k = 1, 2, . . . , M
(1)

where xk ∈ Rn is the system state vector; zk ∈ Rm is the measurement vector; matrices Fk,
F̃k ∈ Rn×n; Hk, H̃k ∈ Rm×n; G ∈ Rn×q; M is the number of measurements; x0 ∼ N (x̄0, Π0)
is the initial state; ξk ∈ R ∼ N (0, σ2

ξ ) and wk ∈ Rq ∼ N (0, Qk) are multiplicative and
additive noises in the system state, respectively; ζk ∈ R ∼ N (0, σ2

ζ ) and vk ∈ Rm ∼
N (0, Rk) are multiplicative and additive noises in the measurement scheme, respectively;
covariance matrices Qk and Rk of noises wk and vk, respectively, are positive semidefinite;
and all noises and the initial state are mutually independent.

The discrete-time Kalman-type filtering algorithm for the systems under consideration
is known (see, for example, [2,16]). It allows for computing linear optimal estimates, x̂k, of
the state vector, xk, from the available measurements zk, k = 1, . . . , M.

Let us introduce the following notation:

w̃k−1 = F̃k−1ξk−1xk−1 + Gk−1wk−1,

ṽk = H̃kζkxk + vk

where

E
{

xkxT
k

}
= Xk, Xk = Fk−1Xk−1FT

k−1 + Q̃k−1;

E{w̃k} = 0, E
{

w̃kw̃T
k

}
= Q̃k = σ2

ξ F̃kXk F̃T
k + GkQkGT

k ;

E{ṽk} = 0, E
{

ṽk ṽT
k

}
= R̃k = σ2

ζ H̃kXk H̃T
k + Rk.

Firstly, consider a conventional Kalman-type filtering algorithm for the system (1),
Algorithm 1. The derivation of this algorithm can be found, for example, in [16].



Mathematics 2023, 11, 4292 4 of 13

Algorithm 1: Conventional Kalman-type filtering algorithm (KF).

Initialization. Calculate X0 = Π0 + x̄0 x̄T
0 . Set initial values P0 = Π0, x̂0 = x̄0.

For k = 1, 2, . . . , M do
I. Time Update step. Find a priori covariance estimation error matrix Pk|k−1 and a
priori estimate of the state vector x̂k|k−1 as follows:

Q̃k−1 = σ2
ξ F̃k−1Xk−1 F̃T

k−1 + Gk−1Qk−1GT
k−1, (2)

Xk = Fk−1Xk−1FT
k−1 + Q̃k−1, (3)

Pk|k−1 = Fk−1Pk−1FT
k−1 + Q̃k−1, (4)

x̂k|k−1 = Fk−1 x̂k−1. (5)

II. Measurement Update step. Using the a priori estimates Pk|k−1 and x̂k|k−1, find
their a posteriori values Pk and x̂k as follows:

R̃k = σ2
ζ H̃kXk H̃T

k + Rk, (6)

Σk = HkPk|k−1HT
k + R̃k, (7)

Kk = Pk|k−1HT
k Σ−1

k , (8)

Pk = (I − Kk Hk)Pk|k−1, (9)

x̂k = x̂k|k−1 + Kkek, (10)

νk = zk − Hk x̂k|k−1. (11)

End.

2.2. The Problem of Parameter Identification

Suppose that the matrices defining the equations of the system model (1) depend
on the unknown parameters. Let us set the problem of their identification by available
measurements ZM

1 = {z1, . . . , zk, . . . , zM}.
Let the vector of the unknown parameters be θ ∈ Rp. Then the value of the estimation

error ek = xk − x̂k will depend on the value of the parameter θ, which is specified in the
equations of the discrete-time filtering algorithm. The minimum value of the error ek can
be obtained under the condition of a minimum by θ of the quadratic functional

J o
k (θ) = E

{
eT

k (θ)ek(θ)
}

. (12)

The problem is that the functional (12) is not instrumental, i.e., it is not practically
feasible because the errors, ek, are not available for direct observation. The most popular
approach to solving this problem are MPE (minimum prediction error) methods [17], based
on minimizing an identification criterion that depends on the observed measurement
residuals. Such criteria include the well-known least squares and maximum likelihood
criteria. An alternative approach is the auxiliary performance index method [18]. Thus, the
algorithm of numerical minimization of the original functional (12) by the parameter θ is
replaced by the algorithm of numerical minimization of the selected instrumental criterion,
which is practically feasible.

