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Abstract: To better fit the actual data, this paper will consider both spatio-temporal correlation and
heterogeneity to build the model. In order to overcome the “curse of dimensionality” problem
in the nonparametric method, we improve the estimation method of the single-index model and
combine it with the correlation and heterogeneity of the spatio-temporal model to obtain a good
estimation method. In this paper, assuming that the spatio-temporal process obeys the & mixing
condition, a nonparametric procedure is developed for estimating the variance function based on
a fully nonparametric function or dimensional reduction structure, and the resulting estimator is
consistent. Then, a reweighting estimation of the parametric component can be obtained via taking
the estimated variance function into account. The rate of convergence and the asymptotic normality
of the new estimators are established under mild conditions. Simulation studies are conducted to
evaluate the efficacy of the proposed methodologies, and a case study about the estimation of the air
quality evaluation index in Nanjing is provided for illustration.

Keywords: spatio-temporal correlation; spatio-temporal heterogeneity; reweighting estimation;
local linear method; single-index models
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1. Introduction

Recently, statistical analysis of spatio-temporal data has been widely used in environ-
mental science, economics and social science, and other fields, and it plays an important
role in both academic and industrial circles. Spatio-temporal data estimation methods have
also been developed. Spatio-temporal correlation and spatio-temporal heterogeneity are
two significant features of spatio-temporal data.

In the process of solving practical problems, spatio-temporal data models usually
consider these two properties. Various spatio-temporal modeling methods have been
applied to explore the effect of spatio-temporal correlation and heterogeneity. For example,
ref. [1] proposed multiscale geographically weighted regression (MGWR). The authors
of [2] extended geographically and temporally weighted regression (GTWR) ([3]) to multi-
scale geographically and temporally weighted regression (MGTWR) in consideration of
scale effects. The authors of [4] proposed the hetero-convolutional long short-term memory
model based on the convolutional long short-term memory (ConvLSTM) neural network
model. The authors of [5] adopted a local linear method to model spatio-temporal hetero-
geneity. A new nonparametric spatio-temporal inversion model was proposed by [6] for
the gas emission problem considering both spatio-temporal heterogeneity and atmospheric
inversion. Ref. [7] proposed to estimate the variance—covariance structure of the residuals
by variography and removed the correlation by spatial filtering residuals.

In addition, the spatio-temporal trend is more complex, and spatio-temporal data can
be regarded as a time series dataset with spatial information, which has the characteristics
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of being dynamic, massive, and high-dimensional. In order to accurately predict the
change in the spatio-temporal trend function, this paper combines the idea of a semi-
parametric model, adds the influence behavior of multidimensional independent variables
on dependent variables, and considers the spatio-temporal error model. The single-index
model is one of the most popular semi-parametric models. The spatio-temporal single-index
model that we are interested in here is:

N
Yip=g(BiXip)+eip i€Ty=[]{L- m}, t€Tu={1- ,nyu1}, (1)
k=1

where Y;; € R, X;; € R?, i = (i - - - iy) represents the spatial location, t represents the
time, n = (ny,--- ,nN+1), g(+) is an unknown link function, By is an unknown coefficient
with ,Bg Bo = 1 and the first component of B is positive [8], and ¢ is a random error which
has E(¢|X) = 0 almost surely.

The single-index model is one of the most popular semi-parametric models in ap-
plied statistics. Many authors have studied the estimation of the index coefficient B,
focusing on issues of \/n estimability and efficiency. The methods include the average
derivative method [9,10], the local linear method [11,12], the least squares method [13,14],
the functional additive regression [15], and the empirical likelihood method [16,17]. Most
regressions in single-index models assume that the random variables are independently
and identically distributed. However, spatio-temporal correlation and heterogeneity are
often found in the model error terms. For spatio-temporal correlation, we portray it through
an a-mixing condition that is consistent with the spatio-temporal characterization. There
are usually two types of assumptions for heterogeneity: the first assumption is that the
variance function is purely nonparametric, and the second requires that the variance func-
tion has a dimension reduction structure like the mean function. This is often the case with
models with a dimensionality reduction structure, such as generalized linear models. The
second case holds in more general semiparametric settings for the central subspace and the
central mean subspace, which have the same dimensions; see [18-20].

This work mainly deals with the estimation problem of spatio-temporal heterogeneity.
By combining the idea of the local linear method and Nadaraya-Watson smoothing tech-
niques, we propose a method for estimating the variance function in the single index model
with heteroscedastic errors, and the resulting estimator based on a fully nonparametric
variance function or a dimensionality reduction structure is proved to be consistent. For
the parametric part, we use an efficient estimator of the parametric component by apply-
ing the iterative generalized least squares method in heteroscedastic generalized linear
models and taking into account the estimated heteroscedasticity. We call this model fitting
method reweighting estimation, and it is shown that the resulting constant coefficient
estimators have smaller asymptotic variances than the rMAVE estimators, which neglect
error heteroscedasticity but retain the same biases.

Throughout the rest of the paper, the symbols Ly and *-2 denote convergence
in probability and convergence in distribution, respectively. The symbol AT indicates
the Moore-Penrose inverse of the symmetric matrix A. The notation || - || denotes the
Euclidean distance.

This article is structured as follows. In Section 2, the estimation process of the rMAVE
method is briefly described. In Section 3, two estimators for variance are proposed, namely,
a nonparametric estimator of kernel smoothing type and a nonparametric estimator inte-
grated with the dimensionality reduction structure. In Section 4, a reweighting estimation
method and its asymptotic properties are given. In Section 5, the effectiveness of the
proposed method is verified through simulations. The analyses for Nanjing air quality data
are found in Section 6. Conclusions are presented in Section 7. The assumptions required
for the theorem and the proof are in Appendices A and B.
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2. A Brief Description of the rMAVE

Consider the regression model (1). Let (X, Y) be the random variable in model (1).

The parameter B is obtained by minimizing the expectation of the joint distribution (X, Y);
see [21],

HEH[E{Y—E(YIﬁTX)}Z]- @)

For any B, the conditional variance given B7X is:
op(X) = E[E{Y — E(Y|BTX)}?|B"X]. ®)

It follows that:
E{Y — B(Y|B"X)}* = B{o3(X)}.

Therefore, minimizing Expression (2) is equivalent to minimizing, with respect to 3,
E{(Té(X)} subjectto BTB = 1. 4)

Suppose that {(X;, Yi;)} is a random sample from Formula (2). Let g(v) = E(Y|BTX = v).
For any given Xj ¢, a local linear expansion of E(Y; | BTX; ;) at Xj¢ is:

E(Yis|BTXis) ~ a + b7 X, (5)

wherea = g(B"X; ), b =g'(B"X; ), and X;r = X;; — X . Following the idea of local
linear smoothing estimation, we can estimate Ué (Xj,r) by exploiting the approximation:

2 2
Y ) {Yi,t - E(Y,-,t|,BTX,~,t)} WG~ D Y {Y —{a+ b.BTX(i,t),(j,r)}] Wi, (j,7)r (6)
i€l teTy, i€, teTy,
where  wip o = Ki(B" X))/ Liez, Lret, K (B"X(10),G0)), Kn, () =

min

BB p=1

{

h, 'K (-/hy), hy is a bandwidth, and K(-) is an univariate symmetric density function.
Therefore, the estimator of (Té (-)atpTX j,¢ isjust the minimum value of expression (6), namely:

2
05(Xjo) = min EZI teZT {Yi,t —{a+ b,BTX(i,t),(j,r)}} Wip), (j,0)- @)
To1Edly n

Under some mild conditions, we have EE(X]-,T) - Ué(xﬂ) = op(1). On the basis of
Expressions (2), (4), and (7), we can estimate B by solving the minimization problem:

Yy 6§(Xﬂ)} = min [ Y Y [Vir—{ajc + b B X, (0 060,060 |- ®)

jEL, €Ty

B:BTp=1 jETn i€y

aj,T,bj,T,jEIn TeETnteTy

Let G(-) = (g(-),§'(+))T. The estimation algorithm for f and G(-) can be described
as follows.

Step 0. Give the calculation of the initial value B of Bo.
Step 1. Calculate:
fp(B" Xje) =m0 ) Ky (B X (i) v))

i€y
teTy

and:

B s

a; - _ T 1 1
( b‘.‘]hn ) B {Z 2 K, (P X(i'T)f(ffT))( B Xi0) ) / )( B X(i0) ) / ) }

T i€ly teTy

1
B e TR UL
iEZIn tEZTn (,7),(j.,7) ﬂ X(i,r),(j,r)/hﬂ i
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Step 2. Calculate:

-1
B = {Z Y. ) ZKhn(:BTX(i,T),(j,T))ﬁ]ér(bf,-r)2X(i,T),(j,r)X(Ti;),(j,r)/]?ﬁ(ﬁTX',T)}

jE€Ly T€T i€l teT,

X Z Z Z Z Khn (ﬂTX(irT)/(j/T))ﬁﬁTbﬁTX(irr)/(i/T) (Yi’t B afT)/f}(ﬂTX’T),

jeLy el iel, teTy,
where ﬁf‘r = Pn (”*1{21'61,, Yter, Khn(ﬁTX(i,T),(j,T))> , and p,(-) is a trimming
function.

Step 3. Repeat steps 1-3 with B := B/||B||, where || - || denotes the Euclidean distance,
until convergence. The vector obtained in the last iteration is defined as the IMAVE
estimator of B, denoted by B.

