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Abstract: To date, all explicit symplectic Runge–Kutta–Nyström methods of order five or above are
derived by numerical solutions of order condition equations and symplectic condition. In this paper,
we derive 124 sets of seven-stage fifth-order explicit symplectic Runge–Kutta–Nyström methods
with closed-form coefficients in the Butcher tableau using the roots of a degree-3 shifted Legendre
polynomial. One method is analyzed and its P-stable interval is derived. Numerical tests on the
two newly discovered methods are performed, showing their long-time stability and large step size
stability over some existing methods.
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1. Introduction

In recent decades, geometric numerical methods that preserve at least one geometric
property of a given system have received significant attention in various fields, such as as-
trophysics, computational fluid dynamics and molecular dynamics; see monographs [1–5]
and references therein. For other traditional numerical methods for ordinary differential
equations, such as Runge–Kutta methods, we refer to the book [6].

Consider the classical second-order differential equation [2,4]

q̈ = −5U(q), q(t0) = q0, q̇(t0) = p0,

where U : Rd → R is assumed to be sufficiently smooth. Introducing p = q̇, wherein q
and p are vectors, represents a function related to potential energy. An s-stage explicit
symplectic Runge–Kutta–Nyström (ESRKN) method applied to the above equation is [7]

Qi = qn + hci pn − h2
s

∑
j=1

āij5U(Qj),

qn+1 = qn + hpn − h2
s

∑
i=1

b̄i5U(Qi),

pn+1 = pn − h
s

∑
i=1

bi5U(Qi),

(1)

where h is the step size,

b̄i = bi(1− ci), i = 1, . . . , s and āij =

{
0, i ≤ j,
bj(ci − cj), i > j.
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The ESRKN method (1) is expressed in a Butcher tableau by where the symbols match
their locations in (1). For more information about Butcher tableaus, we refer to a Butcher
book [6].

Therefore, an ESRKN method is determined only by nodes ci and quadrature coeffi-
cients bi. There are different strategies used to obtain ci and bi; we mention (without being
exhaustive) the following references [5,8–16]. For ESRKN methods with an order higher
than four, none of the aforementioned works present ci and bi in exact closed form. In other
words, those methods obtained do not satisfy order conditions and symplectic conditions
exactly, but within some digits of accuracy. Hence, an interesting question is whether or
not there exists a closed form of ci and bi for ESRKN with an order higher than four. In this
paper, we present a positive answer to this question.

In an earlier work, authors in [8] constructed a fifth-order ESRKN method by solv-
ing 13 equations of order conditions, while constructing a sixth-order method requires
solving 23 equations of order conditions. Obviously, as the order increases, so does the
computational cost of solving the nonlinear order equations to produce ci and bi. Although
the research by Calvo and Hairer has significantly reduced the number of independent
order conditions in the ESRKN method [17], the coupled order conditions equations still
comprise a considerable proportion of the total order conditions equations. On the other
hand, despite modern computers’ tremendous performance, it is nearly impossible to solve
order conditions directly to obtain ci and bi with a higher order. One possibility is to assign
some suitable ci first and then solve order conditions to yield bi. But what is the preassigned
acceptable ci? It is worth noting that the ci nodes of both three-stage fourth-order ESRKN
methods in Tables 1 and 2 are the roots of the degree-2 shifted Legendre polynomial [18].

Table 1. Scheme 1.
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Table 2. Scheme 2.
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Numerous researchers have already successfully utilized polynomials or functions
to design numerical methodologies. For instance, Revelli and Ridolfi [19] developed an
interpolation collocation method based on the sine function. Additionally, a fourth-order
algorithm was designed based on sinc-collocation in [20]. The successful instances have
sparked a great deal of interest in our investigation for constructing higher-order ESRKN
methods based on shifted Legendre polynomials.

We investigate the potential of using the degree-3 shifted Legendre polynomial roots
as the ci nodes and come up with a five-stage fourth-order ESRKN method, which further
confirms that it is feasible to construct ESRKN using the shifted Legendre polynomial roots
as the ci nodes. We then conduct further research to derive fifth-order ESRKN methods.
The main contribution of this paper is to show that this is an effective technique for deriving
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ESRKN methods and we demonstrate this by deriving 124 seven-stage fifth-order ESRKN
methods with ci and bi in closed form. To the best of our knowledge, this is the first
work carried out to derive closed-form ESRKN methods with order five. We will explore
closed-form ESRKN methods with order 6 or higher in a future paper.