To solve the problem of identifying the parameters of the system (1), we construct an
instrumental criterion in the form of a negative logarithmic likelihood function:

JKF(θ; ZM
1 ) =

Mm
2

ln 2π +
1
2

M

∑
k=1

{
ln |Σk(θ)|+ ||νk(θ)||2Σ−1

k (θ)

}
, (13)

the values of which, for a given θ, we will calculate using Equations (2)–(11) of Algorithm 1.
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The identification criterion (13), calculated on the basis of the values obtained by
the Kalman filter or its modification, can serve as an objective function for minimization
algorithms of various types. If the gradient of the identification criterion is unknown or
finding it is computationally expensive, then gradient-free methods such as metaheuristic
algorithms can be used for minimization. Also, these methods are extremely useful if
the objective function loses its smoothness or continuity properties, for example, due to
machine roundoff errors.

Depending on the method of obtaining a solution, most metaheuristic optimization
algorithms can be divided into two large groups: trajectory and population algorithms. In
trajectory algorithms, the solution search process can be viewed as a movement between
individual solutions in the solution space of the problem, while, in population algorithms,
the search for an optimal solution involves changing the group of solutions.

One of the most popular trajectory algorithms used in solving global optimization
problems is the simulated annealing method (SA). The key feature of the method is the use
of a control parameter—temperature, which allows for controlling the nondeterministic
process of solution search. As a rule, the temperature decreases during the algorithm
operation according to a certain law, starting from some initial value. At each iteration of
the algorithm, a randomly generated new solution from the neighborhood of the current
solution is accepted, with a probability of 1 if it is better and a probability of less than 1 if it
is worse than the current one, and the probability of accepting the worst solution decreases
with decreasing temperature. The quality of the solutions is evaluated using a cost function
with integer or real values.

A genetic algorithm (GA) is a popular version of evolutionary optimization algorithms
based on the modeling of natural selection processes. In evolutionary algorithms, the
quality of solutions is evaluated using a fitness function, and the basic idea is that solutions
with the best values of this function “survive” during evolution. In a genetic algorithm, at
each iteration of the evolutionary process, a new population is obtained from the current
population by successive use of one or more genetic operators, the most common of which
are crossover, which allows descendant solutions from parental solutions to be obtained,
and mutation, which randomly modifies solutions.

3. Main Results
The New SVD-Based Kalman-Type Filtering Algorithm for Discrete-Time Stochastic Systems with
Multiplicative and Additive Noises

Now, we are ready to present our new result—the SVD-based Kalman-type filtering
Algorithm 2. Consider the SVD factorization [19]. Any matrix, A ∈ Cm×n, of rank r can be
represented as

A =WΣV∗, Σ =

[
S 0
0 0

]
∈ Cm×n, S = diag{σ1, . . . , σr}

whereW ∈ Cm×m, V ∈ Cn×n are unitary matrices, V∗ means conjugate and transposed to
V , and S ∈ Rr×r is a real non-negative diagonal matrix. The values σ1 ≥ σ2 ≥ . . . ≥ σr > 0
are singular values of the matrix A. Note that if r = n and/or r = m, some of the zero
submatrices in Σ are absent.
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Algorithm 2: SVD-based Kalman-type filtering algorithm (SVD-KF).

