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Abstract: In this paper, we would first like to promote an interesting idea for identifying the local
minimizer of a non-convex optimization problem with the global minimizer of a convex optimization
one. Secondly, to give an extension of their sparse regularization model for inverting incomplete
Fourier transforms introduced. Thirdly, following the same lines, to develop convergence guaranteed
efficient iteration algorithm for solving the resulting nonsmooth and nonconvex optimization problem
but here using applied nonlinear analysis tools. These both lead to a simplification of the proofs and
to make a connection with classical works in this filed through a startling comment.
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1. Introduction

Compressed sensing (see, for example, [1–7]), was used to invert incomplete Fourier
transforms in the context of sparse signal/image processing, and the l1-norm was applied as
a regularization for reconstructing an object from randomly selected incomplete frequency
samples. Both the sparse regularization method and the compressed sensing method use
the l1-norm as a regularization to impose sparsity for the reconstructed signal under certain
transforms. Because the models based on the l1-norm are convex, they can be solved
efficiently by available algorithms. Recently, the application of non-convex metrics as
alternative approaches to l1 norm has been favored, see for example, [8–11]. The main
goal of this paper is to suggest the employ of the Moreau envelope associated with the
l0-norm as a regularization. Note that the sparsity of a vector is originally measured by the
l0-norm of the vector, i.e., the number of its nonzero components. However, the l0-norm is
discontinuous at the origin, which is not appropriate from a computational point of view.
The envelope of the l0-norm is a Lipschitz surrogate of the l0-norm, which is nonconvex.
Through [7], a local minimizer of a function that is the sum of a convex function and the
l0-norm can be identified with a global minimizer of a convex function which permits
algorithmic development of convex optimization problems. For inverting incomplete
Fourier transforms, the use of the l0-norm allows to formulate a sparsity regularization
model that can reduce artifacts and outliers in the reconstructed signal. It also allow us
to design an efficient algorithm for the resulting nonconvex and nonsmooth optimization
problem by means of a fixed-point formulation. Moreover, the link of this minimization
problem with the related convex minimization problem will permit to prove convergence
of our proposed algorithm. Furthermore, a connection with proximal/projection gradient
methods is also provided by appealing to two key formulas.

2. A Sparse Regularization Model

In order to obtain to the essential information to share, we took the same paper outline
as in [6] and we assume the reader has some basic knowledge of monotone operator theory
and convex analysis as can be found, for example, in [12–15].
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In what follows, we propose an extension of a sparse regularization model based on
the Moreau envelope of the l0-norm for inverting incomplete Fourier transforms considered
in [6]. Likewise, relying on properties of the Moreau envelope of the l0-norm, we obtain an
equivalent formulation favorable for algorithmic development.

Given two Euclidean spaces of dimensions N and d, a nonempty, closed and convex
subset Q ⊂ IRd and a matrix K : IRN → IRd, we are interested in this work regarding the
following problem:

Find y ∈ IRN such that Ky ∈ Q, (1)

This formalism is also at the heart of the modeling of many inverse problems posed by
phase recovery problems and other real-world problems, see [16] and references therein.

Our job is to describe the sparse regularization model for Equation (1) in order to
obtain a sparse vector y. The l0-norm, which counts the number of nonzero components of
a vector x ∈ IRN , is naturally used to measure its sparsity and is defined by

‖x‖0 =
N

∑
i=1
|xi|0,

with |xi|0 = 1 if xi 6= 0 and |xi|0 = 0 if xi = 0.
Now, let PQ be the projection from IRN onto the set Q. Since the constraint is

equivalent to the fact that Ky − PQ(Ky) = 0, we derive the following equivalent La-
grangian formulation

min
y∈IRN

1
2
‖(I − PQ)Ky‖2 + γ‖y‖0, (2)

with γ > 0 a Lagrangian multiplier.
Both non-convexity and discontinuity of the l0-norm at the origin lead to computa-

tional difficulties. To overcome these problems, we use a Lipschitz regularization of the
l0-norm by its Moreau envelope. According to [14,17], for a positive number λ, the Moreau
envelope of ‖ · ‖0 with index λ at x ∈ IRN is defined by

envλ‖·‖0
(x) = min

z∈IRN

(
‖z‖0 +

1
2λ
‖x− z‖2). (3)

envλ‖·‖0
is continuous and locally convex near the origin. Moreover, as limλ→0 envλ‖·‖0