Step 4. Put B, into step 1 and obtain the estimators of g¢(-) and ¢/(-), denoted by
Gn(") = (§n()/§;1())T

Combining B, . (-) and model (1) leads to the residuals

it =Yir—Gu(BlXiy), i€Iyte Ty )

Remark 1. The calculation of the initial value E(l) can refer to [10,13,22]. To deal with the large
deviation of the boundary points, a suitable trimming function is introduced; see [11], which is of
the form:

1, v > 2con” ¢,

_ exp{ (2cgn ¢ —v) 1}
Pn (U) - exp{(260n79—0)71}+exp{(v_con7€)71},

0, v <con ¢,

2c0n"€ > v > con” €,

wher60<€<%and0<co< 21—0.

3. Estimation of the Variance Function

In this section, we focus on estimating the variance function in single-index het-
eroscedastic models. The estimation methods and the convergence properties of their
estimations are given respectively.

3.1. Estimation of the Variance Function with Fully Nonparametric Function
For any given point X, and the estimation B, an estimation of E(¢2|X) at X, s, is:

2
].GEI L &b, (X s o)

02 (Xsp 1) = ’
5, ( sg,to) Z Y Ly, (X(j,r)(So/fO))
jEL, TeT,

(10)

where €. are the residuals calculated by (9), L;, (-) = 1, L(-/1,), L(-) is a d-dimensional
symmetric density function such that [L(u)du = 1 and [uL(u)du = 0, and I, is a
bandwidth. Taking X, = X;; ((i € Zy,t € Ty)), the estimations at all the designed points
X;; canbe obtained, i.e., ?7% (Xit)(d € Iy, t € Ty).

The following theorems are about the asymptotic result for the estimator ﬁé (Xit)-

Theorem 1. According to the assumptions (C1)—(C4), we have:

nld

1

. log(1/19)\ *

sup |52 (Xayiy) — 7 (Xsos)| = o z,%d+<g("))
Xso,foeRd "
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Theorem 1 shows that the estimator (Afl% (Xsy,to) is consistent, and the proof is found in
the Appendix B.

3.2. Estimation of the Variance Function with Dimension Reduction Structure

If the dimension of the covariates is large, the core estimates given in the previous
section suffer from the curse of dimensionality and, furthermore, the proposed test statistic
may not be very informative. If the model contains a dimensionality reduction structure, we
should use it to make the test more powerful. Let us assume the following model structure:

Y F X|pTX. (11)

Formula (11) notes that, given B7X, Y and X are conditionally independent. Accord-
ing to [18-20], this is a general dimension reduction structure that includes the model
Y = G(BTX, ) as its special case.
If the above structure holds for model (1), the mean and variance have the same index
B. For any given point Xs,; and the estimated f3,, the variance function E (2|87 X) at
XSOrtO is:
=2 AT
X P ]GZ.':[ TEZTL ngbn(ﬁnX(er)(SO/tO))
o3 (Xso,fo) =0 (ﬁnXSo,fo) = - -
B T QuBIX (o) soi)
jeL, €T,

, (12)

where (ATZ(ﬁA,EXSO,tO) can also be denoted by 3% (Xsot0) Ej,T (j € Zy, T € Ty) are the

residuals of the rMAVE, Q;, (-) = b, 1Q(-/by), Q(*) is a univariate kernel function, and
by, is a bandwidth. Particularly, taking Xs,t, = Xit, (i € Iy, t € Ty), we can obtain the
estimations of the variance function at X;; , i.e., 72( A,in,t).

For the estimate 772 ( BZ Xso.to) of the variance function, the consistency can be proven.

Theorem 2. According to the assumptions (C1)-(C3) and (C5), we have:

1
log(1/by) \ 2
ol (132}

The proof of Theorem 2 is given in the Appendix B.

~2 T 2/nT
T (BuXsoty) — 0 (Bo Xso to)

sup

X 1 ERA

sO,tO

4. Reweighting Estimation and Asymptotic Properties

In this section, we provide the estimation method for the spatio-temporal single-index
model and provide the asymptotic properties of the proposed estimator.

4.1. Reweighting Estimation

If the model exhibits heteroscedasticity, the usual approach can be taken by considering
weighted estimates. In particular, we describe a reweighting procedure of the single-index
model with heteroscedastic errors with the estimated values of the variance function at all
designed points. For model (1), weighted versions of the proposed estimation methods
following the idea of [23] can be considered. When calculating, we only need to modify the

algorithms in Step 2, by replacing ﬁfr = pn (n’l Yiez, Lret, Kn, (B X(i0),(j,0) )) with

Ol = Pn <n1 Y L Khn(ﬁTX(i,T),(j,T))>/3f;n(xj,r)/
JE€EIu TET,
where b\% (X]-,T) is defined in (10) or (12). In terms of the modified algorithms, the

reweighted estimators for the parameter vector § and the link function g(-) can be obtained,
denoted by Br and gr(+), respectively.
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4.2. Asymptotic Properties

In this subsection, under the assumption of the « mixing condition, we provide the
asymptotic distributions of two type estimators of § and show that the reweighted estimator
Br has no greater asymptotic variance than the rMAVE estimator B,,. Then, the asymptotic
distributions of g, (-) and gr(-) are shown.

There are some notations to determine asymptotic results. Let ug(x) = E(X]| BTX =

BT ), vg(x) = pp(x) — x, wp(x) = E(XXT|BTX = ), and Wo(x) = v, (x)v ().
Theorem 3. Assuming n — co, according to the assumptions (C1)—(C3), we have:
= D
Vn(Bn — Bo) — N(0, W;OAWQ)),
where Wo = E{g'(By X)*Wo(X)} and A = E{g/(B; X)*Wo(X)eg, (X)}.

Theorem 4. Assuming n — oo, according to the assumptions (C1)-(C3) and (C4) or (C5),
we have:

~ D ~
Vi(Br — Bo) — N(0,Wg),
where Wgo = E{g’(ﬁgX)2Wo(X)a§02(X)}.
Theorem 5. In addition to the assumptions (C1)—(C3) and (C4) or (C5), if € is independent of X,

then we have,
o + +
Wg0 < WgOAWgO.

Remark 2. From the result of Theorem 5, a conclusion can be obtained that ,B R is asymptotically
more efficient than ﬂn in terms of asymptotic variance.

For the rMAVE estimator g, (-) and reweighted estimator gr(-) of the link function
g(+) at X = X, ,, their asymptotic distributions are also derived. These are the follow-

ing theorems.

Theorem 6. According to the assumptions (C1)~(C3), for any v = Blx, asn — oo,

2 2 (x
o {§u0) ~ 5(0) — 2" (0)} 2> N(O, ZE; )

Theorem 7. According to the assumptions (C1)~(C3), for any v = Blx, as n — oo,

m{§R<v>—g< ) Bgo >} = N<0 fﬁ;)

Remark 3. By comparing Theorems 6 and 7, the asymptotic distributions obtained by rMAVE
and reweighting methods are the same, which reflects the characteristic of local regression in
nonparametric models.

5. Monte Carlo Study
We use the spectral method to simulate the spatio-temporal process:

Xt = (2/Q) 1/ZZCOS (L k)xi+w(2,k)*j+q(k)«t+r(k)),
k=1
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where w(i, k),i =1,2,q(k),k =1,--- ,Qareii.d. from a standard normal distribution, inde-
pendent of r(k),k =1,---, (), ii.d. uniform random variables on [—7, 7|. As n — oo, Xijit
converges to a Gaussian ergodic process (see [24]). Additionally, the ¢; ;i =1,--- ,n1,j =
1,---,ny,t=1,--- ,n3 are ii.d. from a standard normal distribution. We conducted 100
simulation studies with () = 1000 and a sample size of 8 x 8 x 8(ny = 8,ny, = 8,n3 = 8),
10 x 10 x 10. Comparisons were made between the rMAVE estimator and two reweighted
estimators. For the convenience of expression, we use RWEFN and RWEDR respectively
to represent reweighting estimation of a fully nonparametric function and reweighting
estimation by the dimensionality reduction structure.

For simplicity, the rule of thumb [25] is used to select the bandwidth for the rMAVE
and reweighted methods. To verify the performance of the proposed methods, we design
the following two examples. We take the Gaussian kernel functions K(u) = Q(u) =

1{2 M2
1/(v2m)e™ 7 and L(uq,--- ,up) = l(ug) x -+ x I(up) with [(u) = 1/(v/2m)e” 7. The
trimming function with € = 11—0 and ¢y = 0.01 is considered. In the example, we also
take ﬁo = (1,2, 3, O)T/\/ﬁ, and the samples Xi,j,t = (Xi,j,t(l)l Xi,j,t(Z)l Xi,j,t(3)/ Xi,j,t(4)) are
simulated by the spectral method on the 4-dimensional cube [—1,1]*.

Example 1. We consider the following model:
Yir =24 2(B5Xis) + (6] Bg Xis| +05)eiy.
Example 2. We consider the following example:
Yie = 1+2(B) Xis + (0] X1 (1) + Xir(2)| + 1e.

The simulated results of Example 1 are reported in Tables 1 and 2, and the results of Example 2 are
shown in Tables 3 and 4.