Initialization. Apply SVD factorization for the initial matrices X0 = ΘX0 DX0 ΘT
X0

and Π0 = ΘΠ0 DΠ0 ΘT
Π0

. Set the initial values: ΘP0 = ΘΠ0 , DP0 = DΠ0 and
x̂0 = x̄0.

For k = 1, 2, . . . , M do
I. Time Update step.
I.1. Apply SVD factorization for the process noise covariance matrix
Qk−1 = ΘQk−1 DQk−1 ΘT

Qk−1
.

I.2. Build the pre-arrays and apply the SVD factorization in order to obtain the
SVD factors {ΘQ̃k−1

, DQ̃k−1
}, {ΘXk , DXk} and {ΘPk|k−1

, DPk|k−1
} as follows

[
σξ D1/2

Xk−1
ΘT

Xk−1
F̃T

k−1

D1/2
Qk−1

ΘT
Qk−1

GT
k−1

]
=W (1)

TU

[
D1/2

Q̃k−1

0

]
ΘT

Q̃k−1
; (14)D1/2

Xk−1
ΘT

Xk−1
FT

k−1

D1/2

Q̃k−1
ΘT

Q̃k−1

 =W (2)
TU

[
D1/2

Xk
0

]
ΘT

Xk
; (15)

D1/2
Pk−1

ΘT
Pk−1

FT
k−1

D1/2

Q̃k−1
ΘT

Q̃k−1

 =W (3)
TU

[
D1/2

Pk|k−1

0

]
ΘT

Pk|k−1
. (16)

I.3. Given x̂k−1, compute a priori estimate x̂k|k−1 by (5).
II. Measurement Update step.
II.1. Apply SVD factorization for the measurements noise covariance matrix
Rk = ΘRk DRk ΘT

Rk
.

II.2. In order to obtain the SVD factors {ΘR̃k
, DR̃k

} and {ΘΣk , DΣk}, apply the SVD
factorization to the next left hand side pre-arrays:[

σζ D1/2
Xk

ΘT
Xk

H̃T
k

D1/2
Rk

ΘT
Rk

]
=W (1)

MU

[
D1/2

R̃k
0

]
ΘT

R̃k
; (17)D1/2

Pk|k−1
ΘT

Pk|k−1
HT

k

D1/2

R̃k
ΘT

R̃k

 =W (2)
MU

[
D1/2

Σk
0

]
ΘT

Σk
. (18)

II.3. Find the feedback gain Kk as follows:

Kk = K̄kD−1
Σk

ΘT
Σk

where K̄k = Pk|k−1HT
k ΘΣk . (19)

II.4. In order to obtain the SVD factors {ΘPk , DPk}, apply the SVD factorization to
the next left hand side pre-array:D1/2

Pk|k−1
ΘT

Pk|k−1
(I − Kk Hk)

T

D1/2

R̃k
ΘT

R̃k
KT

k

 =W (2)
MU

[
D1/2

Pk
0

]
ΘT

Pk
. (20)

II.5. Find a posteriori estimate x̂k as follows:

x̂k = x̂k|k−1 + K̄kD−1
Σk

ν̄k where ν̄k = ΘT
Σk
(zk − Hk x̂k|k−1). (21)

End.

Lemma 1. Time update steps of the KF and SVD-KF algorithms for system model (1) are alge-
braically equivalent.
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Proof. Let us prove that (2) and (14) are equivalent.
From a general form A =WΣVT we obtain

ATA =
(
WΣVT

)T(
WΣVT

)
= VΣ2VT . (22)

So, from (14) we have

ATA =
[
σξ F̃k−1ΘXk−1 D1/2

Xk−1
Gk−1ΘQk−1 D1/2

Qk−1

][σξ D1/2
Xk−1

ΘT
Xk−1

F̃T
k−1

D1/2
Qk−1

ΘT
Qk−1

GT
k−1

]
= σξ F̃k−1ΘXk−1 DXk−1 ΘT

Xk−1
F̃T

k−1 + Gk−1ΘQk−1 DQk−1 ΘT
Qk−1

GT
k−1

= σ2
ξ F̃k−1Xk−1 F̃T

k−1 + Gk−1Qk−1GT
k−1.