=
‖ · ‖0, envλ‖·‖0

is a good approximation of ‖ · ‖0 when λ is small enough. Therefore, with
an appropriate choice of the parameter λ, envλ‖·‖0

can be used as a measure of sparsity and
allows to avoid drawbacks ‖ · ‖0. For a fixed Q ⊂ IRd and for y ∈ IRN , we let

H(y) =
1
2
‖(I − PQ)Ky‖2 + γenvλ‖·‖0

(y), (4)

where γ is a positive parameter.
To recover a sparse vector y from (1), we now propose the sparse regularization model

based on the Moreau envelope of the l0-norm

ȳ = argminy∈IRN H(y). (5)

Since envλ‖·‖0
is an approximation of ‖ · ‖0, we expect that the proposed model enjoys

nice properties and can be solved by efficient iteration algorithms.
As was pointed out earlier, envλ‖·‖0

is an excellent sparsity promoting function. Ther-
fore, we adopt v = envλ‖·‖0

(y) in this paper.
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We reformulate problem (5) to obtain a problem that is well suited and favorable for
computation. Relying on definition (3) of envλ‖·‖0

in problem (5) and r being fixed, we
introduce the following function

F(x, y) =
1
2
‖(I − PQ)Ky‖2 +

γ

2λ
‖x− y‖2 + γ‖x‖0. (6)

The non-convex function F(x, y) is a special case of those considered in [7]. We then
consider the problem

(x̄, ȳ) = argmin(x,y)∈IRN×IRN F(x, y). (7)

Next, we prove that problems (5) and (7) are essentially equivalent. A global minimizer
of any of these problems will also be called a solution of the problem. We first present a
relation between H(y) and F(x, y). Remember that for λ > 0, the proximity operator of
‖ · ‖0 at z ∈ IRN is defined by

proxλ‖·‖0
(z) = argminx∈IRN{‖x‖0 +

1
2λ
‖x− z‖2}. (8)

Clearly, if x ∈ proxλ‖·‖0
(z), then we have that

envλ‖·‖0
(z) = ‖x‖0 +

1
2λ
‖x− z‖2. (9)

By relation (9), we obtain

H(y) = F(x, y), ∀ x ∈ proxλ‖·‖0
(y) and ∀ y ∈ IRN . (10)

We now give a direct proof of [6], Proposition 1.

Proposition 1. Let λ > 0 and γ > 0. A pair (x̄, ȳ) solves problem (7) if, and only if, ȳ solves
problem (5) with x̄, verifying the following relation

x̄ ∈ proxλ‖·‖0
(ȳ).

Proof. This follows directly from the following successive equalities.

inf
(x,y)∈IRN×IRN

F(x, y) = inf
(x,y)∈IRN×IRN

(1
2
‖(I − PQ)Ky‖2 +

γ

2λ
‖x− y‖2 + γ‖x‖0

)
= inf

y∈IRN

(1
2
‖(I − PQ)Ky‖2 + γ inf

x∈IRN

( 1
2λ
‖x− y‖2 + ‖x‖0

))
.

= inf
y∈IRN

(1
2
‖(I − PQ)Ky‖2 + γenvλ‖·‖0

(y)
)
.