We assume the value of 8y = 1, 1.5, 2 to evaluate the influence of error hgteroscedastic—
ity on coefficient estimates. To show the performance of the estimators B,,, BiY (RWEFN),
and B\g R (RWEDR), two indices are defined: the sampling standard deviation (SSD) and
the relative sampling efficiency (SRE), respectively. In particular, for ’MAVE, RWEFN, or
RWEDR, let B;(1), - - - , Bj(m) be estimates of B in M replicates. The SSD for g; is defined by:

M 2
1 I —\2
SSD(B;) = leZi(ﬁj(k) - .3]-) ] ,
and the SRE for B; is defined by:

M, 2
M kgl (.B]'(k) - .Bj>
SRE(Bj) = —;

Mz (Bj(k) - ﬁj)zl

k=1

where Bj = % M, Ej(k), and B has the same form as that of B\‘EN or EgR, except that the
weighting uses the true variance function. The calculation in different sample size results
of Bu, IF{N and ,BgR, in terms of the sample mean, sample standard deviation, and relative
sampling efficiency, are shown in Tables 1 and 2.
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Table 1. Sample means, standard deviations, and relative efficiencies in Example 1 when

n=38x8x8.

Item Estimator 6p = 1.0 6p =1.5 0o = 2.0

Mean Bin 0.2793 0.2745 0.2615
BN 0.2761 0.2772 0.2578
BoR 0.2779 0.2793 0.2600
Bon 0.5487 0.5582 0.5291
BAN 0.5358 0.5390 0.5289
BoR 0.5420 0.5438 0.5277
B 0.7858 0.7784 0.7933
BLN 0.7963 0.7941 0.7947
LR 0.7916 0.7892 0.7937
B —0.007 —0.0070 0.0015
BN —0.0004 —0.0055 0.0009
YR —0.0031 —0.0036 0.0017

SSD Bin 0.0279 0.0362 0.2145
BN 0.0318 0.0334 0.1653
BoR 0.0349 0.0421 0.1597
Bon 0.0430 0.0626 0.2183
BN 0.0235 0.0319 0.1642
BOR 0.0228 0.0283 0.1583
B 0.0255 0.0386 0.2253
BEN 0.0125 0.0178 0.1633
LR 0.0151 0.0190 0.1558
Ban 0.0144 0.0189 0.2306
BLN 0.0063 0.0113 0.1668
BoR 0.0064 0.0081 0.1572

SRE B, 0.6758 0.6974 2.5971
BN 0.7974 0.6210 1.4813
BoR 0.9713 0.9779 1.3349
Bon 4.1839 6.5845 2.6142
BN 1.1334 1.5277 1.4925
BoR 1.1822 1.3079 1.3617
B 3.0887 4.7931 2.7372
BLN 0.6304 0.8887 1.6809
BoR 1.1264 1.2255 1.6126
Ban 4.0594 4.0605 2.6925
BLN 0.6396 1.5820 1.6784

BOR 0.8161 0.8023 1.6117
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Table 2. Sample means, standard deviations, and relative efficiencies in Example 1 when
n =10 x 10 x 10.

Item Estimator 6y = 1.0 6p =15 6y = 2.0
Mean Bin 0.2602 0.2558 0.2642
i 0.2563 0.2587 0.2577
BoR 0.2516 0.2548 0.2644
Bon 0.5345 0.5501 0.5096
BLN 0.5319 0.5423 0.5038
BoR 0.5391 0.5427 0.5312
B 0.8029 0.7912 0.8169
BN 0.8052 0.7998 0.8227
BYR 0.8032 0.7993 0.8044
Ban —0.0113 0.0493 —0.0018
BiN —0.0059 0.0161 —0.0094
BLR —0.0039 0.0229 —0.0028
SSD B, 0.0306 0.0446 0.0256
il 0.0238 0.0186 0.0346
BoR 0.0185 0.0125 0.0138
Ban 0.0260 0.0179 0.0323
LN 0.0142 0.0133 0.0278
BOR 0.0148 0.0141 0.0198
Bin 0.0158 0.0214 0.0226
BLN 0.0041 0.0090 0.0257
BoR 0.0088 0.0120 0.0135
Ban 0.0210 0.0305 0.0219
BN 0.0207 0.0252 0.0214
BoR 0.0224 0.0212 0.0203
SRE Biu 1.6501 9.6640 3.6479
il 1.1514 1.9198 7.0692
BOR 0.9846 1.4218 1.0852
Bon 3.3675 2.855 4.9831
BLN 1.0456 1.2121 5.1506
BoR 1.1884 1.3611 1.2101
B 3.9555 5.358 4.8345
BLN 0.4494 0.7964 7.1304
BOR 1.2435 1.4159 1.2323
Ban 1.0402 4.8466 1.1845
BiN 0.8493 1.2902 1.3420

LR 0.9447 1.4113 1.0247




Mathematics 2023, 11, 4289 10 of 32

Table 3. Sample means, standard deviations, and relative efficiencies in Example 2 when

n=38x8x8.

Item Estimator 6p = 1.0 6p =1.5 0o = 2.0

Mean B 0.3180 0.3203 0.3091
BN 0.3026 0.3060 0.3146
BoR 03013 0.2936 0.3070
Bon 0.5422 05131 0.5647
BAN 0.5417 0.5147 0.5581
BoR 0.5412 0.5152 0.5587
Bin 0.7760 0.7945 0.7602
BLN 0.7824 0.7973 0.7681
LR 0.7842 0.8022 0.7635
B 0.0114 —0.0101 0.0185
BN 0.0083 0.0015 0.0301
BoR 0.0076 0.0014 0.0045

SSD B 0.0239 0.0599 0.1064
BN 0.0228 0.0576 0.1007
BoR 0.0205 0.0317 0.0672
Bon 0.0127 0.0278 0.0515
BN 0.0095 0.0235 0.0421
BOR 0.0082 0.0202 0.0115
B 0.0081 0.0373 0.0762
BEN 0.0098 0.0350 0.0632
LR 0.0069 0.0308 0.0360
Ban 0.0509 0.0200 0.0337
BLN 0.0357 0.0133 0.0337
BoR 0.0344 0.0055 0.0089

SRE B, 1.8127 0.8880 0.7741
BN 1.0206 1.1188 1.2239
BoR 0.9112 0.9941 0.9501
Bon 0.6660 1.5348 0.8369
BN 1.2903 1.1565 1.0343
BoR 0.9032 0.9960 0.9485
B 1.7353 0.8257 1.5072
BLN 1.0690 1.1678 1.3741
BoR 0.9846 1.0108 0.9238
Ban 1.8545 4.6052 3.8478
BLN 0.8656 4.2492 1.9594

BOR 0.9830 0.9644 1.3002
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Table 4. Sample means, standard deviations, and relative efficiencies in Example 2 when
n =10 x 10 x 10.

Item Estimator 6p = 1.0 6p =1.5 0o = 2.0
Mean Bin 0.3033 0.3071 0.3112
BN 0.3022 0.3011 0.3018
BoR 0.2986 0.2960 0.2952
Bon 0.5532 0.5267 0.5474
BAN 0.5492 0.5288 0.5448
BoR 0.5449 0.5298 0.5380
Bin 0.7700 0.8020 0.7742
BLN 0.7764 0.8017 0.7799
LR 0.7781 0.8016 0.7810
B 0.0552 —0.0040 —0.012
BN 0.0468 —0.0033 —0.0089
YR 0.0463 —0.0031 -0.0063
SSD B 0.0296 0.0154 0.0150
BN 0.0238 0.0146 0.0117
BoR 0.0225 0.0100 0.0098
Bon 0.0209 0.0162 0.0132
BN 0.0188 0.0125 0.0098
BOR 0.0146 0.0102 0.0026
B 0.0088 0.0256 0.0087
BEN 0.0073 0.0230 0.0033
LR 0.0023 0.0160 0.0010
Ban 0.0582 0.0062 0.0920
BLN 0.0566 0.0017 0.0832
BoR 0.0508 0.0009 0.0708
SRE B, 0.9646 1.5420 1.7484
BN 09738 0.9465 0.8725
BoR 0.9994 1.0162 1.1460
Bon 1.1077 1.8686 1.9866
BN 1.0915 1.4366 0.9473
BoR 1.0115 0.7647 0.9885
B 1.3524 1.3291 1.5706
BLN 0.8750 1.2429 0.8803
BoR 0.9261 1.0108 1.1370
Ban 1.0374 1.4991 0.7267
BLN 1.0193 0.8973 0.9798

BOR 0.9941 0.9644 1.1907
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The following conclusions can be obtained from Tables 1-4. First, in all cases, the
values of the sample mean are reasonably close to their true values, suggesting that B, ﬁﬁN ,
and B‘}g R are asymptotically unbiased. Second, for 6y # 0, the values of SSD and SRE for the
RWEFN and RWEDR methods are smaller than those for the rMAVE method. Third, from
tables, the values of Eg R glightly outperform Ef{N when error heteroscedasticity exists. This
is also explainable because the example has a dimensionality reduction structure. Fourth,
AIF{N and EgR have better performance when the error heteroscedasticity is larger, which
implies that the improvement in AEN and EER over B, becomes obvious with the growth
of errors. Overall, B\IFQN and B\gR work much better than ﬁn, and BQR is the best. Finally,
because the composition of Example 2 is more complex, the average value of the obtained
estimators is worse than that of Example 1.

6. Real Data Analysis

Based on the reweighting method proposed in this article, the air pollution data of
Nanjing were studied, with the data coming from the China Meteorological Data Network
and the real air data from the Environment Big Data Center. The data contain the air quality
index (AQI) PMy5 (ng/m®), PMyg (1g/m?), CO (mg/m?), SO; (ug/m?), NO; (1g/m?),
and ozone eight-hour O3_8h (ng/m?) of Nanjing from 23 October 2020 to 23 October 2022,
including the AQI in response to a variable Y and the rest of the variables as covariate
X1, X, -+, Xe.