VΣ2VT = ΘQ̃k−1
DQ̃k−1

ΘT
Q̃k−1

= Q̃k−1.

Hence, we have (2) from (22). The equivalence of (3) and (15), and (4) and (16) can be
proved in the same manner.

Lemma 2. Measurement update steps of the KF and SVD-KF algorithms for system model (1) are
algebraically equivalent.

Proof. The equivalence of (6) and (17), and (7) and (18) can be proved in the same way as
in Lemma 1.

Next, expression (19) for calculating Kk is derived from (8), where the matrix Σk is the
SVD factorized. Indeed,

Kk = Pk|k−1HT
k Σ−1

k = Pk|k−1HT
k (ΘΣk DΣk ΘT

Σk
)−1 = K̄kD−1

Σk
ΘT

Σk
.

Let us prove the equivalence of (9) and (20). Taking into account (20), the left hand
side of (22) may be written as follows:

ATA =
[
(I − Kk Hk)ΘPk|k−1

D1/2
Pk|k−1

KkΘR̃k
D1/2

R̃k

]D1/2
Pk|k−1

ΘT
Pk|k−1

(I − Kk Hk)
T

D1/2

R̃k
ΘT

R̃k
KT

k


= (I − Kk Hk)ΘPk|k−1

D1/2
Pk|k−1

D1/2
Pk|k−1

ΘT
Pk|k−1

(I − Kk Hk)
T + KkΘR̃k

D1/2

R̃k
D1/2

R̃k
ΘT

R̃k
KT

k

= (I − Kk Hk)Pk|k−1(I − Kk Hk)
T + KkR̃kKT

k .

On the other hand,
VΣ2VT = ΘPk D1/2

Pk
D1/2

Pk
ΘT

Pk
= Pk.

Thus,
Pk = (I − Kk Hk)Pk|k−1(I − Kk Hk)

T + KkR̃kKT
k . (23)

Let us rewrite (23) using (7) and (8):

Pk = (I − Kk Hk)Pk|k−1 − Pk|k−1HT
k KT

k + Kk HkPk|k−1HT
k KT

k + KkR̃kKT
k

= (I − Kk Hk)Pk|k−1 − Pk|k−1HT
k KT

k + Kk(HkPk|k−1HT
k + R̃k)KT

k

= (I − Kk Hk)Pk|k−1 − Pk|k−1HT
k KT

k + Pk|k−1HT
k Σ−1

k ΣkKT
k

= (I − Kk Hk)Pk|k−1 − Pk|k−1HT
k KT

k + Pk|k−1HT
k KT

k

= (I − Kk Hk)Pk|k−1 =⇒ (9).

Finally, expression (21) follows directly from (10), taking into account Kk =
K̄kD−1

Σk
ΘT

Σk
.
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Now, to construct the parameter identification procedure, we need to rewrite the
expression for computing the negative logarithmic likelihood function (13) in terms of the
SVD-KF. Given that

det(Σk) = det(DΣk ) and νT
k Σ−1

k νk = ν̄T
k D−1

Σk
ν̄k,

we can write

JSVD(θ; ZM
1 ) =

Mm
2

ln(2π) +
1
2

M

∑
k=1
{ln[det(DΣk )] + ν̄T

k D−1
Σk

ν̄k} (24)

where the diagonal matrix DΣk and vector ν̄k are available at each step of Algorithm 2.
To find the optimal value, θ∗, of unknown parameter θ with the objective function (24),

we use the metaheuristic optimization methods GA and SA.
The identification of unknown parameter θ and the estimation of state vector xk of

system (1) can be performed simultaneously according to the criterion

θ∗ = argmin
D(θ)

JSVD(θ; ZM
1 ). (25)