Based on the fact that problems (5) and (7) are essentially equivalent, it suffices to
establish that a local minimizer of the nonconvex problem (7) is a minimizer of a convex
problem on a subdomain. To that end, we first present a convex optimization problem on a
proper subdomain of IRN × IRN related to problem (7) and recall the notion of the support
of a vector x ∈ IRN , denoted by N(x), namely the index set on which the components of x
is nonzero, that is N(x) = {i : xi 6= 0}. Note that when the support of x in problem (7) is
specified, the non-convex problem (7) reduces to a convex one. Based on this observation,
we introduce a convex function by

G(x, y) =
1
2
‖(I − PQ)Ky‖2 +

γ

2λ
‖x− y‖2, (x, y) ∈ IRN × IRN . (11)
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Clearly, F(x, y) = G(x, y) + γ‖x‖0 and G(x, y) is convex and differentiable on IRN × IRN.
We define now, for a given index set N, a subspace of IRN by setting

BN = {x ∈ IRN , N(x) ⊂ N}. (12)

BN is convex and closed (see [6]), and we consider then the minimization problem on
BN × IRN defined by

argmin{G(x, y), (x, y) ∈ (x, y) ∈ BN × IRN}. (13)

Problem (13) is convex, thanks to the convexity of both the function G and the set
BN × IRN . Next, we will show the equivalence between the non-convex problem (7) and
the convex problem (13) with an appropriate choose of the index set N. To this end, we
investigate properties of the support set of certain sequences in IRN and for a given index
set N, we define an operator PBN : IRN → BN by

PBN (y) = yi if i ∈ N and 0 otherwise. (14)

This operator is indeed the orthogonal projection from IRN onto N, (see [6] Lemma 3).
A convenient identification of the proximity operator of the l0-norm with the projection
PBN and some properties of the sequence generated by proxλ‖·‖0

, with respect to the exis-
tence of an integer which will denote κ̄, were developed in (Lemmas 4–7 together with
Proposition 2 [6]), and which are still valid in our context.

Recall also the closed form formula of the proximity of l0. For all z ∈ IRN ,

proxλ|·|0(z) =


{zi} if |zi| >

√
2λ;

{zi, 0} if |zi| =
√

2λ;

{0} otherwise

(15)

A connection between problems (7) and (13) is given by the following result.

Theorem 1. λ, γ > 0, and (x̄, ȳ) ∈ IRN × IRN be given. The pair (x̄, ȳ) is a local minimizer of
the non-convex problem (7) if, and only if, (x̄, ȳ) is a minimizer of the convex problem (13) with
N := N(x̄).

Proof. Follows directly by using ([6] Corollary 4.9), with φ(y) := 1
2‖(I − PQ)Ky‖2, µ := γ

2λ
and D := I.

Following the same lines of ([6] Propositions 1 and 3), we can identify and connect
global and local minimizers of (7) with those of (5).

3. A Fixed Point Approach

We will propose an iterative method for finding a local minimizer of (7) relying on a
fixed-point formulation. For all the facts we will use, we refer to [14].

Let us begin with a characterization of the convex problem (13).

Proposition 2. Suppose λ, γ > 0. If C ⊂ {1, 2, · · ·, N}, then the problem (13) with N := C has a
solution and a pair (x̄, ȳ) ∈ IRN × IRN solves (13) with N := C if, and only if,

x̄ = PN(x̄)(ȳ) and ȳ = x̄− λ

γ
K∗(I − PQ)Kȳ. (16)
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Proof. The existence of solutions follows by the fact that BN is compact together with the
coercivity of G with respect to the second variable. On the other hand, the optimality
condition of the minimization problem

min
(x,y)∈BN×IRN

(1
2
‖(I − PQ)Ky‖2 +

γ

2λ
‖x− y‖2),

reads as
(0, 0) ∈

(
K∗(I − PQ)Kȳ− γ

λ
(x̄− ȳ),

γ

λ
(x̄− ȳ) + NBN (x̄)

)
,

or, equivalently,

ȳ = x̄− λ

γ
K∗(I − PQ)Kȳ and ȳ ∈ x̄ +

λ

γ
NBN (x̄)⇔ x̄ = (I +

λ

γ
NBN )

−1(ȳ) = PBN (ȳ).