When the data were estimated using the rMAVE method, the value of the estimated pa-
rameter was B, = (0.6606, —0.1529,0.8679,11.1681,0.3236,0.4541)". The results obtained
by reweighting the data are as follows: first, ,EII% R — (0.04167, —0.0102, 0.0637, 0.9964, 0.0202,
0.02915)T was obtained by adopting a dimensional-reduction structure. The other difference
is estimated by taking the kernel regression, resulting in EEN = (0.04238, —0.0108, 0.0675,
0.9961,0.0200, 0.0293) T The fitting result is shown in Figure 1, which contains the true val-
ues as well as the values fitted by the three methods, where Rim awe = 0.7586, R% r = 0.7606,
R%,, = 0.7606. Due to the four lines being too close to distinguish, the right side of Figure 1
is the enlarged part. The estimators obtained by the reweighting method have a better
fitting effect.

100

— true value —— true value
----- MAVE
-—- dr

175
150
125

g 100

75

5

15 20 25 30 35 40 45 50

4‘5 5‘0
Figure 1. Air pollution data fitting.

7. Conclusions

This work considers an estimation problem in single-index models with spatio-
temporal correlation and heterogeneity. We propose a parametric component reweighting
estimated method based on the variance function of the error. Theoretical results show
that the proposed reweighting estimators have smaller asymptotic variances while main-
taining the same biases. Numerical simulations show that the estimators revealed that
heterogeneity is closer to the true value. A real data analysis was conducted to illustrate
the proposed methods.
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Appendix A. Assumptions
In order to obtain asymptotic results, we will assume throughout the paper that at
any fixed moment t, {ejy, i € I,} satisfies the following mixing condition: there

exists a function ¢;(f) \, 0 as t — oo, ¢1(0) = 1, such that whenever E,E C 7, with
finite cardinals

a(B(E), B(E)) sup{P(AB) — P(A)P(B)|A € B(E),B € B(E)}

wl(card(E),card(E,))(pl (d(E, E/)), (A1)

IN

where B(E)(resp, B(E")) denotes the Borel o —field generated by {e;  }icr (resp,{e; y }icpr),
Card E (resp,Card E') is the cardinality of E(resp, E') and d(E, E') is the ordinary Eu-
clidean distance. 1; : N> — R is a symmetric positive function that is nondecreasing in
each variable.

Similarly, we assume that at any fixed location iy, {&;,;, t € Ty} satisfies the
following mixing condition: there exists a function ¢, (t) N\, 0 as t — oo, ¢»(0) = 1, such
that whenever G, G c T,, with finite cardinals

«(B(G),B(G)) = sup{P(AB)—P(A)P(B)|A € B(G),B € B(G)}
< o(card(G),card(G )y (d(G,G)), (A2)

where B(G)(resp, B(G’)) denote the Borel c—field generated by {&;, + }tec(resp,{eiy}iccr),
P : N? — R* is a symmetric positive function that is nondecreasing in each variable. Fur-
thermore, the random field {(X;;, Y;;), i € Zy, t € T, } also satisfies the above assumption.

The following conditions are imposed to obtain the asymptotic properties of the
resulting estimators. They are not the weakest, but they are introduced to make the
evidence easier.

(C1)  The density function fg(v) of BTX and its derivatives up to the third order are
bounded on R for all B: |8 — Bo|l < § where § > 0 is a constant, E||X||® < oo, and
E|Y] < co.

(C2)  The conditional mean gg(v) = E(Y|BTX = v) and its derivatives up to the third
order are bounded for all B: || — Bo|| < é where é > 0.

(C3)  K(-) is a symmetric univariate density function with finite moments of all orders
and a bounded derivative. Bandwidth h, « n~1/> and nlgx;lo log(1/hy)/nh? = 0.

(C4) L(-)is asymmetric multivariate density function with finite moments and bounded
derivatives. Bandwidth I, « n~%/% and lim log(1 /1) /2 =0.3s >2,6 <1—s71,
n—oo

such that lgn nz‘;’lln = Ho00.
n—oo
(C5)  Q(-) is a symmetric univariate density function with finite moments and bounded
derivatives. Bandwidth b, « n~1/5 and 1i_r>n log(l/bn)/nb% =0.3d5>2 p<
n—oo

1—s71, such that lim n?*~1p, = +co.
n—o0

According to (C1), covariate X can have discrete components provided that 7 X is
continuous for B in a small neighbor of By; see also [23]. In order to be able to use the
optimal bandwidth, there needs to be a moment of order higher than the second order
moment for the variable Y. The smoothness requirement of the link function in hypothesis
(C2) can be relaxed to the existence of a bounded second-order derivative but requires
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a more complex proof process and a smaller bandwidth. The hypotheses (C3)-(C5) are
common hypotheses in kernel regression; see [13].
Let & = (nhy/logn)~'/4, x, = h? + &, and dg = ||B — Bol|- For any k, ¢; denotes
a k-dimension vector with all elements equal to 1, and E; denotes a p X p matrix with
all elements equal to 1. For any vector V(v) of functions of v, we define (V(v)) =
V(v)/dv. Recall that K(-) is a symmetric density function. Thus, jip = [K(v)dv = 1
and y1 = [vK(v)dv = 0. For ease of exposition, we assume that yp = [ 02K( )dv =1
Otherwise, K(v) = p3/?K(p3/?0). Let Dy = {x : ||x|| < n¢, fg(B"x) > n~¢, B € By}, where
By} ={B:||B— Boll <n1+2%0}, ¢ > 1. In order to prove the result of the theorems, we
first present the following lemmas.

Appendix B. Proof

Lemma A1l. Suppose m,(x,Z),n =1,2,- -, are measurable functions of Z with index x € R,
where d is any integer number, such that (i) |mn(x,Z)| < a,M(Z) with E(M(Z)") < oo for
some r > 2, and ay increases with n such that a, < con=2/"; (ii) E(my(x, Z)) < aym3(x) with
Imo(x) — mo(x')| < cllx — x'|*1, where a1 > 0 and ¢ > 0 are two constants (without loss of
generality, we assume my(x) > 1); and that (iii) |my(x, Z) — mn (X', Z2)| < |x — X' |"'n*2G(Z)
with some oy > 0, and EG?(Z) exists. Suppose {Z;,i = 1,--- ,n} is a random sample from Z.
Then, for any positive «y, we have:

sup [{mo(x)}'n~" Yo {mu(x, Zit) — Emu(x, Zit) }| = Op{(anlogn/n)!/*}.

‘X‘Sn”‘o icly
teTy

Proof of Lemma A1l. For the “continuity argument” approach, see [13,25]. For simplicity,
let my(x,Z) denote my(x,Z)/my(x). Let D, def {|x| < n*0} be bounded and its Borel
measure be less than n91%, There are n*(ay > d+ wg) balls By, centered at x,,,1 <k <
n* with a diameter smaller than cn2(2t%2)/%1 g that D, C Ui<k<n®s Buy- Then,

Sup |y Z {mn (Xr i t) Emn (X/ Zi,t)}

Xe’Dn i E In
€Ty

< max 13T {m (0, Zag) — Ema o, Zar))
teTn

1

+ max sup |+ ¥ [{ma(x, Zis) — mn(xXn,, Zit) } — E{mu(X, Zit) — 10 (Xnpr Zit) }]

1<k<n“4X€

i€y
teTy

def
= max
1<k<n™4

«
1<k<n 47(

R, k1|+ max sup |Ry 2] (A3)
L3

By (ii), we have:

7 < a2 1G
1<Tf§a+;§;” \m X Zip) — m(xn,, 1,t)! l<’;§gfu+;”i’” ’X Xy ’ (Zi)

<cn~ G(Zi,t>‘
By assumption (iii),

max sup |R <cn~ -2 G(Z O(n_l). A4
1<k< e, P [Rn2| l;ﬂ Zit) (Ad)
tETy
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s
Let L, = nlog(n)a,®, mh(x,Zit) = mn(Xne, Zit) I{{M(Zit)| > Lu} , and mQ(x, Ziy) =
My (Xn, Zit) — mh(x, Ziy) ; then, we have:

1
Rn,k,l = - 2 m;li (Xnk/ Zi,t) —E (Xi’lkr E an its (AS)
n
i€y 1EIn
te Ty te Ty

where &, i v = mS (Xn, Zit) — E{mS (Xn,, Zi+) }. Becauseof P(|M(Z)| > L,) < L,"E|M(Z)|"
and Y7 T," < oo, for all sufficiently large n , with probability 1, |[M(Z;;)| < L, for
(i,t). This implies that the first term on the right-hand side of (A5) is eventually 0. By
assumption (ii), we have:

def
max Var| Y ng&, i | <cina, = Sy (A6)
1<k | A
teTy
By (i), we can obtain:
1/9 def
12}}(a<x“|§nk,t‘ < cpanTy < c{naylogn}’” = S,. (A7)

Let S3 = c{naylog n}%, N = C% According to Theorem 2.1 of [26],

i€y
te Ty

-1
P [Y &uit| >S5 | <4dexpd —S3 64351+§53N52 rallay
kots N 3 N (A8)

< expcaylog nnd + 4%0(1\,.
According to the # mixing condition, ay — 0 when N is large enough. Hence,

e}

ZPr max Zgnk,t > S3 | < oo.