4. Discussion

In this section, we wish to show the validity and numerical superiority of the pro-
posed method in dealing with machine roundoff errors. In order to conduct numerical
experiments, we have implemented in MATLAB Algorithms 1 and 2, functions for calcu-
lating identification criteria JKF(θ; ZM

1 ) and JSVD(θ; ZM
1 ) according to (13) and (24), as

well as functions for modeling system dynamics and measurements. The functions ga and
simulannealbnd from the MATLAB Global Optimization Toolbox were used for numerical
minimization of both identification criteria by the GA and SA methods, respectively. All
experiments were conducted on the following platform: Windows 11, Intel Core i3-1115G4
CPU @ 3.00 GHz, 8 GB of RAM.

Table 1 presents the main GA and SA settings used in the numerical experiments. The
remaining settings are taken by default.

Table 1. Settings of the algorithms.

GA SA
Parameter Value Parameter Value

TimeLimit 60 TimeLimit 60
Generations Inf MaxIter Inf
StallGenLimit 20 StallIterLimit 100
PopulationSize 10 ReannealInterval 100
PopInitRange [0; 1] MaxFunEvals Inf
MutationFcn @mutationadaptfeasible

Example 1. First, let us demonstrate the validity of the proposed method. Consider
a nearly constant velocity model for the uniform motion [20] augmented with multiplicative
noises ξk and ζk: 

xk =

([
1 θ
0 1

]
+

[
0 0
0 1

]
ξk−1

)
xk−1 +

[
θ2/2

θ

]
wk−1,

zk =

([
1 0
0 1

]
+

[
0 0
0 1

]
ζk

)
xk + vk, k = 1, . . . , 100

(26)

where xk = [x1, x2]
T
k , x1 = x is the coordinate of the object, x2 = vx is its velocity, x0 ∼

N ([0, 1]T , 10I2), wk ∼ N (0, 10−2), vk ∼ N (0, σ2 I2) (σ = 0.1, 0.5, 1.0), ξk ∼ N (0, 10−4),
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ζk ∼ N (0, 10−4), and θ is the model parameter to be identified. Let us put the “true” value
of the parameter equal to θ∗ = 0.1.

Figure 1 shows estimation results of the system state vector xk obtained with Algo-
rithms 1 and 2 for model (26) with σ = 0.5. As one can see, the newly proposed SVD-KF
algorithm shows the ability to solve the discrete-time filtering problem successfully and
yields the same state estimates as the conventional KF-type algorithm.

(a) (b)

Figure 1. Estimation results. (a) Coordinate x, its measurements and estimates. (b) Velocity vx, its
measurements and estimates.

Further, we wish to demonstrate how the new Algorithm 2 can be applied to solve the
parameter identification problem compared with the conventional Algorithm 1.

A series of 100 numerical experiments was conducted in MATLAB for each value of
the noise level, σ. In each experiment, numerical identification of parameter θ using both
identification criteria was performed based on the results of simulated measurements. The
solution, θ∗, was searched on the segment [0; 1].

The average running times of the GA and SA minimizations based on the KF algorithm
were 0.886 sec and 0.357 sec, respectively. The average running times of the GA and SA
minimizations based on the SVD-KF algorithm were 3.695 sec and 1.376 sec, respectively
(see Table 2).

Table 2. Average time, sec.

KF SVD-KF
GA SA GA SA

σ = 1.0 0.820 0.373 3.442 1.434
σ = 0.5 0.866 0.354 3.526 1.362
σ = 0.1 0.972 0.343 4.118 1.333

Average 0.886 0.357 3.695 1.376

We can conclude that for both identification criteria the GA works on average about
2.5–2.7 times slower compared with the SA. This is because the GA works with a group
of solutions and performs several genetic operators (selection, crossover, mutation, etc.)
at each iteration compared with SA, which works with a single solution and uses much
simpler calculations. At the same time, optimization methods based on the SVD-KF
algorithm work approximately four times slower than those based on the conventional KF
because of the usage of several SVD procedures at each iteration of the algorithm. This may
be overcome by using parallel implementations of the SVD procedure.

