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Abstract: With the expansion of data scale and diversity, the issue of class imbalance has become
increasingly salient. The current methods, including oversampling and under-sampling, exhibit
limitations in handling complex data, leading to overfitting, loss of critical information, and insuffi-
cient interpretability. In response to these challenges, we propose a broad TSK fuzzy classifier with a
simplified set of fuzzy rules (B-TSK-FC) that deals with classification tasks with class-imbalanced
data. Firstly, we select and optimize fuzzy rules based on their adaptability to different complex data
to simplify the fuzzy rules and therefore improve the interpretability of the TSK fuzzy sub-classifiers.
Secondly, the fuzzy rules are weighted to protect the information demonstrated by minority classes,
thereby improving the classification performance on class-imbalanced datasets. Finally, a novel loss
function is designed to derive the weights for each TSK fuzzy sub-classifier. The experimental results
on fifteen benchmark datasets demonstrate that B-TSK-FC is superior to the comparative methods
from the aspects of classification performance and interpretability in the scenario of class imbalance.

Keywords: TSK fuzzy classifiers; fuzzy rule reduction; weighted fuzzy rule; broad ensemble learning;
class-imbalanced learning

MSC: 68T05

1. Introduction

The issue of class imbalance has been a challenge in the fields of data mining, computer
vision, and machine learning over the past decade [1,2]. The class imbalance problem is
prominently visible within machine learning datasets, where the distribution of instances
across diverse classes is drastically uneven. Classical machine learning models tend to
be biased towards majority classes. Conversely, minority classes can hardly determine
the parameters of the classifier. However, in resolving practical issues, we typically focus
more on these minority classes, which usually contain critical information. For instance,
in the diagnosis of cancer, misclassifying a positive instance as a negative one may lead
to severe loss. Similarly, the inability to promptly identify a minuscule number of faulty
conditions in aircraft operation state fault detection could potentially trigger accidents.
Therefore, with the diversification of data scenarios and the increasing complexity of data,
the challenge posed by the class imbalance problem is becoming increasingly prominent.
This problem finds extensive applications across multiple domains, such as detecting oil
spills in satellite images, identifying the cause of power distribution failures [3], predicting
potential customer churn [4], and face recognition [5].

Currently, the strategies to address the issue of class imbalance learning can be gener-
ally categorized into three types:

(1) Sampling methods including oversampling and under-sampling techniques [2,6].
These methods aim to adjust the distribution of original data instances to approach a
balanced state, thereby improving the model’s predictive ability for minority classes.
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Random Over-Sampling (ROS) randomly increases the number of minority class
instances [6]. Random Under-Sampling (RUS) randomly reduces the number of
majority class instances [2]. Although these strategies show some effectiveness, their
reliance on simple replication or deletion of original data instances can potentially
lead to overfitting or loss of information. In response, an oversampling method named
the Synthetic Minority Over-sampling Technique (SMOTE) has been proposed [7].
This method mitigates the risk of overfitting by performing orderly interpolation
between minority class instances, thereby enhancing the capability of dealing with
the class imbalance issue. In the literature [8], the combination of a Fuzzy Support
Vector Machine (FSVM) with instance relative density information provides a more
efficient approach for classification tasks with a complex class imbalance problem [9].