Q,
=1 1<k<n™4 e
te Ty

By the Borel-Cantelli lemma, we have:

max Zgnklt = 0(S3). (A9)

1<k<n™ |/,
teTy

Combining (A4) and (A9), we have:

Ryx1] = O(S3). A10
1<Illggx“4} nk1| = O(S3) (A10)

Therefore, Lemma A1l follows. [

Lemma A2 ([11]). Assume that ¢(B) and ¢(B) are two measurable functions of (X,Y') such that
supg [9(B) — p(O)] < |B— 01 a5, supyy [H(B) — $(6)] < | —OI¢ a.s., with EL < c for
some r > 2, and E{¢(B)|BT X} = 0 for all B € B. Suppose that (X;,Yi;), ¢;(B), and ¢:(B),
i=1,---,narerandom copies of (X,Y), ¢(B) and ¢(PB), respectively. If (C1), (C3), and (C4)
hold, then:

N —

sup| - 7 Y (K, (BX,) 93 (B) — E; (K, (BTX,1) 91 (B)}n(B) | = O(&2),

BeB| < i=1j=1
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Lemma A3. Suppose E(Z|BTX = BTx) = m(BTx) and its derivatives up to the second order
are bounded for all B € B, and suppose that E||Z||" exists for some r > 3. Let (X;;, Z;;) bea
sample from (X, Z) and Xy, = Xi — x. If conditions (C1), (C3), and (C4) hold, then:

n U Y K, (B" X (i) (B  X(ipye/hn)Zi = fp(BTx)m(B"x)p,

i€y
tE Ty

+{fp(B x)m(B %)} 1ps1hn + Op(xn),

where yp = [ K(v)oPdo, p=0,1,---.
Proof of Lemma A3. Since:

E{Kn, (B X (i) (B X(i.9px/ T )P m (BT Xi)}
= fp(B )m(B ) pp + {f(B x)m(B %)} pps1/n + Op(h7),

where j, = [v/K(v)dv, combining it with Lemma A1, we complete the proof of
Lemma A3. [

Lemma A4. Let

T
Bly)— -l ! '
A Y K, (B" X i) )< BT X (i )5/ I )( B X(ip)x/ ) '

icTny
teTy

and

g 1
( bghn > :{leﬂ } ZKhn :B Xlt )( .BTxlt)x/h )Y

Under conditions (C1)—(C4), we have:

B = g(B5x) + 8/ (BEx)2f, (0)(Bo — B) + 38 (BTX)IE + ©,1(x)
+Op{ (hnen + S52)n (1 + || x[|*)

Wiy = 8/ (B )l + O (x) + Op{ (huken + 0g e, } (1 + [[x[|*),

where:

@1 (x) = {nfg(B" )} ' Y K, (B" X3y )€in,

icTy
teTy

and

O (x) = {nhufg(B )} " Y Ky, (BT X (1) BT X ()58t

ieTy
teTy

Proof of Lemma A4. By the Taylor expansion of ¢(B1X;;) at BJxand By = B+ (Bo — B),
we have:

g(Byx) + &' (Bix)Bg + %g”(ﬁgx)(ﬁgx(it 2 F i+ OB X i)

8(Box) + &' (Bbx)Bo X (i + 58" (BoX) (Bo X(ip)x)” + €it + O (%, Xi, B)
g(Byx) + g/(.B(T)x>ﬁTX(i,t),x + Eg "(Box) (BEX(i),0)* + 8 (B0 X)(Bo— B) X (i) x
+€i,t —+ Qn (x, Xi,t/ ﬁ), (All)

where O (x, X;, B) = OB X(i).* + 1B X(in ol - 1X(i) 2 10p + X (i) 2IIP05). By
Equation (A11), it follows that:
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LIE Z'B -1 K TX 1
bfhn {7’1 n(x)} ieZI,, Iy (ﬁ (i,t),x) :BTX(i,t),x/th
{s(Box) + ¢ (Box)B" X(it)x
1
{nz‘ﬁ } 1[;%1( ﬁXIt (ﬁTXlt /hn )Zg// :BOx :BO (i), )2
(nxf(x))- 1ZK (B"X(i)x (ﬁTX I )8 Box)(Bo — B) Xy
{nzﬁ } 11;%1( ,B th ( ﬁTX /hn )slt
{nzﬁ } 1ZK ,3 th (,BTX /hn )anxzt;ﬁ
A1+ Ay + Az + Ay + As. (A12)
According to Lemma A3, we have:
fp(BTx)  fp(BTx)hy
vh P 0, (k).
() = ( f(BTh,  fa(pTx) ) T O
If f,;(,BTx) > n€, we have:
0 L (BT x)hy
{Zﬁ(x)}_l = fﬁ_l(ﬁTx){I _fﬁ_l < f;;(ﬁTx)hn f'B(ﬁO ) } + OP(Kn”€)~
It is easy to check that
_( s(Byx)
A= ( g (BY 0 ) (A1)
According to Lemma A3 and Equation (A11), we have:
1T hz
By Lemma A3, we have:
"(BT x)oT (x —

For the noise term, we have:

oy 1 .
Ay ={nfg(B"x)} 'Y :Khn(:BTX(i,t),x)( BT X i)/ >€i,t + Op(kndpnes1). (A16)
i=1 Lt)x/ n

It follows from Lemma A2 that:

1y T 1 T k 1 k I
n ;Khn(ﬁ X(i,t),x)( BT X 311/ 1B X i), 2 11 X i), I = Op () (L + [ x]1%).
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Then, we have:
As = Op{(h, + 85)neq 1} (1 + ||x[1°). (A17)

Thus, Lemma A4 follows from (A13)-(A17). O
Lemma A5. Under conditions (C1)—(C4), we have:

-1
{”2 DD ﬁfT@fT)thn(ﬁTXa,t),(f,r))Xu,t),(f,r)Xﬁ,t),(j,T)/f/s(ﬁTXf,r)}

JELy TETy i€y tET,
1,0 1 _ 1
= BB [ELS (B X)) ™ — S[E{S/(BO X)*H ™ (BoF W + W FBG) + 5 Woh

5/ BTy (B3 X003, (0)

where Wgo = E{g’(ﬁgX)Zvﬁo(X)vgo(X)} and F = E{ Too (B0

Proof of Lemma A5. According to condition (C1), we have:

Y. Y P(U{Xis €Du}) < ). Y nP(Xip €Dy) < Y ) nP(|Xjs] >n°)

i€, teTy, icTn i€l teTy, i€Z, teTy,

te Ty
< Y ¥ nn~%E|X|® < oo.
i€y teTy

By the Borel-Cantelli lemma, we have:

P| | J{Xit & Du},ic0. | =0. (A18)

i€y
teTy

Let D, = {x: fp(B"x) > 2n~¢}. Similarly, we have:

P| U{Xi: & Du},io. | =0. (A19)

i€y
teTn

Hence, we can exchange summations over {X;.:j € Z,, T € Ty}, {Xj : Xjr € Dy,j €
Ty, T € Ty}, {X,-,T 1 X € Dy, j €Z,,T € Ty} in the sense of almost sure consistently. By
Lemma A3 and condition (C1), we have:

fa(BTx) = fg(BTx) + O(xn).

By Equation (A19) and the smoothness of p,,(-) with |p},(+)| < cn® for some ¢ > 0, we have:

pu(fp(BT)) = pu(fp(BTx)) + O(knn) = 1+ O(sun). (A20)

Denote by (B, D) an orthogonal matrix. According to Lemma A3, we have:

Y Y Ki, (BT X (i) B X (i o Xl B = fp(BTX)G + Op (i),

i€l, teTy,

Y Y K (BT X () B X XD = fp(B x)vg(x)Dhy + Op(hikne, 1),
iel, teTy,

Y Ky (B X 0D X XD = fp(BTOCR(x) + OBy 1)(1+ 2P,
icl, teTy,
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where CB(x) = DT@ﬁ(x)D, wg(x) = wg(x) — xyz,;(x) - ‘uﬁ(x)xT + xxT. Tt follows from

(A19) that:
{”fﬁ (BTx)} ! Z ZKh )X(tt)x (i,),x
icl, teTy,
h3 Dh? .
- <ﬂ,D><DTFB(x)h% “éﬂz) >(ﬁ D)T + Oy (haranEg) (1 + |x]2),

where Fg(x) = ff’;(ﬁTx)vﬁ(x)/fﬁ(ﬂTx). According to (A20), we have: P = g (BEx) +
O(knn® /hy) (1 + [|x||*). Note that E{g’ (B} X;)*CP(X;r)} = 2D WgoDo. Thus,

Y Y Y Y B 08K, (BT X i0) X i), i) X o )/ F (BT X )

1€l teTy jeI, T€T,

= Y pu(Fp(BT X)) (05 ) {nfp(BT X)) !