The results of the numerical identification of parameter θ are summarized in Tables 3 and 4.
They show that, with the selected settings, for both identification criteria the GA shows
better identification accuracy compared with SA, although it works slower. Also, the
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accuracy of parameter identification for both identification criteria is practically the same.
RMSE and MAPE values decrease with decreasing noise level σ.

Table 3. Identification results (KF).

GA SA
Mean RMSE MAPE Mean RMSE MAPE

σ = 1.0 0.099164 0.011193 8.177905 0.098430 0.012116 8.874215
σ = 0.5 0.099261 0.005376 4.403328 0.097789 0.007293 5.773781
σ = 0.1 0.099885 0.001185 0.959292 0.097491 0.005608 3.443892

Table 4. Identification results (SVD-KF).

GA SA
Mean RMSE MAPE Mean RMSE MAPE

σ = 1.0 0.099131 0.011085 8.164202 0.098504 0.012049 8.949169
σ = 0.5 0.099259 0.005375 4.404718 0.098127 0.006944 5.551390
σ = 0.1 0.099882 0.001186 0.962216 0.096972 0.006581 4.470887

Thus, the results of the numerical experiments confirm the validity of using the
proposed SVD-KF algorithm to solve identification problems.

Despite the fact that the SVD-KF algorithm is slower compared with the conventional
KF, in the following example we will show that it has an undoubted superiority in terms of
numerical robustness to machine roundoff errors.

Example 2. To demonstrate numerical efficiency of the proposed SVD-based identifi-
cation method, the state-space model with multiplicative and additive noises is explored.
The system dynamics considered in [21] is given by equation

xk =

([
θ −0.15
0 0.15

]
+

[
0.01 0

0 0.01

]
ξk−1

)
xk−1 +

[
θ

2.5

]
wk−1, k = 1, . . . , 100, (27)

x0 ∼ N (x̄0, 10I2), x̄0 = [0, 1]T , wk ∼ N (0, 0.1), ξk ∼ N (0, 0.01), and θ is the system
parameter that needs to be identified. Let us put the “true” value of the parameter equal to
θ∗ = 0.2.

Consider the ill-conditioned measurement scheme as in [2]

zk =

([
1 1
1 1 + δ

]
+

[
0 0
0 1

]
ζk

)
xk + vk,

vk ∼ N (0, δ2 I2), ζk ∼ N (0, δ2), where δ2 < εroundoff but δ > εroundoff, and εroundoff
denotes the unit roundoff error (computer roundoff for floating-point arithmetic is often
characterized by a single parameter εroundoff, defined as the largest number such that either
1 + εroundoff = 1 or 1 + εroundoff/2 = 1 in machine precision).

A series of 100 numerical experiments was conducted in MATLAB for different values
of δ. In each experiment, numerical identification of parameter θ using both identification
criteria was performed based on the results of simulated measurements. The solution, θ∗,
was searched on the segment [0; 1].

The average running time of the GA and SA minimizations based on the KF and
SVD-KF algorithms is presented in Table 5. It can be seen that starting from δ = 10−8 the
SA algorithm for identification criterion (13) fails to solve the problem within the required
time and the GA starts to slow down dramatically. At the same time, the GA and SA, which
use identification criterion (24), perform adequately.
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Table 5. Average time, sec.

KF SVD-KF
GA SA GA SA

δ = 10−6 0.684 0.421 2.933 1.595
δ = 10−7 0.765 0.454 2.814 1.653
δ = 10−8 5.752 – 6.613 3.607
δ = 10−9 5.560 – 6.928 3.873

The results of the numerical identification of parameter θ are summarized in Tables 6 and 7.
They show that the GA and SA methods based on the SVD-KF Algorithm 2 remain stable
for all values of δ and yield adequate results. At the same time, metaheuristic optimization
methods based on Algorithm 1 start to diverge at δ = 10−8. This happens because the
identification criterion (13) loses smoothness and continuity due to machine roundoff
errors.