(2) Cost-sensitive learning methods. These methods construct a cost–weight matrix by
analyzing factors such as the error costs of the minority and majority classes, train-
ing costs, and instance quantities, thereby achieving an effect in dealing with class
imbalance. These methods focus on the difference impact on the loss function of
the misclassification of the instances in minority and majority classes. Cost-sensitive
weight matrices are constructed by analyzing factors including misclassification costs,
training costs, and instance numbers of minority and majority classes. With the em-
ployment of this weight matrix, the methods will protect the distribution region of
minority classes instead of just pursuing high accuracy. In cost-sensitive learning
methods, if minority classes are prone to misclassification, they will be assigned
greater weights via a specific cost matrix [10]. Conversely, since majority classes are
seldom misclassified, they will be assigned smaller weights to enhance the model’s
classification performance for the minority classes. For example, by incorporating
the concept of cost matrix weighting into Extreme Learning Machines (ELM) [11],
researchers have proposed a high-performing and computationally efficient Weighted
Extreme Learning Machine (WELM) method [12]. By combining cost-sensitive think-
ing with ensemble learning, the literature [13] introduces a sensitive decision tree
ensemble method. In particular, the advent of AdaCost [14], a cost-sensitive boosting
method combined with the Boosting ensemble method, has greatly improved the
prediction accuracy for minority classes by incorporating an optimized weight update
strategy and the strengths of the AdaBoost method. Notably, Support Vector Machine
(SVM) methods have consistently performed well in classification effects. The method
proposed in the literature [15] combines a Fuzzy Support Vector Machine (FSVM)
with cost sensitivity, assigning greater weights to the instances of minority classes to
address class imbalance [9]. A novel approach proposed in the literature [16] combines
cost sensitivity with a Broad Learning System (BLS), using weighted penalty factors to
constrain each instance’s contribution in different classes, allocating higher weights to
the instances of smaller classes to enhance their contribution. Reference [17] presents
a cost-sensitive variable selection method for Bayesian network classifiers, which
optimizes the performance of multi-class classification problems with class imbalance
in practical applications. In cost-sensitive methods, how to determine the weights is
an open research hotspot [18].

(3) Hybrid methods for class imbalance problems. These methods primarily combine
the above two strategies or integrate them with advanced techniques, e.g., ensemble
learning, cluster learning, and deep learning, thereby enhancing the capacity to handle
class imbalance problems. These methods usually employ cost-sensitive learning
methods in the form of ensemble learning after, respectively, oversampling and/or
under-sampling the minority classes and majority classes. In the data preprocessing
stage, sampling methods such as SMOTE are used to balance the distribution of data
instances [7], and then classic methods such as KNN and CART4.5 are employed to
learn from these more balanced data. This has been proven to be an effective hybrid
strategy. The advantages of ensemble learning techniques in enhancing the general-
ization performance of methods and reducing overfitting have been demonstrated



Mathematics 2023, 11, 4284 3 of 32

in the literature [19]. Leveraging the strengths of ensemble learning, several highly
robust and generalizable methods such as SMOTEBagging [19], SMOTEBoost [20],
UnderBagging [21], RUSBoost [22], and OverBoost [23] have been proposed. These
approaches incorporate advanced sampling techniques into ensemble method frame-
works, including Bagging and Boosting, forming advanced class imbalance ensemble
frameworks. In the field of class imbalance learning, ensemble methods have shown
higher robustness and foresight compared to single classifiers; hence, the method pro-
posed in this paper also cleverly uses the unique advantages of ensemble techniques
in the field of class-imbalanced learning.

Fuzzy systems are considered a specific structure of artificial neural networks [24],
with their peculiarity being their rule-based learning mechanism. Due to the excellent
linguistic interpretability of both the antecedent parts and consequent parts of fuzzy rules,
fuzzy systems not only possess high mathematical approximation capabilities akin to
neural networks but also have excellent language interpretation properties [25–28].

Fuzzy systems have unique application potential in solving class-imbalanced learning
problems, mainly manifested in two aspects, i.e., integrating sampling-level strategies with
fuzzy systems and the special handling of fuzzy rules [29]. The class imbalance problem
is usually addressed by applying a weighting process to the fuzzy rules. For example,
the fuzzy rule weighting scheme proposed in [30] is based on a collaborative voting score
between instances and fuzzy rules, and the genetic method used in [31] optimizes the
fuzzy rules. In addition, related studies adopted different fuzzy rule weighting generation
strategies based on the fuzzy rules’ adaptability to instances, effectively enhancing the
performance of fuzzy rules under a class-imbalanced environment [32,33]. However, these
fuzzy rule weighting methods are excessively complex in their weight generation systems,
and their improvement in performance is not significant. Therefore, this study will further
propose a more concise, effective, and interpretable fuzzy rule weighting optimization
strategy in the environment of imbalanced data.

While the state-of-the-art methods have achieved satisfactory classification accuracy
for class-imbalanced data, they still face challenges when dealing with complex data. For
instance, sampling methods might lead to information loss or overfitting, and cost-sensitive
methods can hardly achieve enhanced generalization performance in highly imbalanced
data scenarios. Moreover, due to the dependence of fuzzy rules on data features, fuzzy
systems tend to face the challenge of fuzzy rule explosion when used to tackle complex
data scenarios [34].