Xj,-r EDH

Y. ) Khn(ﬁTX(i,t),x)X(i,t),(j,T)X(T;',t),(j,r)

i€l, teTy,

= (D) L BIXie) (oripiyr i)+ Olharan®) (14 |X;21%) } (B, D)

j€In
T€Th

E{¢'(B{X)*}n2  F'Dh? .
- ’D)< {gZ(DﬁTOPh%} ' 2DTWg3D)(ﬁ’D )"+ Olhurent +3Ea),

where F = E{[¢/(B} X )]2Fﬁ0 (X)}. Therefore, by the matrix inversion formula in blocks [27],
we have:

-1

n2Yy Yy ¥y ﬁﬁ,r(bér)thn(ﬁTX(i,t),(,',r))X(i,t),(,',r)XTi,t, - /fp(BTX;)

3TN (i,t).(j,7)

(€T, t€Ty JE€Ty €Ty
1, 1 _

= BBT[E{s'(B4X;x)*}] 1hn2_§[E{g/( 0X;2)*})""(DHD'FB" + BF'DTHD)

1
+§DHDT + Ofhy, ? (huxun® + 6)Eq},

where H = (D"WgD) . Note that D = Dy + g. Then, H = (D WgoDo) " + ég. By the
definition of the Moore-Penrose inverse, we have:

Do(D§WgoDo) ' Dj = W

Combining the facts that DDT = I — BT = I — BoBl 4+ O(dg) and B Wy = 0, we
complete the proof. O

Lemma A6. Under conditions (C1)-(C4), we have:

2y ) 5?,71% (.BTX(i,t),(j,r))bfTX(i,t),(j,r)(Yi,t —ﬂfr ,Tﬁo Xi,im))/ fp (B Xjx)

jEInicIy
T€ETpteTn

= We(B—Bo)+ - Z 28 (B Xiz )0, (Xit)eir + op(n “172¢)).

i€l, teTy,

Proof of Lemma A6. According to Lemma A4, we have:
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nry Y ﬁf,TKhn (.BTX(i,t),(j,r))bfTX(i,t),(,',T) (Y; - ﬂf,r - bfrﬁgx(i,t),(j,r))/j?ﬂ(ﬂTXj,T)

jEIn i€y
T€Tyt€Tn

= n?y) ) ﬁfﬂ?ﬁ Y(B" Xjo)Ka, (ﬁTX(i,t),(j,r))bfTX(i,t),(j,T)Si,t

jE€EInicIy
TeETyteTy

2y Y ﬁ]ér]?ﬂ_l(ﬁTXj,r)Khn (:BTX(i,t),(j,r))bﬁTX(i,t),(j,r)g/(:Bng,T)vE(Xj,T)(ﬁ - Bo)

jE€ETnicy
T€ETnt€Tn

_ ~ 1
D IDY ﬁ,ﬁf 8 1(ﬁTXj,T)Khn(ﬁTX(i,t),(j,T))bjﬁ,rx(i,t),(j,‘r) 58"(/33 Xj)

jE€EInicIy
TETp t€Tn

<{(B" X(ip o)) — bt
-y Y ﬁff;}l(ﬁTXj,r)Khn(ﬁTX(i,t),(j,T))

jETnicIn
TETy teTy

X bfrx(i,t),(,',r) {©,1(Xj,0) + On2(Xj,0) Bo X (i) (jr) / 1in }
12 Y Y B F (BT XG0 K, (BT X (i, (7,2 Ve X i), i)

jETnicy
TE€ETnt€Tn

X O{ (hnn + 63)n Y1+ X e|*) (1 + [BE X)) | / )
:= By + By + B3 + B4 + Bs.

Denote by Uiy, oy = ealfp(BXjc))Kn, (:BTX(i,t),(j,r))bfrx(i,t),(j,r)' We have
E{Ej,r(u(i,t),(]’,r)) — g/( ng,T)vﬂ(Xi,T)}z = O{(l’ln + 5/3)2} Note that 0,1 = O(Kni’le)
and ©,,2 = O(x,n). By Lemmas A1 and A2, we have:

By = n? Z Z {u(i,t),(j,T) - E]'(u(i,t),(j,T))}si,t +nt 2 Ej(u(i,t),(j,T))si,t + od(nfl/Zed)
jeInicIn i€y
= pnt Z g’(ﬁgXi,t)v,g(Xi,t)si + op(nfl/zed). (A21)
i€y

According to Lemma A3, (A18), and (A19), we have:
By = Weo(B — Bo) + Op{(rn + g )eq/hn}. (A22)
By Lemmas A3 and A4, we have:
Bs = Op{(h2Kune;}. (A23)

Letting V(i,t),(j,‘r) = Khn (ﬁTX(i,t),(j,‘r))X(i,t),(j,‘r) ’ then we have Ei(v(i,t),(j,‘r)) = Uﬁ(Xj,T) +
Op(h%eq)(1+ || Xj<||)- Note that E{vg(X;r)} = 0. According to Lemma A2, we have:
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By = n2) Y pn(fp(B X)) Viig, (08 (B Xjo) fg (BT Xi)

jETnicn
Te€ETnteTn

X {9,1(Xj) + ®n,2(Xi,T)IBgX(i/t)(J'IT)/h”}
+0,(n 1/ )
= w7 Y oulfp (BT X)) 0p(X;0)8 (BT X105 (BT )

j€In
T€TH

X {@n1(Xjr) + On2(Xj,0) B X(ip),(jr) / 1in }
+0,(n"2ey)
= Op(n"?)e,. (A24)
By Lemma Al and Corollary 2 in [28] (p.122), we have:

Bs = Op{(lnkn + 0gea)nyO()n= 1 Y Y X o* = Op{ (hurn + 65)nes}.  (A25)
JEL, TET,

Combining (A21)—-(A25), we complete the proof of this lemma. O
Lemma A7. According to Theorem 3 in [29], for 6 <1 —s~1 LHE 1?1 = 40, we have:
n (o]
1 5o - o s log(n)
sup |-}, Y [Ki(Xip — x)Yip — E(K(Xip — x) V)] = Op | (=277 |-

d
xeRd " ieT, teT, nh

1
_ g | log(1/h%)|*
= Op{]’l2 + [Tlljld ’

Lemma AS8. Under conditions (C1)—(C5), we have:

sup ‘Tﬁo - Y ) i 0',50

xER? i€T, teTy,
where: ¢ )
Ki(X;p—x
~ I\t .
Wi (x) = ,J €Ty, T E Ty
’ L L K(Xje-xn7 T T
j€Ly €Ty

Proof of Theorem 1. For any x € Rd, let:

Lln(X', —X)
@ (x) = X
Y X l,,,( it x)
icZy, teT,

According to Equations (9) and (10), by Lemma A4, we have:
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0 Y & @(x) = ¥ (Y — abi)?@; - (x)

j€In j€In
TeTh T€TH
T 1¢aT T 5 1 ) 1 2 ?
= 2 |Yir = 8(BoXjx) = &' (BoXjr) g, (Xj.0) (Bo — Bu) — 58" (Bo Xjir) iy — Ona(Xir)
jETn
(D]-,T(X)
= Y @ (x)+ Y & (B0Xj0) v, (Xj0) (Bo = Bu)vp, (Xjx) (Bo — Bn)@jc (%)
j€Tn j€n
+ Z .33 thtzwj,r(x) + Z ®n,1(Xj,T)2wj,T(x)
i
- 2 Z g .BO ]r)U,gO( ]T)(ﬁo - .Bn)sz T('O]T Z g .30 ]T)h €j, rwzf( x)
e e
- 2 2 ®n 1 ]T S] T(D] T ) + Z 8,,(ﬁoTXj,T)h$z®n,l (X]',T)w]'ﬂ'(x)
jE€In j€In
+ Y. (B0 Xj)vp, (Xj0) (Bo — Bu)g" (B Xj o))« ()
j€Tn
+ 2 Z g/(ﬁng,r)va;O (Xj,f)(ﬁ ﬁn) a( ]T)‘D] (%)
JE€In
7€y
= C+C4+C34+C4+C5+Ce+ Cr+ Cg+ Co + Cqp. (A26)
Thus, we can obtain from the results in Lemmas A7 and A8 that:
sup |Cq U'ﬁo ‘ =sup|C; — ) @j(x Uﬁo( i)+ Y @jc(x O"BO( Xjz) — 0"30( x)
x€eRA X€ER4 JiITn JiITn
< sup|Cr— ) @j(x O'ﬁo Xj7)|+sup| ) @j( aﬁO(X]-,T) — aéo(x)
xER4 j€Tn xeR? jeTn
1
1/14) |7
= 0, (lﬁd n [h)g(la{l”)] ) : (A27)
n n

Since ﬁn € By, applying the result of Lemma A7 obtains:

sup |Co| = sup Z g ﬁOTX]T) Uﬁo( ]T)(ﬂO - Bn)vgo (X]‘,T)(ﬁo - Bn)wj,T(x)
x€RA XERA|jeTu (A28)

T€Th

— Op (n—1+260>,

sup |Cs| = sup |- Z X]T h4@]r( )| =Op (hftz)/ (A29)
xeR4 xER4 fgn

2 log(n)
sup |C4| = sup Z @n,l(X]-,T) @j.(x)| = Op ) (A30)
x€R4 xER? j € I niy
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sup |Cs| = sup |2 Y ¢'(B) Xj,0)vp, (Xj0) (Bo — Bn)ej @) (%)
xeR4 xERA| jeIu

ety (A31)

1
G}
P nld ’

sup |Cs| = sup [~ 2 g//(ﬁng,f)hﬁsjﬁwj,r(x) = Op(h%) -Op

xeR4 XER|  jeTa
TeTy
log(n)
sup ‘C7| = sup |—2 Z ®n,1 (X]',T)gj,rwj,"r(x) = Op nld ’ (A33)
x€R4 xER4 j€n 1

7€

1
log(n)\ 2
sup [Cs| = sup | 1 ¢ (B1X},)05 (X)) = 0,02) -0y | (5172 ] (A34
xER4 xER4 4?11:11 niy
sup [Col = sup | Y ¢'(ByXj0)vg, (Xj0) (Bo — Bu)g" (Bo Xjr)Ha@j(x)
x€R4 xeR4 jen (A35)
—0, (h%z _n71+2c0)’
— 1T T A
sup |Cio| = sup |2 ) &' (B Xj0)vg, (Xj) (Bo — Br) @ (X)) @j (%)
xER4 xeR4 jeIn (A36)