Application of both Theorem 1 and Proposition 2 leads to the following characteriza-
tion of a local minimizer of the problem (7).

Theorem 2. Let λ, γ > 0 be fixed. A pair (x̄, ȳ) ∈ IRN × IRN is a local minimizer of (7) if, and
only if, (x̄, ȳ) verifies (16).

Let us now give a characterization of a global minimizer of (16).

Theorem 3. Let λ, γ > 0 be fixed. If a pair (x̄, ȳ) ∈ IRN × IRN is a local minimizer of (7), then
(x̄, ȳ) satisfies the relations

x̄ = proxλ‖·‖0
(ȳ) and ȳ = x̄− λ

γ
K∗(I − PQ)Kȳ. (17)

Conversely, if a pair (x̄, ȳ) verifies (17), then If a pair (x̄, ȳ) is a local minimizer of (7).

Proof. The optimality condition of the minimization problem

min
(x,y)∈IRN×IRN

(1
2
‖(I − PQ)Ky‖2 +

γ

2λ
‖x− y‖2 + γ‖x‖0

)
,

reads as
(0, 0) ∈

(
K∗(I − PQ)Kȳ− γ

λ
(x̄− ȳ),

γ

λ
(x̄− ȳ) + γ∂‖ · ‖0(x̄)

)
,

or, equivalently,

ȳ = x̄− λ

γ
K∗(I− PQ)Kȳ and ȳ ∈ x̄+λ∂‖ · ‖0(x̄)⇔ x̄ ∈ (I +λ∂‖ · ‖0)

−1(ȳ) = proxλ‖·‖0
(ȳ).

In view of Theorem 3, we propose the following explicit–implicit Algorithm for solving
problem (7)

xk+1 ∈ proxλ‖·‖0
(yk) and yk+1 = xk+1 −

λ

γ
K∗(I − PQ)Kyk+1 (18)

When the projection can be computed efficiently, updates of both variables x and y in
Algorithm (18) at each iteration can be efficiently implemented.
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Proposition 3. If λ, γ > 0, then the operator I + λ
γ K∗(I − PQ)K is invertible. Hence, the second

part of (18) reads as

yk+1 := J
K∗(I−PQ)K
λ
γ

(xk+1) = (I +
λ

γ
K∗(I − PQ)K)−1(xk+1). (19)

Proof. It is well known that K∗(I − PQ)K is a maximal monotone operator (more precisely,
it is an inverse strongly monotone operator, see the beginning of the proof of Theorem 4),
hence I + λ

γ K∗(I − PQ)K is invertible by Minty Theorem and its inverse, which is the
so-called resolvent operator, is single valued and firmly nonexpansive.

4. Convergence Analysis

In this section, we investigate the convergence behavior of Algorithm (18). As
in [6], after a finite number of iterations, the support of the sparse variable xk defined
by Algorithm (18) will remain unchanged, and hence solving the non-convex optimiza-
tion problem (7) by algorithm (18) reduces to solving a convex optimization problem on
the support.

First, we consider a function E, which is closely related to both functions F and G, and
we define

E : IRN → IR at y ∈ IRN by E(y) :=
L
2
‖(I − PQ)Ky‖2, (20)

where L := 1 + λ
γ ; E(y) will be denoted for short by E(y).

Now, we prove a convergence result of Algorithm (18).

Theorem 4. Let (xk, yk)k∈IN be a sequence generated by Algorithm (18) with an initial (x0, y0) ∈
IRN × IRN for problem (7). If λ, γ > 0 are positive numbers, then we have the following properties

1. F(xk+1, yk+1) ≤ F(xk, yk) for all k ≥ 0 and the sequence
(

F(xk, yk)
)

k∈IN is convergent;
2. The sequence (xk, yk)k∈IN has a finite length, namely

+∞

∑
k=0
‖xk+1 − xk‖2 < +∞, and

+∞

∑
k=0
‖yk+1 − yk‖2 < +∞, (21)

3. The sequence (xk, yk)k∈IN is asymptotically regular, that is

lim
k→+∞

‖xk+1 − xk‖ = 0 and lim
k→+∞

‖yk+1 − yk‖2 = 0.