In this study, a novel broad TSK fuzzy classifier with a simplified set of fuzzy rules for
imbalanced learning(B-TSK-FC) is proposed. Thus, fuzzy systems may benefit from the
selection and weighted optimization of fuzzy rules to reduce the number of fuzzy rules
and solve class imbalance problems more effectively. We adopt a zero-order TSK fuzzy
classifier whose fuzzy rules are significantly more flexible and linguistically interpretable
than classical methods. First, we propose a method to reduce the number of fuzzy rules to
enhance the interpretability and improve the classification performance of the classifier [35].
Second, we propose a concise weighting scheme that assigns different weights to the fuzzy
membership of the instances from minority and majority classes. Finally, using the above
mechanism, a series of zero-order TSK fuzzy sub-classifiers are generated and assembled
in a broad manner, which can improve the classification accuracy of all classes in the
class-imbalanced data. This strategy further improves generalization performance and
effectively reduces the risk of overfitting. The principal contributions of this study are
listed as follows.

(1) Even though the random generation of fuzzy rules with equal partitions along each
feature has been widely adopted by the current TSK fuzzy classifier methods [25,27,36],
the exclusion of ineffective fuzzy rules has yet to be of concern, which may lead to
an increase in the number of fuzzy rules and inevitably damage the interpretability
of the model. Based on the adaptability of the antecedent parts and consequent
parts of fuzzy rules to different complex data environments, we propose a fuzzy rule
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simplification strategy that effectively reduces the number of fuzzy rules, enhances the
interpretability of the TSK fuzzy classifier, and improves the classification performance
of the classifier.

(2) Different from the current methods in which all the fuzzy rules are considered indis-
criminately when facing a classification task on class-imbalanced data, the fuzzy rules
of the TSK fuzzy sub-classifiers in B-TSK-FC may play significantly different roles in
the classification task. For the scenario of class-imbalanced learning, we recognize
that fuzzy rules contain knowledge of different data distributions. By generating a
weight matrix that leverages information about the number of classes in the data, we
propose a concise and easy-to-implement fuzzy rule weighting scheme to modify
the fuzzy system to adapt to class-imbalanced scenarios. This fuzzy rule weighting
scheme is coincident with the working manner of human thinking in which different
knowledge works with different magnitudes.

(3) In a class-imbalanced data environment, guided by the objective of improving the
classification accuracy of each class, we propose a dynamic weighted ensemble strat-
egy that effectively enhances the prediction accuracy of each class. By assembling
a series of zero-order TSK fuzzy sub-classifiers in a broad manner, we significantly
improve the generalization performance of the system and effectively reduce the risk
of overfitting while maintaining interpretability.

(4) Comparative experimental results from fifteen benchmark datasets and the state-of-
the-art comparative methods demonstrate the efficiency of our proposed B-TSK-FC
fuzzy classifier in class-imbalanced scenarios in both linguistic interpretability and
superior classification performance.

Therefore, the study presented in this research provides new insight into how to
simplify fuzzy rules and achieve the resultant classification performance of the TSK fuzzy
classifier over class-imbalanced data. The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to the zero-order TSK fuzzy classifier. Section 3
elaborates on our proposed B-TSK-FC broad fuzzy classifier and provides a theoretical
analysis for its efficiency in classification performance enhancement. Section 4 presents the
experimental results of the proposed B-TSK-FC and five comparative methods over fifteen
benchmark datasets, which confirm the superiority of B-TSK-FC relative to the comparative
methods. Finally, Section 5 summarizes and reviews the entire paper. The full names of the
abbreviations in this study are introduced in Table A1 in Appendix A for easy reading.