Op(n1+20) .0

, (loirl(gn))%]

Thus, combining (A26)-(A36), we complete the proof of Theorem 1. [

Proof of Theorem 2. Theorem 2 can be proven in the same way as Theorem 1, so it is
omitted here. O



Mathematics 2023, 11, 4289

24 of 32

Proof of Theorem 3. After one iteration, by Lemmas A5 and A6, we have that the new
ﬁ(l) is:

-1

gy = Bo+ ZZﬁfT(bﬁT)thn(,BTX(i,t),(j,T))X(i,t),(j,T)Xg;',t),(j,r)/J?ﬁ(ﬁTXi,T)

x YL ﬁf,rKhn (B"Xi),G0) X (i), ,0) Yt — ﬂf,r - bffﬁg Xiin, )/ fp(B Xjx)
jETn icTn

= Bo+h,*{E[g /(ﬂTX)]Z}flﬂoﬁoT 20(B — Bo)
+h, {E[g'(B) X)) Zg Bo Xit) BoBi v, (Xip)ei

I (BYXOPY BoE WygWeo B — o)

S ES (BE XY X 8 (B Xis)BoF Wso (s

i€y
teTn

~ S EI (BEOP)Y W BT Weo (B — o)

1 _
— 5, B (BoX)P} T 10 8 (BoXi)WeoFBo, (Xip)ei s

2 WeaWeo(B — Bo) + 5.~ Wg'B Y- &' (B Xi)vp, (Xipeis

i€y
teTy

= Bot (1 BoBY)(B — o)+ 5-Wes X 8/ (BSXsu)up, (Xiaess + Op(nHey);

icTy
teTy

the last equation holds because B} v, (Xit) =0, BiWe0 =0, WéBWgO =1—BoBl, and

iFTw+ )8 Bo Xi)vg,( 1t)€1t+ F W+WO(,3_:BO):OP(€:1)-

i€y
teTy

It is easy to check that ||V || = 1+ 0(1), so then BV /|| V)| = V). Let ) be the value
of B after k iterations. We have:

B = Bot 3 (1 BoBT)BY) — o) + o Wi T & (B Xis oy (Xis)ess ++0p(nEey).

i€y
teTn

Recursing the preceding equation, we have, as the iteration k — oo:

BY = Bot o (1= BoD) (B — o) + (1= ) s Wih T &/ (BF X o (Xi e

i€y
teTy

- ,BO+ Zg .BO ttvﬁo( 1t)£i,t-

i€y
LETy

The following lemmas are used to prove Theorem 3. [
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Lemma A9. (i) Suppose (A1) holds, and let £ (F) denote the class of .7 —measurable r.v’s
X satisfying || X[, = (E|X\ll)11 < oo Let X € 4 (A(E)), Y € £4,(#(E)). Suppose
1<,hl3<oo, and I +1;t +151 = 1; then:

|E(XY) — EXEY]| < || X|ly, Y|, {1 (CardE, CardE' g1 (d(E, E'))} 5. (A37)

(ii) If, moreover, | X| and |Y| are P_, s bounded, the right-hand side of (A37) can be replaced with
cy1(CardE, CardE') @1 (d(E, E')).
Lemma A10. (i) Suppose (A2) holds, and let £ (.7) denote the class of .# —measurable r.v’s

X satisfying || X[, = (E|X\11)ll < oo. Let X € 4,(#(G)), Y € 4,(#(G)). Suppose
1< l,l,l3<oo, and 171+ 11 +151 = 1; then:

1
|E(XY) — EXEY| < c|| X, | Y|l,{$2(CardG, CardG') g2 (d(G, G'))} . (A38)

(ii) If, moreover, | X| and |Y| are P_, s bounded, the right-hand side of (A38) can be replaced with
cpp(CardG, CardG')p,(d(G, G')).

Lemma A11. Under assumptions (C1) and (C2), one has:
E[va(p® —Bo)] =o0. (A39)

Proof of Lemma A11.

E[\/ﬁ(’g(k) N ﬁo)} = VnE| Bo+ %W(;B Z g/(ﬁgXi,t)Uﬁg(Xi,t)fi,t — Bo

i€y
teTy

1

= —EW/) Y &' (BoXi)vp, (Xi)ei

7 80 1) VBo \ it )<,
v,

O

Lemma A12. Under assumptions (C1)—(C5), one has:

Var [\/ﬁ (/3<’<) - ﬁo)] WHAWS, (A40)
where Wgo = E{g'(By X)*Wo(X)} and A = E{g’ (B X)*Wo(X)eg, (X)}.
Proof of Lemma A12.

Var[\/ﬁ(/}(k) )] 2 Var( & (B4 Xit)vp, (Xit)eis — ﬂo)

161’
teTy

+ - ZE .BO lt)vﬂ(J( ,t)S,tWOg (/30 ]T)vﬂvg( ]T)S]T

Ly
t#T

=N+
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ZVW( 8" (Bo Xit)vpy( lt)gi,t)

tEZn
tETy

= Var (W 08 (B Xi)0g, (Xip)eis — .30)
= WHE{8(B) X)*Wo(X) g, (X)}W,

By the boundedness of (Wgog’ (ﬁOTXi,t)vﬁo(X,-,t) fori € Z,,t € Ty, and then by the
mixing condition, and similar to the proof of I — 0 in Lemma 4.4 in [5],

J2 *ZE g (BY Xi ) v, (Xir)ei Wiy 08 "(By Xjo)vp,(Xjr)ejr

i#]
t#T

—ZEstts]T — 0.
i%j
t#T

| /\

O

Lemma A13. Under assumptions (C1)—(C5), one has:
Vi (B® — Bo) — B[V (8% ~ o) | 2> N(0, WiAW). (A41)

Proof of Lemma A13. To simplify, let H, = WJr ’(,BgXi,t)vﬁO(Xi,t)si,t, \/ﬁ(ﬁ(k) — ﬁo) —
E[Vii(B® = Bo)| = & T (Hy— EH,). Then,let - ¥ (H, — EH,) = ¥ Oy

1EIn i€y
fem teTy teTn

Let us now introduce a space—time block decomposition, which has been used by [30]. Fix

1
integers py = O(logny)3N+1) ey J,k=1,--- ,N+1, g =0(ognn41) ™), k=1,--- ,N+1,
and assume that, for some integer r,

=r(px +9q) and we have lim Pk — o k=1,--- N+1.

n—oo q
The random variables /\;; are now set into blocks of different sizes. Let:

Je(Peta)+pk inv1(PN+1+HD) PN
u(,nj = ) ) D,

ek ) 1 b= (PN )+

et +ee (v +L)(pn+1+49)

uezmnj = Ny,
e ke +0) 1 E=jn g (PN 1) TN L
Jeprta) e Gn+D(pn+1+9) N1 (pN1+a) PN

u<3’ n/]) = Ai,t/
ik =kt ) Vin=jn (pN ) PN+ =i (PN )+
Je(peta)+pe  (iN+1)(pN+49) (iNt1+1) (pNs1+q)

U,n,j) = ) ) ) Nit,

i ket 0 Vi =N (pN+) PN =N (PN F) PN+

and so on. Note that:

Nat Uk +1) (px449) N1 (PN+1+H0)FPN+1
URNtt —1,n,j) = Y ) AVES

i =l 0+ pet 1 b=jng (PN ) 1
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Finally,

Nad (ik+1) (pxt+9) (iN+1+1)(pNy1+9)
uNm ) =y )y Bi

e =g+ 0+ e+ =N (PN ) FPN L

Setting#Z = {0,--- ,r—1} x--- x{0,--- ,r — 1}, we define for each integeri = 1, - - - 2N+

=Y U(inj).

je#
Then, with this notation, we obtain the decomposition

oN+1

2 — EH,) = ; T(n,i).

1€Zn
teTy

Note that T(n,1) is the sum of the random variables A\;; over “large” blocks, whereas
T(n,i),2 <i < 2N*! are sums over “small” blocks. If it is not the case that n; = r(pi + q)
for r, then an additional term T(n,2N*1 + 1), say, containing all the A\;; terms that are
not included in the big or small blocks, can be considered. This term will not change the
proof much.

The main idea is to show that, as n — oo:

—_

r—

Q; = |Eexp[iuT(n,1)] — ] Eexpliul(1,n,j)]| =0, (A42)
2N+l o
Q= () T(mi)*—0, (A43)
=2
Qs = rfj E[U(Lm, )] = WHAWS, (A44)
r—1
Q= )}, E[Un))H{Unj)|>eWiAWg}] — (A45)

k=1, ,N+1

O
Proof of (A42). The proof is similar to the proof of (5.42) in [31]. O

Proof of (A43). According to assumption (C1), if for each 2 < i < 2N+1)
E(T(n,i))? — 0 exists, (A43) can be proven. Without loss of generality, 1t suffices to prove
that, for E[T(n,2)]?> — 0. Enumerate the r.v’s U(2, 1, j) in an arbitrary manner and refer to

themas Uy, - - - , Uy, where M = rN*1 = (pﬁq) o (pZi]ﬁq)' -

Now,

M M
E[T(n,2)]* = Z; Var(U; 2
= -

*7 M:
<:>
(,:>

= L+b. (A46)



Mathematics 2023, 11, 4289 28 of 32

If 1 — 0,and I; — 0 can be shown, Q, — 0 is obvious.