Proof. The function E is differentiable with a 1-Lipschitz continuous gradient. Indeed,

〈K∗(I − PQ)K(x)− K∗(I − PQ)K(y), x− y〉 = 〈(I − PQ)K(x)− (I − PQ)K(y), Kx− Ky〉
≥ ‖(I − PQ)K(x)− (I − PQ)K(y)‖2

≥ ‖K∗(I − PQ)K(x)− K∗(I − PQ)K(y)‖2.

This ensures that ∇E is 1-Lipschitz continuous.

On the other hand, since yk+1 = xk+1 − λ
γ K∗(I − PQ)Kyk+1, we can write

γ

2λ
‖xk+1 − yk+1‖2 =

γ

2λ
‖λ

γ
K∗(I − PQ)Kyk+1‖2.

Taking into account definition of the ‖ · ‖ and the fact that KK∗ = I, we obtain that

γ

2λ
‖xk+1 − yk+1‖2 =

λ

2γ
‖(I − PQ)Kyk+1‖2.
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Hence,

F(xk+1, yk+1) =
1
2
(1 +

λ

γ
)‖(I − PQ)Kyk+1‖2 + γ‖xk+1‖0 = E(yk+1) + γ‖xk+1‖0.

Using the celebrate descent Lemma, see for example [12], we can write

F(xk+1, yk+1) ≤ E(yk) + 〈∇E(yk), yk+1 − yk〉+
L
2
‖yk+1 − yk‖2 + γ‖xk+1‖0. (22)

Now, we have

γ

λ + γ
〈∇E(yk), xk+1 − xk〉 = 〈K∗(I − PQ)Kyk, yk+1 − yk +

λ

γ
(K∗(I − PQ)Kyk+1 − K∗(I − PQ)Kyk)〉

= 〈K∗(I − PQ)Kyk, yk+1 − yk〉+
λ

γ
〈K∗(I − PQ)Kyk, yk+1 − yk〉

− λ

γ
〈(I − PQ)Kyk, PQKyk+1 − PQKyk〉

≥ (1 +
λ

γ
)〈K∗(I − PQ)Kyk, yk+1 − yk〉 = 〈∇E(yk), yk+1 − yk〉.

The Characterization of the orthogonal projection, namely

〈(y− PQy, z− PQy〉 ≤ 0 ∀z ∈ Q

assures that
〈(I − PQ)Kyk, PQKyk+1 − PQKyk〉 ≤ 0,

and thus
〈∇E(yk), yk+1 − yk〉 ≤

γ

λ + γ
〈∇E(yk), xk+1 − xk〉. (23)

Now, by using the second equation of (18) and by taking into account the fact that
I − PQ is firmly nonexpansive and that KK∗ = I, we can write

‖xk+1 − xk‖2 = ‖yk+1 − yk +
λ

γ
(K∗(I − PQ)Kyk+1 − K∗(I − PQ)Kyk)‖2

= ‖yk+1 − yk‖2 +
2λ

γ
〈K∗(I − PQ)Kyk+1 − K∗(I − PQ)Kyk, yk+1 − yk〉

+
λ2

γ2 ‖K
∗(I − PQ)Kyk+1 − K∗(I − PQ)Kyk‖2

≥ ‖yk+1 − yk‖2 +
2λ

γ
‖(I − PQ)Kyk+1 − (I − PQ)Kyk‖2

+
λ2

γ2 ‖(I − PQ)Kyk+1 − (I − PQ)Kyk‖2.