This paper is organized as follows. In Section 2, we introduce order conditions for
the ESRKN method (1) and demonstrate two closed-form ESRKN methods with order
four and five, respectively. Their P-stable intervals are also provided. Section 3 presents
numerical experiments. In Section 4, some conclusions are drawn. Appendix A lists 124 sets
of preassigned acceptable ci, where the corresponding closed-form real solution bi could be
determined by order conditions.

2. ESRKN Methods with Order 4 and 5
2.1. Order Conditions for ESRKN Method

Given the assumption b̄i = bi(1− ci), the order conditions for RKN method (1) are as
follows [8,21]:

(1)
s

∑
i=1

bi = 1, (2)
s

∑
i=1

bici =
1
2

,

(3)
s

∑
i=1

bic2
i =

1
3

, (4)
s

∑
i=1

s

∑
j=1

bi āij =
1
6

,

(5)
s

∑
i=1

bic3
i =

1
4

, (6)
s

∑
i=1

s

∑
j=1

bici āij =
1
8

,

(7)
s

∑
i=1

s

∑
j=1

bi āijcj =
1

24
, (8)

s

∑
i=1

bic4
i =

1
5

,

(9)
s

∑
i=1

s

∑
j=1

bic2
i āij =

1
10

, (10)
s

∑
i=1

s

∑
j=1

s

∑
k=1

bi āij āik =
1

20
,

(11)
s

∑
i=1

s

∑
j=1

bici āijcj =
1

30
, (12)

s

∑
i=1

s

∑
j=1

bi āijc2
j =

1
60

,

(13)
s

∑
i=1

s

∑
j=1

s

∑
k=1

bi āij ājk =
1

120
.

(2)

If only condition (1) is satisfied, the method is of order one. If both conditions (1)
and (2) are satisfied, the method is of order two. If conditions (1) to (4) are satisfied, the
method is of order three. If conditions (1) to (7) are satisfied, the method is of order four, and
if conditions (1) to (13) are satisfied, the method is of order five. It has been demonstrated
that, for ESRKN methods, conditions (7), (12) and (13) are redundant [8].

2.2. A Five-Stage Fourth-Order ESRKN Method

Let the degree-l normalized shifted Legendre polynomial Pl(x) be [21],

Pl(x) =
√

2l + 1
l!

dl

dxl (xl(x− 1)l), l = 0, 1, 2, . . . .

The roots of degree-3 shifted Legendre polynomial P3(x) =
√

7(20x3− 30x2 + 12x− 1)
are

g1 =
1
2
−
√

15
10

, g2 =
1
2

, g3 =
1
2
+

√
15

10
. (3)

By placing g1, g2, g3 in five positions as a set of ci, we find a closed-form five-stage
fourth-order ESRKN method whose Butcher tableau is presented in Table 3.



Mathematics 2023, 11, 4291 4 of 13

Table 3. Five-stage fourth-order ESRKN method.
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Theorem 1. The explicit five-stage method defined in Table 3 is a fourth-order symplectic RKN
method and its P-stable interval [22] is (0, 7.75342...).

Proof. It is easy to verify that parameters in Table 3 satisfy order conditions (1) to (7);
therefore, it is of fourth order.

We solve the test equation q̈ = −λ2q using the ESRKN method (1) to obtain yn+1 = Myn,
where

yn =

(
qn

hq̇n

)
, M =

(
1− rb̄ᵀ(I + rā)−1e 1− rb̄ᵀ(I + rā)−1c
−rbᵀ(I + rā)−1e 1− rbᵀ(I + rā)−1c

)
. (4)

Here, r = λ2h2, e =
(
1, · · · , 1

)
, c, b, b̄ and matrix ā are defined in Table 3. Numerical

calculations reveal that the P-stable interval is given by

Ip = {r | ρ(M) = 1, tr(M)2 < 4 det(M)} = (0, 7.75342...).