Varli, = Var(\}ﬁ(Hn — EHy,)) = %E(Hn — EH,)? (A47)
= EWGE(S (BT X Wo(X)a3, (X)W
< % (A48)
Similar to (A47), we have:
Elulie = WSS (BT X00)op, (Ko )esWios (S Xj )0, (Xileje  (A49)
< c=g(i —jll [t —7))2. (A50)

Then, by Equations (A47) and (A49), we have:

Pk q
Var(O;) = Var( Z ZAi,t)
T
Pk q Pk q
< Z ZVﬂ7A1t+ Yy ¥ Z|EA]-,TAi,t|
I W T
xk#/kfm some 1<k<Nort#t
Pk q Pk q q
< 2 Z VarA,-,t + 2 Z 2 |EAi,TAi,t|
e B T
Pk Pk q q Pk
+ Z Z Z Z|EA]',TAM|+Z Z Z |EA]tA1t|
fa’f 507}1(’ k jkl#’k o ;érjl t=1 folf anrlne k /kl#lk

By Lemma A9, the above inequality continues as:

Cc L d . = 1
< CPLPNG L CPrPNG 24’ 7+ Y e+ Y en(llil])]
ip=1
k=1,---,N

C “ e o L . .7' C .. 2
PLINI 4+ Y (1) +q ) Ve (i)7e] < PLUPNT

Consequently,

2 *
IlgMCpl PNg n Cp1- - PNG < 7

n* (pi+aq) (pne +9) n* pN+1

1 1
which tends to zero by the definition of py = O(log ny) 5™+ and g = O(log n41) 6N+
Let:

1(2,n,7) ={@1): k(pe+a9) +1 < < ji(pe +9) + pr, 1<k <N,
iN#1(PN+1+4) + PN 1<t < (v + D (pva +9) )
Then, U(2,n,§) is the sum of A;; with sites in I(2,n,). Since py > g, if j and j’ belong

to the two distinct sets I(2,1,5) and I(2,n,j), then ji # ji forsome1l < k < N +1, and
Ili —7’ll > g. To simplify, denoting p = p; - - - pn, then we obtain:
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IZSCPZEIZ{Z Z |EAj,TAi,t|+Z Z |EAj,TAi,t|+ Z Z |EAj,TAi,t|};

=T [li-jll=q i=jlt—t|>q |t=7|>q [li-jl>q

by Lemma A9, we have the following equation:

2.2 [
C L
< ;;*q {nn+1 Y e1(lli —jl)ze +ny---ny
kg < H"*k]Ti (k+1)q
> o > A
Y. ga(|t — 7)) +nf 4 Y. p1(lli —jll)zs}
kg < \tfk‘(\:<l (k+1)q kg < Hifkjii (k+1)q
cp*q? e 2
< oy [ny---ny Z @2(kq) 7% + (nni1 + i q) Ek ¢1(kq)2+3 ]
Cp q
o ”N+l

which tends to 0 by the definition of py and gq. Hence, (A43) holds.

Proof of (A44). LetS, = Y7, v T(n,i),S, = T(n,1)and S, = =y, o T(n,i). Then, S,, is the
sum of A;; terms over the “large” blocks, and Sn is over the “small” ones.
Lemmas A1l and A12 imply that ES2 — W*AWJr this, combined with (A43), entails

80’
ES;? — WHAW,,. Now,
, r—1
ES2=Qs+ Y Z Cou(U(1,n,7),U(1,n,i)). (A51)
jk=0 i =0

k=1,--- ,N+1 k=1,--- ,N+1
i # jx for some k

If the last term of Equation (A51) tends to zero as n — oo, then Equation (A44) can be

obtained. By the same argument used in obtaining I — 0, the last term of (A51) is
bounded by:

cpr-pne) (Y. Y EQj L+ Y. Y |EA A

t=Tlli-jl>q i=j|t—1|2q
+ Z Z |EAj,TAi,t|}

lt=t|>q [li-jl>q

< C(Pl“'PN+1)2[
n

(o]
2
ny---nN Z @2(kq) 2 + (nni1 + 1y q) Z )z
=1 =1

< c(p1- "PN+1)2
- NN+1

7

which tends to 0 by the assumptions and the definition of py and q. O

Proof of (A45). We need a truncation argument, so set L = L, = O(n)%,

= Wi (BT X, o, (Xid)eis, A, = L [HY — EHE] and define U (1,m,)

ik =jk(pg +a)+1
k=1---,N

iNt1(PN+1FHD) PN L
it Set
t=jNv1(pN11+9)+1
L = L 2 L
Qi= ), E[U(Lm ) H{Iu"(1,n,j)| > eWAW}].
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Clearly, |A;;

< —L_; therefore, |UL(1,n,7)| < M Hence,
n)2 (n)2

CL2 1 PN41 2 r—1 )
ol < L . pn+1) Y P(UL(1m, )| > ePWHAWS).
i =0

k=1, ,N+1

1
Now, |UL(1,n,7)| < % — 0 by the definition of py = O(logn)3™N+D. Thus,
n
P(juUt(1,m,j)| > e(TZWé;BAW(;B) = 0 at all j for sufficiently large 1, so Qf = 0 for large
n. Hence,
Y AL Zs v(0,6%CTEC). (A52)

Define $* = Y.(Ai; — AiL/t), and we know that ﬁ(H,, —EH,) = S*+ ZAiL,t. By

Equation (A52), to prove the lemma, it suffices to prove ES*?> — 0. Similar to Lemma A12, we
can show that ES*? — 0. According to the above lemmas, we have:

V(8% — o) — E[Vi(B¥ — o) | 2> N(0,WAW). (A53)

Additionally, by Lemma All, we have E {\/ﬁ (,B(k) — ﬁoﬂ i) 0, and then we obtain
D
\/E(ﬁ(k) - ,BO> 25 N(O, WHAWS). O

Proof of Theorem 4. By Theorems 1 and 2, similar to Lemma A5, under conditions (C1)-(C4),
we have:
-1

n2y y P]T thn(ﬁTX(i,t),(j,T))X(i,t),(,-,r)X(Ti,t),(j,T) /fp(B"Xjz)

jE€EInicIn
T€ETpteTn

= BoBYIELS (B5X)2 /0B, (X)}] "M — S [EAS/(BE X% /03, (X0}~ (BoFT Wiy + WisPY)

1.

+5Weo + Op{ (kuhun® + 85/ 113) Eq},
where F = E{[g/ (B} X)12/ %, (X) (fp, (B} X)0p,(X))'/ f5, (BLX)}. Similar to Lemma A6,
under conditions (C1)—(C4), we have:

n?y, Yy perhn (,BTX(i,t),(j,r))bfTX(i,t),(j,r)(Ylt Tﬁ Xin o)/ fa(B X))

jETnic Ty
TE€ETnt€Tn

= Weo(B—Bo)+ 12g (Bo Xi)vp,( zt)szt/(fﬁ( 1t)+0p(1’l_1/2),

i€y
teTn

Similar to Theorem 3, B} Weo =0, W;) Weo =1—Bo BL, recursing the preceding equation,
and we have, as the iteration k — oo:

1 1 1.
BY = Bot g (1= BoB3) (B — o) + (1= =) W
Z & (BoXit)vpy (Xi)eir /gy (Xi)
— ﬁ0+ Weo ) &' (BOXit)vpy (Xig) /gy (Xig) - €1/ 0y (Xip).

i€y
tE Ty

Similar to the proof of Theorem 3, as n — oo, Theorem 4 holds. O
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Proof of Theorem 5. Set 7, = &' (B Xi+)vg, (Xis), & = diag{aéo(Xl),- - ,UEO(X,[)}, n=
(171T , 772T S, 17,{ ). According to the definitions of Weo, A, and Wgo, we have:

.
o= Jtim | Domorliop2Co) | = tim n(s7s71)"
and
+ +
st = (3wt | (3 Dt 000 | [} D
= n(" ) (" =) (g )"

For any d-dimensional vector ¢ € RY, let ||c||z = cTXc. Since X is a positive matrix, then
I - |lz is a norm of space R?. Therefore, we have:

CT(’iT )y TZﬂ)(ﬂ m)te=lnn"n) Tclx

= |yt g) e = ("= ) Te+ S (TS ) Telx

= gy y) e == y(y"E 111)+C||z+|\2 ("= ) e|ls
+2! (g =) Ty TS [y ) e - (T ) e

= |ly(y"g) e - y(y" 117)+6|Iz+|\2 1" ) Tells

> = s ) el = < (7 ) e
By the universality of the column vector ¢, we can obtain Theorem 5. []

Proof of Theorem 6. For simplicity, set v = BJx, by Lemma A4 ; then, we have:

R 1 e
2n(0) = al* = g(v) + 58"(?’)% + 0,1 (x) + Op{ (s + 5)nH (1 + [[x[|).

Thus,

M{?ﬂ(v) —g(v) — 2”8“( )+Op(h§)} = Vi (V1ifgy )"t Y Ky (BE X (i€

ieTy
te Ty

After some simple computations, by Lemma A1, we have:

E(VIa(V1fgy )t Y K, (BG X (ip)x)€is] =0,

i€y
teTy

o2 (x
V”r[\/a(\/ﬁfﬁo( Z Ky, ﬁO )elt] fi: iv))

teTy

+o(1).

Similar to the proof of Theorem 3, as n — oo, Theorem 6 holds. O
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