This yields

‖xk+1 − xk‖2 ≤ ‖yk+1 − yk‖2 +
λ

γ
(2 +

λ

γ
)‖(I − PQ)Kyk+1 − (I − PQ)Kyk‖2, (24)

hence
‖yk+1 − yk‖2 ≤ ‖xk+1 − xk‖2.
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Taking into account the fact that 0 < λ
γ < −1+

√
5

2 , we have L = 1 + λ
γ < γ

λ which,
combined with the last inequality, ensures that

L‖yk+1 − yk‖2 ≤ γ

λ
‖xk+1 − xk‖2. (25)

Combining (22), (23) and (25) yields

F(xk+1, yk+1) ≤ E(yk) +
γ

γ + λ
〈∇E(yk), xk+1 − xk〉+

γ

2λ
‖xk+1 − xk‖2 + γ‖xk+1‖0. (26)

To prove the no-increasing of the sequence
(

F(xk, yk)
)

k∈IN , we first notice that the
second part of (18) can be reads as yk = xk − λ

λ+γ∇E(yk). Now, by applying definition of
the proximal operator of λ‖ · ‖0 at yk, we have

xk+1 ∈ arg min
x∈IRN

(
‖x‖0 +

1
2λ
‖x− xk +

λ

λ + γ
∇E(yk)‖2)

or, equivalently,

xk+1 ∈ arg min
x∈IRN

(
‖x‖0 +

1
2λ
‖x− xk‖2 +

λ

λ + γ
〈∇E(yk), x− xk〉

)
,

which ensures that

‖xk+1‖0 +
1

2λ
‖xk+1 − xk‖2 +

1
λ + γ

〈∇E(yk), xk+1 − xk〉 ≤ ‖xk‖0. (27)

Finally, from (26) and (28), we deduce that

F(xk+1, yk+1) ≤ E(yk) + γ‖xk‖0 = F(xk, yk).

It follows from (27) that

γ‖xk+1‖0 +
γ

2λ
‖xk+1 − xk‖2 +

γ

λ + γ
〈∇E(yk), xk+1 − xk〉 ≤ F(xk, yk).

In addition form (22), we obtain that

−E(yk)− 〈∇E(yk), yk+1 − yk〉+
L
2
‖yk+1 − yk‖2 − γ‖xk+1‖0 ≤ −F(xk+1, yk+1).

Summing the above two inequalities and using (23), we obtain

γ

2λ
‖xk+1 − xk‖2 − L

2
‖yk+1 − yk‖2 ≤ F(xk, yk)− F(xk+1, yk+1).

This, combined with (24), yields

1
2
(

γ

2λ
− L)‖yk+1 − yk‖2 +

λ

γ
(2 +

λ

γ
)‖(I − PQ)yk+1 − (I − PQ)yk‖2 ≤ F(xk, yk)− F(xk+1, yk+1). (28)

By summing the last inequality and by taking into account the fact the convergence of
the sequence (F(xk, xy))k∈IN together with the fact that γ

2λ − L > 0, we deduce first that

∞

∑
k=0
‖yk+1 − yk‖2 < +∞ and

∞

∑
k=0
‖(I − PQ)yk+1 − (I − PQ)yk‖2 < +∞.

The property ∑∞
k=0 ‖xk+1 − xk‖2 < +∞ follows then from relation (24). The latter

properties ensures clearly the asymptotic regularity of the sequence (xk, yk)k∈IN .
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As in ([6] Lemma 12), in our setting, we also have that the invariant support set of the
sequence defined by Algorithm (18) exists for the nonconvex problem (7). Now, let us prove,
more directly than in [6], the convergence of the sequence (xk, yk)k∈IN generated by (18)
relying on averaged operators and Krasnoselskii–Mann Theorem. Averaged mappings are
convenient in studying the convergence sequences generated by iterative algorithms for
fixed-point problems thanks to the following celebrate theorem, see for example [12,13].