2. Classical Zero-Order TSK Fuzzy Classifier

Since B-TSK-FC proposed in this study is composed of several zero-order TSK fuzzy
classifiers, this section introduces the classical zero-order TSK fuzzy classifier, which
contains a set of fuzzy rules expressed as follows [36]:

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xd is Ak
d

THEN yk = ak, k = 1, 2, · · · , K.
(1)

where ak is the constant in the consequent part of the kth fuzzy rule, xd is the dth feature
of the input instance, Ak

j is the antecedent part of the kth fuzzy rule of fuzzy set on the
jth feature, and K is the total number of fuzzy rules in the fuzzy system. The TSK fuzzy
classifier uses the Gaussian function as the fuzzy membership, which is expressed as
follows:

φk
j
(

xj
)
= exp

−1
2

(
xj − sk

j

σk
j

)2 (2)
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where xj is the jth feature of the instance, and sk
j and σk

j , respectively, denote the center and
width of the Gaussian membership function. Therefore, the output of the zero-order TSK
classifier corresponding to the input instance x can be expressed as:

Y =
K

∑
k=1

µk(x)

∑K
r=1 µr(x)

ak =
K

∑
k=1

µ̃k(x)ak (3)

where the antecedent part of the fuzzy rule is calculated as µk(x) = ∏d
j=1 φk

j
(

xj
)
,

k = 1, . . . , K. Additionally, ak is the consequent part of the kth fuzzy rule. For binary
classification tasks, we conventionally treat class labels as {0,+1}. In this setting, based on
the input of training instances, we can easily obtain the classifier’s output on the testing
set and intuitively distinguish between positive and negative classes. A common method
is to normalize the output y to the interval 0 to 1 and consider this output the predictive
probability for the +1 class label. The classification threshold is typically set at 0.5; the
larger the output, the higher the probability of prediction as the +1 class, and vice versa.
However, for multi-classification tasks facing multiple class labels, to ensure independence
between class labels, we adopt one-hot encoding for binary coding [37], i.e., representing
each class label with a C-bit binary number in which only the bit corresponding to the
label is set to 1 and the other bits are set to 0. In the training of the zero-order TSK fuzzy
classifier, we randomly select the center of the membership function from [0, 0.25, 0.5,
0.75, 1] and represent the partition with five Gaussian functions. Notably, even though the
center values are randomly selected, there still exists the linguistic interpretations “very
bad”, “bad”, “medium”, “good”, “very good”, etc. Despite its excellent interpretability and
mathematical approximation capability, the zero-order TSK fuzzy classifier is not suitable
for class-imbalanced scenarios and faces the challenge of the curse of dimensionality and
fuzzy rule explosion [34].

In the following sections, we will first introduce the proposed B-TSK-FC broad ensem-
ble fuzzy classifier, discussing in detail how to improve the classic zero-order TSK classifier
to adapt it to imbalanced data and how to effectively reduce the number of fuzzy rules
while ensuring the enhancement of the classification performance of the zero-order TSK
classifier.

3. The Proposed Method

In this section, we provide a detailed description of the proposed B-TSK-FC based on
the dynamic selection and weighted optimization of fuzzy rules. This work is inspired by
the following three points.

(1) In order to solve the fuzzy rule explosion problem, which is encountered by current
fuzzy systems in complex and variable data environments [34], we adopt a strategy for
simplifying fuzzy rules and improving the quality of fuzzy rules. While the random
selection of the centers of fuzzy rule antecedent parts offers interpretability, some
initially generated fuzzy rules may not align well with data characteristics, indicating
low fuzzy rule quality. Since the adaptability of a fuzzy rule to specific data scenarios
is primarily reflected in its antecedent parts and consequent parts, we simplify the
fuzzy rules according to the antecedent parts and consequent parts to improve the
quality of fuzzy rules.

(2) Although the current class-imbalanced learning techniques have achieved significant
progress in classification performance, they are not interpretable. As a result, we
choose the zero-order TSK fuzzy classifier, known for its excellent interpretability,
incorporate cost-sensitive reasoning, and propose a simple yet effective fuzzy rule
weighting method. This allows the TSK fuzzy classifier to tackle class-imbalanced
data more efficiently.

(3) After the above improvements, the TSK fuzzy classifier has a strong class imbalance
classification performance. However, the generated TSK fuzzy sub-classifiers are
similar to each other. Using conventional simple voting for the ensemble would
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restrict performance enhancement. Hence, we employ the idea of a class-imbalanced
G-mean metric with the objective of optimizing per-class classification accuracy. This
approach allows for the reasonable weighting of individual fuzzy sub-classifiers
within the ensemble. This not only enhances the generalization performance of the
ensemble classifier but also reduces the risk of overfitting.