2.3. A Seven-Stage Fifth-Order ESRKN Method

We choose the stage number as seven and place g1, g2 and g3 of (3) in seven positions
of {ci}. There are 37 = 2187 permutations for ci. By solving the fifth-order conditions
of 13 equations, we find real solution bi for 124 sets of ci. For each set of nodes ci, we
present its adjoint counterpart in Appendix A. Therefore, we find in total 124 seven-stage
fifth-order ESRKN methods in closed form, where ci is chosen among g1, g2 and g3 of (3)
and bi is solved by fifth-order conditions in (2). In particular, we display in Table 4 such an
ESRKN method.

Table 4. A seven-stage fifth-order ESRKN method (cf. (5)).

1
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1
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√
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1
2 0 ā32 0 0 0 0 0

1
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Here, in Table 4,

b1 = −137
√

15
1296

+
1
2
−
√

21955335− 5576400
√

15
6480

,

b2 =
1117
√

15
6480

− 5
18
−
√

21955335− 5576400
√

15
6480

,

b3 =
1117
√

15
6480

− 5
18

+

√
21955335− 5576400

√
15

6480
,

b4 = −901
√

15
6480

+
5
12

+

√
21955335− 5576400

√
15

6480
,

b̄i = bi(1− ci) and āij = bj(ci − cj).

(5)

Theorem 2. The seven-stage explicit method defined in Table 4 is a fifth-order symplectic RKN
method and its P-stable interval is (0, 9.22575...).

Proof. We verify the 13 equations in (2) by plugging the coefficients ci, bi, b̄i and āij from
Table 4. We compute the spectrum of M in (4) with c, b, b̄ and ā from Table 4 to obtain

Ip = {r | ρ(M) = 1, tr(M)2 < 4 det(M)} = (0, 9.22575...).

3. Numerical Experiments

We compute two numerical examples. The first example has a known solution that the
computation verifies, determining the symplecticity-preserving and the order convergence
of the new methods. The second example shows a strong stability of the new methods over
some existing methods.

We solve the Kepler problem, cf. [4],

q̈ = f (q), f (
(

q1
q2

)
) =

(
−q1/(q2

1 + q2
2)

3/2

−q2/(q2
1 + q2

2)
3/2

)
,

q(0) =
(

4
0

)
, q̇(0) =

(
0√

13/40

)
.

The Hamiltonian is

H(q, q̇) =
q̇2

1 + q̇2
2

2
− 1

(q2
1 + q2

2)
1/2

. (6)

The exact solution is

q1(t) =
cos(E(t))− e

1− e
· 4, q2(t) = T(1− e) sin(E(t))

√
13/40,

where e = 3/10, T = 2πa3/2, a = 40/7 and E(t) is the solution of the Kepler equation

E(t)− e sin(E(t)) = a−3/2t.

We solve the Kepler problem in t ∈ [0, 5T] using the five-stage fourth-order method
defined in Table 3, and using the seven-stage fifth-order method defined in Table 4, with grid
size h = 5T/27, . . . , 5T/212. In Figure 1, we plot the error of the computed Hamiltonian (6).
It indicates that both methods are symplectic. The error is roughly caused by the computer
round-off.
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Figure 1. The error of computed Hamiltonian, H(q, q̇)− H(q0, q̇0), on [0, 5T], using the five-stage
fourth-order method (top) and using the seven-stage fifth-order method (bottom).

In Table 5, we list the computed error at t = 5T and the computed order of convergence
using the fifth-stage fourth-order method in Table 3, and using the seven-stage fifth-order
method defined in Table 4.

Table 5. Error profile using the 5-stage 4th order method in Table 3 (left), and using the 7-stage 5th
order method in Table 4 (right).

h
∣∣q1(5T)− qN

1
∣∣ Order

∣∣q2(5T)− qN
2
∣∣ Order

5T/27 1.832 × 10−1 — 7.271 × 10−3 —
5T/28 1.251 × 10−2 3.9 1.293 × 10−4 5.8
5T/29 8.009 × 10−4 4.0 2.091 × 10−6 6.0
5T/210 5.035 × 10−5 4.0 3.296 × 10−8 6.0
5T/211 3.152 × 10−6 4.0 5.140 × 10−10 6.0
5T/212 1.971 × 10−7 4.0 4.690 × 10−12 6.8

We next solve the Hénon–Heiles Hamiltonian system [23,24]