Theorem 5 (Krasnoselskii–Mann Theorem). Let M : IRN → IRN be averaged and assume
FixM 6= ∅. Then, for any starting point x0, the sequence {Mkx0} converges weakly to a fixed-
point of M.

Recall also the definitions of nonexpansive and averaged operators, which appear
naturally when using iterative algorithms for solving fixed-point problems and which are
commonly encountered in the literature; see, for instance, [13]. A mapping T : IRN → IRN is
said to be nonexpansive if, for all x, y ∈ IRN , ‖Tx− Ty‖ ≤ ‖x− y‖, firmly nonexpansive if
2T− I is nonexpansive, or equivalently 〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2, for all x, y ∈ IRN . It
is well known that T is firmly nonexpansive if and only if T can be written as T = 1

2 (I + S),
where S : IRN → IRN is nonexpansive. Recall also that mapping T : IRN → IRN is
said to be averaged if it can be expressed as T = (1 − α)I + αS with S : IRN → IRN

a nonexpansive mapping and α ∈ [0, 1]. Thus, firmly nonexpansive mappings (e.g.,
projections on convex convex and nonempty subsets and resolvent of maximal monotone
operators) are averaged mappings.

Mimicking the analysis in [6], (x̄, ȳ) is a solution of (13) if, and if (x̄, ȳ) satisfies (16)
and thus x̄ is verified as

x̄ = PBN ◦ J
K∗(I−PQ)K
λ
γ

(x̄). (29)

Similarly, using the same arguments, we drive that (xk, yk) generated by (18) leads to

xk+1 = PBN (yk) ∀k ≥ κ̄

and thus for all k ≥ κ̄, it satisfies

xk+1 = PBN (yk) and yk+1 = xk+1 −
λ

γ
K∗(I − PQ)Kyk+1. (30)

Consequently,

x̄ = PBN ◦ J
K∗(I−PQ)K
λ
γ

(x̄), (31)

and
xk+1 = PBN ◦ J

K∗(I−PQ)K
λ
γ

(xk). (32)

It is well-known that firmly nonexpansive mappings (including orthogonal projec-
tions on closed convex nonempty subsets and resolvent mappings of maximal monotone
operators) are averaged operators. In view of the fact that the composite of finitely many
averaged mappings is averaged, see for instance [12], and by applying Krasnoselskii–Mann
Theorem, we deduce the convergence of the subsequence (xk)k≥κ̄ to a solution x̄ of (29).
x̄ ∈ BN, since (xk)k≥κ̄ ⊂ BN, which is closed, and we also have N = N(xκ̄) = N(x̄) in
view of ([6] Lemma 7). In addition, since the resolvent of a maximal monotone operator is
nonexpansive, for all m > n > κ̄, we can write that

‖ym − yn‖ = ‖J
K∗(I−PQ)K
λ
γ

(xm)− J
K∗(I−PQ)K
λ
γ

(xn)‖ ≤ ‖xm − xn‖.

(xk)k≥κ̄ being convergent, it is a Cauchy sequence and thus it is also the case of the subse-
quence (yk)k≥κ̄ which, in turn, converges to some limit ȳ. Now, by passing to the limit in
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yk+1 = J
K∗(I−PQ)K
λ
γ

(xk) and taking into account the continuity of the resolvent, we obtain

ȳ = J
K∗(I−PQ)K
λ
γ

(x̄), where x̄ is a solution of (16) which ensures that (x̄, ȳ) is a solution of (13)

with N = N(x̄).
Based on the above, these lead to the following Theorem.

Theorem 6. Let (xk, yk) ∈ IRN × IRN a sequence generated by (18) form an initial point (x0, y0).
If λ, γ > 0 are chosen such that 0 < λ

γ < 1+
√

5
2 , then (xk, yk) converges to a local minimizer (x̄, ȳ)

of (7). Moreover,
(

F(xk, yk)
)

k∈IN is a convergent sequence and if, in addition |ȳj| 6=
√

2β for all
j ∈ N(ȳ), then ȳ is a local minimizer of (5).