In the subsequent sections, we will delve into the B-TSK-FC fuzzy classification system
in three steps in Section 3.1. In Section 3.2, we will theoretically analyze and prove its
advantages in terms of performance and interpretability. Finally, in Section 3.3, we will
analyze its time complexity.

3.1. Structure of B-TSK-FC

The core components of B-TSK-FC primarily encompass the three strategies intro-
duced: fuzzy rule selection, fuzzy rule weighted optimization, and the final “G-mean”
broad-weighted ensemble. We will begin by elucidating the fuzzy rule selection strategy.

In Equation (2), we can distinctly observe the correlation between the membership
function values of instances in each dimension and the antecedent parts of fuzzy rules: a
higher membership function value corresponds to a larger antecedent part of the fuzzy
rule. This suggests that if we can identify an ideal membership function along with
its central parameter value, it would offer a valuable reference standard for fuzzy rule
selection. Similarly, the greater the value of a fuzzy rule’s consequent part, the higher the
weight attributed to the corresponding fuzzy rule. During the decision-making process
for instances, this translates to assigning higher weights. Figure 1 depicts the architecture
for fuzzy rule selection and fuzzy rule weighted optimization. In Figure 1, Step (a) uses
training data to generate K fuzzy rules. The quality and activation levels of these fuzzy
rules vary with respect to instances. Differences in activation levels are chiefly reflected in
the fuzzy rule’s antecedent parts and consequent parts: the higher their values, the stronger
the activation towards the instance, suggesting better adaptability of the fuzzy rule to
specific data. Therefore, in Step (b), based on the product of the fuzzy rule’s antecedent
part and consequent part, we annotate the fuzzy rules with larger products with solid lines
and those with smaller products with dashed lines. Subsequently, in Step (c), we select the
high-quality fuzzy rules indicated by solid lines to form a new set of fuzzy rules, building
the classifier. While these fuzzy rules exhibit superior classification capacity for specific
data scenarios, they do not specifically deal with class-imbalanced data. Hence, in Step (d),
we categorize each fuzzy rule from top to bottom into different class-related parts. The
portions of the fuzzy rule corresponding to the minority class are assigned a higher weight,
whereas the portions corresponding to the majority class are given a lesser weight, thereby
enhancing the training of minority class information in the fuzzy rule. This effectively
amplifies the capability of the fuzzy rule to handle imbalanced data.

Next, we provide a detailed description of the training process for the tth fuzzy
sub-classifier in the B-TSK-FC ensemble fuzzy classification framework, following the
improvement of fuzzy rules. To begin, we divide the dataset into three subsets: a training
set, validation set, and testing set. We then compute the membership functions across
each dimension for the training data. The training process of a TSK fuzzy sub-classfiier is
introduced in Algorithm 1. Based on Step 2 of Algorithm 1, we generate the antecedent
part matrix Φt for the tth sub-classifier. Each column in the Φt matrix is the antecedent part
membership function information of an individual fuzzy rule. Consequently, we obtain the
antecedent part matrix Φt corresponding to the initially derived K fuzzy rules.
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Figure 1. An illustrative architecture of the fuzzy rule reduction and weighted optimization of fuzzy
rules: (a) Training of initial fuzzy rules. (b) Solid lines represent fuzzy rules with larger products of
antecedent parts and consequent parts, while dashed lines represent those with smaller products.
(c) Selecting fuzzy rules with larger products of antecedent parts and consequent parts. (d) Using a
weight matrix to apply weights to different class sections of each fuzzy rule.

Algorithm 1 Training process of the tth fuzzy sub-classifier

Input: Training dataset D = [X, Y], consisting of X = [x1, x2, . . . , xN ]T , and the corresponding class labels Y = [y1, y2, . . . , yN ]T .
Here, xn = [x1, x2, . . . , xd], n = 1, 2, . . . , N is the number of training instances, and d is the total dimension of the instance. For
binary classification, ynε{0,+1}. For multi-class classification, yn is transformed into a one-hot encoded binary vector, as outlined
in [37]. The method requires a pre-set initial fuzzy rule count K, optimized fuzzy rule count K′ where K′ < K, k′ = 1, 2, . . . , K′, a
regularization constant parameter λ, and the width of the Gaussian function, denoted as σk

tj, in which t = 1, 2, . . . , T, j = 1, 2, . . . , d,
k = 1, 2, . . . , K.