Table 6. Identification results (KF).

GA SA
Mean RMSE MAPE Mean RMSE MAPE

δ = 10−6 0.201826 0.030241 12.175545 0.202339 0.030573 12.246241
δ = 10−7 0.196880 0.028717 11.372277 0.197731 0.028353 11.220115
δ = 10−8 0.126608 0.220648 92.177307 – – –
δ = 10−9 0.319231 0.407681 162.665399 – – –

Table 7. Identification results (SVD-KF).

GA SA
Mean RMSE MAPE Mean RMSE MAPE

δ = 10−6 0.201787 0.030282 12.221007 0.201656 0.030390 12.089709
δ = 10−7 0.196823 0.028029 11.152689 0.197950 0.028576 11.303757
δ = 10−8 0.203242 0.031032 12.662414 0.203419 0.031660 13.103576
δ = 10−9 0.201195 0.027771 11.557529 0.200827 0.028267 11.554388

5. Conclusions

The paper proposes an instrumental method for identifying parameters of discrete-
time stochastic system models with multiplicative and additive noises. We have constructed
a new SVD-based Kalman-type filtering algorithm that allows the calculation of all filter
quantities using numerically stable singular value decomposition. It is similar to the
existing SVD-based algorithms for systems with additive noises only. In contrast, our
newly constructed algorithm takes into account the presence of multiplicative noises in the
state and measurement equations of the system model.

Lemmas 1 and 2 contain the main theoretical results of the paper. We have proved the
algebraic equivalency of time update and measurement update steps in Algorithms 1 and 2.

With the aim to solve the problem of parameter identification for the considered class
of system models, we have constructed an SVD-based identification criterion in the form
of a negative logarithmic likelihood function. In order to find the optimal value of the
unknown system model parameter, we have used SA and GA methods for its optimization.

Having carried out a series of numerical experiments in MATLAB, we have demon-
strated how the new Algorithm 2 can be applied for solving the parameter identification
problems. The results of numerical experiments confirm the superiority of the newly
developed method in managing machine roundoff errors compared with the one based on
conventional Kalman-type filtering. It is worth noting that the GA shows better accuracy
in minimizing the identification criteria than SA, although it works slower. Taking into ac-
count the speed/accuracy ratio, the usage of the SVD-KF filtering algorithm for computing
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the identification criterion in conjunction with the SA algorithm for its minimization seems
to be the best choice.

Author Contributions: Conceptualization, A.T. and Y.T.; methodology, A.T. and Y.T.; software, A.T.;
validation, Y.T.; formal analysis, A.T. and Y.T.; investigation, A.T. and Y.T.; resources, A.T. and Y.T.;
data curation, A.T. and Y.T.; writing—original draft preparation, Y.T.; writing—review and editing,
A.T. and Y.T.; visualization, A.T. and Y.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Russian Science Foundation, grant no. 22–21–00387,
https://rscf.ru/en/project/22-21-00387/ (accessed on 25 September 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SVD Singular value decomposition
KF Kalman filter
TU Time update
MU Measurement update
MPE Minimum prediction error
GA Genetic algorithm
SA Simulated annealing
RMSE Root mean square error
MAPE Mean absolute percentage error

References
1. Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB, 4th ed.; John Wiley & Sons, Inc.: New York, NY,

USA, 2015.
2. Tsyganov, A.V.; Tsyganova, J.V.; Kureneva, T.N. UD-based Linear Filtering for Discrete-Time Systems with Multiplicative

and Additive Noises. In Proceedings of the 19th European Control Conference, Saint Petersburg, Russia, 12–15 May 2020;
pp. 1389–1394.

3. Caines, P. Linear Stochastic Systems; John Wiley & Sons, Inc.: New York, NY, USA, 1988.
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