ṗ1 = −q1 − 2q1q2, q̇1 = p1,

ṗ2 = −q2 − q2
1 + q2

2, q̇2 = p2,
(7)

with initial values (p1, p2, q1, q2) = (0, 0, 0.1,−0.5). The corresponding Hamiltonian func-
tion is denoted by

H(p, q) =
1
2
(p2

1 + p2
2) +

1
2
(q2

1 + q2
2) + q2

1q2 −
1
3

q2
2. (8)

In the following experiments, we apply four ESRKN methods to (7): the five-stage
fourth-order ESRKN method listed in Table 3; the seven-stage fifth-order ESRKN method
listed in Table 4; the five-stage fifth-order ESRKN method from [8] listed in the first part
of Table 6, which satisfies the order condition with an error tolerance of 10−15; the seven-
stage fifth-order RKN method from [10] listed in the second part of Table 6, which satisfies
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the order condition with an error tolerance of less than 3×10−16. In short, we will denote
these four methods as NEW4, NEW5, OS5 and CS5, cf. the abbreviation table at the end. In
all the following figures, the cyan, red, magenta and blue lines denote the results derived
by NEW4, NEW5, OS5 [8] and CS5 [10], respectively.

Table 6. Top: the five-stage fifth-order method (OS5) from [8]. Bottom: the seven-stage fifth-order
method (CS5) from [10].

c1 0.69883375727544694289 b1 0.40090379269664777606
c2 0.20413810365459889029 b2 0.95997088013412390506
c3 1.02055757000418534370 b3 0.08849515812721633901
c4 0.36292800323075291580 b4 1.22143909234910252870
c5 0.30508610893167564804 b5 −1.67080892330709041000

c1 0.0000000000000000 b1 0.06281213570268329
c2 0.2179621390175646 b2 0.37889831312525750
c3 0.4424703708255242 b3 0.27545285152613400
c4 1.4784605594388980 b4 −0.001585299574780513
c5 0.3400000000000000 b5 −0.17857040385276180
c6 0.7000000000000000 b6 0.34799958341988310
c7 1.0000000000000000 b7 0.11499281965358440

In Table 7, we present the convergence rates of the NEW4, NEW5, OS5 [8] and CS5 [10]
methods, where global errors for q and p corresponding to these four methods at five
step sizes h in the time interval [0, 1] are provided. It verifies the convergence rates of all
four methods.

Table 7. Convergence rates for NEW4, NEW5, OS5 [8] and CS5 [10] methods at t = 1.

h
NEW4 NEW5 OS5 [8] CS5 [10]

Error Order Error Order Error Order Error Order

2−2 1.2779 × 10−5 — 2.7640 × 10−6 — 4.6273 × 10−5 — 2.3635 × 10−7 —
2−3 7.7886 × 10−7 4.04 8.0660 × 10−8 5.10 1.2286 × 10−6 5.23 7.3171 × 10−9 5.01
2−4 4.8164 × 10−8 4.02 2.4460 × 10−9 5.04 3.5467 × 10−8 5.11 2.2908 × 10−10 4.99
2−5 2.9957 × 10−9 4.00 7.5375 × 10−11 5.01 1.0657 × 10−9 5.05 7.1838 × 10−12 5.00
2−6 1.8680 × 10−10 4.00 2.3438 × 10−12 5.00 3.2652 × 10−11 5.03 2.3228 × 10−13 4.95

The research findings from [25] revealed that particles of (7) manifest chaotic behavior
when the system energy H > 1

12 . Furthermore, it was proposed that when H is less than 1
6 ,

particle trajectories are confined within the equilateral triangle defined by H = 1
6 . For

the sake of this study, an initial value of H = 1
6 is selected, resulting in chaotic numerical

behavior while constraining trajectories within the triangular region. This property is
expected to be retained by symplectic numerical methods. Numerical computations have
demonstrated, however, that those methods such as OS5 [8] and CS5 [10], which do
not fully meet the order condition equations and symplectic condition, are incapable of
retaining long-term stability. After a certain time, the variations in particle trajectories
escalate rapidly, eventually exceeding the boundaries of the triangular region.