Output: a′t =
[

a1
t , a2

t , . . . , aK′
t

]T
, the consequent part parameters of the learned fuzzy rules in the tth zero-order TSK fuzzy

sub-classifier, the antecedent part matrix Φ′t =
[
φk′

t (xn)wc

]
N×K′

after fuzzy rule improvement, where wc is the weight of the

corresponding fuzzy rule.
Procedure:
Step 1 Using distribution information across classes, construct a diagonal weight matrix W.

Let the number of instances of class c in the training dataset be denoted as Nc, where c ∈ {1, 2, . . . , C} is the class label
of the instances. The total number of training instances is N, and the weight diagonal matrix W is defined as
W = diag(w1, w2, . . . , wc, . . . , . . . , wC), where wc = N/Nc. Here, “diag” denotes a diagonal matrix where the diagonal
elements are the provided values, and all off-diagonal elements are zero. In this context, W is an N× N diagonal matrix.



Mathematics 2023, 11, 4284 8 of 32

Algorithm 1 Count.

Step 2 Compute the Gaussian membership function for each feature of the instance, defined as follows for the kth fuzzy rule
and jth input feature.

φk
tj

(
xj

)
= exp

−1
2

(
xj − sk

tj

σk
tj

)2 (4)

where j = 1, 2, . . . , d and sk
tj ∈ {0, 0.25, 0.5, 0.75, 1} denotes the center of the kth fuzzy rule along the jth feature. Here,

t denotes the tth fuzzy sub-classifier, and σk
tj is determined either manually or using the method described in [36].

Then, compute the normalized membership function value for the instance xn under the kth fuzzy rule.

φk
t (xn) = ∑K

k=1

∏d
j=1 φk

tj

(
xnj

)
∑K

r=1 ∏d
j=1 φr

tj

(
xnj

) (5)

where n = 1, 2, . . . , N.
Step 3 Computing the consequent part of the fuzzy rule.

Initially, the number of fuzzy rules is set to K. The consequent part parameter matrix of the fuzzy rule is defined as at.
Subsequently, based on [35,36], it can be transformed into a linear equation form.

Φtat = Y (6)

By introducing the identity matrix IK×K and using the LLM [38–40], the consequent part parameter of the fuzzy rule can
be determined as

at =

(
1

2λ
I + ΦT

t Φt

)−1
Φt

TY (7)

Step 4 Calculate the matrix E of the antecedent parts and consequent parts of the fuzzy rules.

E = Φtat =
[
φk

t (xn)ak
]

N×K
(8)

Step 5 Select K′ fuzzy rules corresponding to the K′ columns in E that have the largest K′ average values and construct matrix

Φ′t =
[
φk′

t (xn)wc

]
N×K′

.

Step 6 Let the consequent part of the optimized fuzzy rules be denoted as a′t =
[

a1, a2, . . . , aK′
]T

. Using the weighted matrix

Φ′t, recalculate the consequent part a′t of the fuzzy rules, and again transform it into a linear equation form as suggested
by [35,36].

Φ′ta
′
t = Y (9)

Introduce the identity matrix IK′×K′ and use the LLM to derive the parameters for the improved consequent part of the
fuzzy rule [38–40].

a′t =
(

1
2λ

I + Φ′t
TΦ′t

)−1
Φ′t

TY (10)

Step 7 Return a′t, Φ′t.

Φt =
[
φk

t (xn)
]

N×K
(11)

Subsequent to Method 1’s Steps 3 and 4, using the antecedent part matrix Φt, we
derive the consequent parts of the fuzzy rules, forming the consequent part given by

Φtat = Y (12)
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where,

at =
[

a1, a2, . . . , aK
]T

=

(
1

2λ
I + ΦT

t Φt

)−1
Φt

TY (13)

where at denotes the matrix of fuzzy rule consequent parts, IK×K is the identity matrix, λ is
the regularization constant parameter, and Y is the set of instance labels. Subsequently, we
obtain the product matrix E of the antecedent parts and consequent parts by multiplying
the corresponding columns of the antecedent part matrix with the consequent part matrix.