Finally, let us point out that, since KK∗ = I, the fixed point iteration in (18) turns into

yk+1 = xk+1 −
λ

2γ
K∗(I − PQ)(Kxk+1). (33)

In particular, when Q = {r}, this reduces to

yk+1 = xk+1 −
λ

2γ
K∗(Kxk+1 − r).

Indeed, as KK∗ = I,

J
K∗(I−PQ)K
λ
γ

(xk+1) = xk+1 −
λ

γ
K∗(I − PQ)1(Kxk+1) = xk+1 −

λ

γ
K∗((∂iQ)1)1(Kxk+1)

= xk+1 −
λ

γ
K∗(∂iQ)2(Kxk+1) = xk+1 −

λ

2γ
K∗(I − PQ)(Kxk+1).

We used both the fact that for any maximal monotone operator A and ν > 0, we have

JK∗AK
ν (x) = x− νK∗A1(Kx),

A1 = I − JA
1 being the Yosida operator of A with parameter 1, and that for all ν, µ > 0,

we have
(Aν)µ = Aν+µ.

We used also the fact that the Yosida operator of the subdifferential of the indicator
function of Q with parameter 2 (the latter is nothing but the the normal cone to Q) is
exactly I−PQ

2 .
Therefore, the proposed algorithms are nothing else than a Proximal Gradient and

a Projection Gradient Algorithms. Nevertheless, the crucial idea (namely, the support of
the sparse main variable generated by the Algorithm remains unchanged after a finite
number of iterations) that permits to locate a local minimizer of the nonconvex optimization
problem with a global minimizer of a convex optimization one deserves a great interest.

Clearly, the analysis developed here can be extended to split feasibility problems, namely

Find y ∈ C such that Ky ∈ Q, (34)

with C ⊂ IRN , Q ⊂ IRd being two closed, convex subsets and K : IRN → IRd a given
matrix. Since the sum of a maximal monotone operator (the normal cone to C) and the
monotone Lipschitz one (the operator λ

2γ K∗(I − PQ)K) is still maximal monotone [14], this
can be naturally extended to the following general minimization problem by means of its
regularized version, i.e.,

min
y∈IRN

(
f (y) + g(Ky) + γ‖y‖0

)
through min

y∈IRN

(
f (y) + gν(Ky) + γ(‖y‖0)λ

)
,
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with f , g being two proper, convex, lower semicontinuous functions defined on IRN , IRd,
respectively, and ν, λ > 0. The proximity map of g and the subdifferential of f will act as
the projection on the set Q and the normal cone to C, respectively, since they share both the
same properties.

5. Conclusions

Based on an interesting idea developed in [6], which leads to identifying a local
minimizer of a nonconvex minimization problem with a global optimizer of a convex
optimization one, we provide an extension of the sparse regularization model for inverting
incomplete Fourier transforms. Next, we propose an efficient convergence guaranteed
iteration algorithm for solving the resulting non-convex and non-smooth optimization
problem. The fixed-point approach is preferred, as it enables us to develop efficient algo-
rithms with guaranteed convergence. Combined with applied nonlinear analysis tools, this
leads both to a simplification of the proofs and to make a connection with classical works as
split convex feasibility problems. With this generalization, the proposed approach may be
applicable to other real world applications such as inverse problem of intensity-modulated
radiation therapy (IMRT) treatment planning [18]. It can be applied equally to coopera-
tive wireless sensor network positioning [19] or adaptive image denoising [20]. Thus, the
proposed method is expected to work efficiently for problems that can be reformulated
as sparse optimization and convex feasibility problems. We will consider this as a future
project for numerical applications as well as other potential extensions, for example, in a
non-convex framework. These in turn will pave the way for other applications in the real
world, which is the case, for example, in [21].
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