Figure 2 illustrates the trajectory plots derived from numerical simulations of the
Hénon–Heiles system within the interval [0, 1000] using a step size of h = 0.5. All four
methods display trajectories that are confined within the equilateral triangle area in this
situation. Nonetheless, Figure 3 shows that when the OS5 [8] method is used to generate
numerical trajectories within the interval [0, 17,575], the trajectories escape directly from
the upper region. Figure 4 looks into the causes of the OS5 [8] method’s escape phenomena,
attributing them to the numerical inability to maintain system energy. The capacity of
symplectic algorithms to maintain correct numerical behavior over lengthy periods of time
is a significant advantage. Therefore, we continue to increase the time interval. In Figure 5,
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it is evident that the NEW4, NEW5 and CS5 [10] methods maintain accurate numerical
behavior even at t = 100,000.
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q
1

-0.5

0
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1

q
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q
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1
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Figure 2. Solving the numerical orbit diagram of the Hénon–Heiles system over the interval [0, 1000]
with a step size of h = 0.5.

Figure 3. Solving the numerical orbit diagram of the Hénon–Heiles system over the interval [0, 17,575]
with a step size of h = 0.5.
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0 0.5 1 1.5 2

t 104
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0.1666
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NEW4
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0.166664
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0.166668
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H

CS5

0 0.5 1 1.5 2

104

-0.4

-0.2

0

0.2
OS5

Figure 4. Computing the Hamiltonian energy diagram of the Hénon–Heiles system over the interval
[0, 17,575] with a step size of h = 0.5.

Figure 5. Solving the numerical orbit diagram of the Hénon–Heiles system over the interval [0, 100,000]
with a step size of h = 0.5.

With such extensive time intervals, the need for further comparisons with bigger time
intervals appears to be decreasing for the NEW4, NEW5 and CS5 [10] methods. As a result,
the step size is steadily increased in the interval [0, 10,000], beginning with h = 0.50 and
gradually increasing until it reaches h = 0.86. The CS5 [10] method begins to gradually
deviate from the triangular region at this point. However, the NEW4 and NEW5 methods
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continue to display reliable numerical performance in the face of such variances. These
phenomena are illustrated in Figure 6. Finally, Figure 7 depicts the variation in Hamiltonian
energy over time using the NEW4, NEW5 and CS5 [10] methods, emphasizing that the
inability to maintain system energy is the cause of the escape phenomena.

-1 -0.5 0 0.5 1

q
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1
q

2
NEW4
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1 1012
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0 5 10

q
1 1033

0

5

10

15

q
2

1033 OS5

Figure 6. Solving the numerical orbit diagram of the Hénon–Heiles system over the interval [0, 10,000]
with a step size of h = 0.86.
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0 2000 4000
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0.5
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2.5

3

H

1048CS5

Figure 7. Computing the Hamiltonian energy diagram of the Hénon–Heiles system over the interval
[0, 10,000] with a step size of h = 0.86.
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4. Discussion

This article introduces an approach to constructing ESRKN methods that precisely
satisfy the order conditions and the symplectic conditions, resulting in 124 sets of seven-
stage fifth-order ESRKN methods. Based on the results of numerical experiments, it is clear
that using ESRKN methods that exactly meeting the order conditions and the symplectic
conditions has advantages over approaches that have inherent errors in satisfying these
criteria. In light of these findings, a future research will be dedicated to developing sixth-
order ESRKN methods.
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Abbreviations
The following abbreviations are used in this manuscript:

NEW4 The fourth-order method defined in Table 3
NEW5 The fifth-order method defined in Table 4
OS5 The five-stage fifth-order method from [8], defined in Table 6
CS5 The seven-stage fifth-order method from [10], defined in Table 6

Appendix A

We list all 124 cases of preassigned acceptable ci in Table A1, where roots of degree-3
shifted Legendre polynomial gi in (3) are placed to seven positions of ci in the dictionary
order, i.e.,

serial # 1, [1, 1, 1, 1, 1, 1, 1], [ci] = [g1, g1, g1, g1, g1, g1, g1],

serial # 290, [1, 2, 1, 2, 3, 1, 2], [ci] = [g1, g2, g1, g2, g3, g1, g2].

Among the 124 cases, of which the solutions {bi} exist satisfying order conditions (2),
4 are self-adjoint and the remaining 120 cases are in 60 adjoint pairs.

Table A1. A total of 124 preassigned ci for which real solutions bi are solved by order conditions (2).

sol#, serial #, ci index, adjoint

1. 290,[1,2,1,2,3,1,2] 2. 1266
3. 292,[1,2,1,2,3,2,1] 4. 1752
5. 301,[1,2,1,3,1,2,1] 6. 1887
7. 303,[1,2,1,3,1,2,3] 8. 429
9. 305,[1,2,1,3,1,3,2] 10. 915

11. 308,[1,2,1,3,2,1,2] 12. 1320
13. 309,[1,2,1,3,2,1,3] 14. 591
15. 313,[1,2,1,3,2,3,1] 16. 1563
17. 416,[1,2,3,1,2,1,2] 18. 1356
19. 417,[1,2,3,1,2,1,3] 20. 627
21. 421,[1,2,3,1,2,3,1] 22. 1599
23. 422,[1,2,3,1,2,3,2] 24. 870
25. 425,[1,2,3,1,3,1,2] 26. 1275
27. 427,[1,2,3,1,3,2,1] 28. 1761
29. 436,[1,2,3,2,1,2,1] 30. 1896
31. 438,[1,2,3,2,1,2,3] self
32. 439,[1,2,3,2,1,3,1] 33. 1653
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Table A1. Cont.

sol#, serial #, ci index, adjoint

34. 440,[1,2,3,2,1,3,2] 35. 924
36. 452,[1,2,3,2,3,1,2] 37. 1248
38. 453,[1,2,3,2,3,1,3] 39. 519
40. 520,[1,3,1,2,1,3,1] 41. 1668
42. 521,[1,3,1,2,1,3,2] 43. 939
44. 533,[1,3,1,2,3,1,2] 45. 1263
46. 535,[1,3,1,2,3,2,1] 47. 1749
48. 552,[1,3,1,3,2,1,3] 49. 588
50. 556,[1,3,1,3,2,3,1] 51. 1560
52. 579,[1,3,2,1,2,1,3] 53. 633
54. 583,[1,3,2,1,2,3,1] 55. 1605
56. 584,[1,3,2,1,2,3,2] 57. 876
58. 587,[1,3,2,1,3,1,2] 59. 1281
60. 589,[1,3,2,1,3,2,1] 61. 1767
62. 625,[1,3,2,3,1,2,1] 63. 1875
64. 628,[1,3,2,3,1,3,1] 65. 1632
66. 629,[1,3,2,3,1,3,2] 67. 903
68. 632,[1,3,2,3,2,1,2] 69. 1308
70. 830,[2,1,2,1,3,1,2] 71. 1286
72. 832,[2,1,2,1,3,2,1] 73. 1772
74. 868,[2,1,2,3,1,2,1] 75. 1880
76. 872,[2,1,2,3,1,3,2] 77. 908
78. 875,[2,1,2,3,2,1,2] 79. 1313
80. 880,[2,1,2,3,2,3,1] 81. 1556
82. 902,[2,1,3,1,2,1,2] 83. 1358
84. 907,[2,1,3,1,2,3,1] 85. 1601
86. 913,[2,1,3,1,3,2,1] 87. 1763
88. 922,[2,1,3,2,1,2,1] 89. 1898
90. 925,[2,1,3,2,1,3,1] 91. 1655
92. 926,[2,1,3,2,1,3,2] self
93. 938,[2,1,3,2,3,1,2] 94. 1250
95. 940,[2,1,3,2,3,2,1] 96. 1736
97. 1249,[2,3,1,2,1,3,1] 98. 1667
99. 1262,[2,3,1,2,3,1,2] self

100. 1264,[2,3,1,2,3,2,1] 101. 1748
102. 1273,[2,3,1,3,1,2,1] 103. 1883
104. 1280,[2,3,1,3,2,1,2] 105. 1316
106. 1285,[2,3,1,3,2,3,1] 107. 1559
108. 1312,[2,3,2,1,2,3,1] 109. 1604
110. 1318,[2,3,2,1,3,2,1] 111. 1766
112. 1555,[3,1,2,1,2,3,1] 113. 1609
114. 1561,[3,1,2,1,3,2,1] 115. 1771
116. 1597,[3,1,2,3,1,2,1] 117. 1879
118. 1600,[3,1,2,3,1,3,1] 119. 1636
120. 1654,[3,1,3,2,1,3,1] self
121. 1669,[3,1,3,2,3,2,1] 122. 1735
123. 1759,[3,2,1,3,1,2,1] 124. 1885
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