E = Φtat =
[
φk

t (xn)ak
]

N×K
(14)

The greater the degree of membership of the antecedent parts and the value of the
consequent parts, the higher the adaptability of the fuzzy rule to a specific data scenario. A
larger product of the antecedent part and consequent part implies a higher weight in fuzzy
decision making. Thus, by computing the product of antecedent parts and consequent
parts, we select the columns with larger average values from E as high-quality fuzzy
rules, eliminating other fuzzy rules. Following Step 4 of Algorithm 1, we pick K′ fuzzy
rules, obtaining the optimized product matrix E’ of the fuzzy rule antecedent parts and
consequent parts.

E’ =
[
φk′

t (xn)ak′
]

N×K′
(15)

where k′ = 1, 2, . . . , K′ and K′ < K. We have successfully chosen K′ higher-quality fuzzy
rules from the initial K fuzzy rules in this way. The chosen center values of the antecedent
parts better match the distribution of specific instance data, thus enhancing the overall fuzzy
rule quality. We can better adapt to specific data scenarios by optimizing the quality of the
fuzzy rules, enhancing the rationality of classification boundaries and thereby strengthening
the overall performance of the fuzzy classifier.

It is widely known that too many fuzzy rules may damage the interpretability and
barely provide any improvement for the classification performance of the TSK fuzzy
classifier. In the iterative training process of the sub-classifiers of B-TSK-FC, the number
of fuzzy rules may increase without limit. Based on this consideration, the fuzzy rules of
each TSK fuzzy sub-classifier are randomly selected from the same candidate set prepared
in advance. The antecedent part of the fuzzy rules in the candidate set is generated
through random selection from {0, 0.25, 0.5, 0.75, 1} along each feature. The number of
fuzzy rules is enough for the TSK fuzzy classifier to achieve unsatisfactory but acceptable
classification accuracies. There are many duplicate fuzzy rules between different TSK fuzzy
sub-classifiers, which limits the number of fuzzy rules in the resultant B-TSK-FC. There
also exists a small part of different fuzzy rules between the TSK fuzzy sub-classifiers. One
fuzzy rule that cooperated with different fuzzy rules in different TSK fuzzy sub-classifiers
may play different roles. Thus, the differences between TSK fuzzy sub-classifiers are
determined by these different fuzzy rules. The numbers of fuzzy rules in the candidate set
for the fifteen datasets are introduced in Table 1. In order to guarantee the classification
performance of TSK fuzzy sub-classifiers while keeping differences between each pair of
TSK fuzzy sub-classifiers, the 15 benchmark datasets used in Table 1 are introduced in
detail in Section 4.1.

Table 1. The number of fuzzy rules in the candidate set for the fifteen datasets.

# Datasets The Number of Fuzzy Rules in the Candidate
Set for Each TSK Fuzzy Sub-Classifier

1 penbased(PEN) 255

2 marketing(MAR) 200

3 turkiyestudentevaluationRSpecific(TUR) 90
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Table 1. Cont.

# Datasets The Number of Fuzzy Rules in the Candidate
Set for Each TSK Fuzzy Sub-Classifier

4 DNA(DNA) 400

5 skin(SKI) 220

6 usps(USP) 220

7 musk(MUS) 535

8 vowel0(VOW) 200

9 car-good(CAG) 90

10 thyroid(THY) 280

11 poker-8-9_vs_6(P96) 145

12 shuttle-2_vs_5(SHU) 180

13 poker-8_vs_6(P86) 135

14 letterA(LET) 220

15 page_blocks(PAB) 155

While the above dynamic fuzzy rule selection method enhances the overall perfor-
mance of the fuzzy classifier, it does not specifically address scenarios with imbalanced
data. To improve the performance under such circumstances, we propose a concise and
efficient fuzzy rule weighting scheme. Specifically, the weight is determined by the ratio
of the total number of training instances N to the number of instances Nc of a particular
class in the training set, which are then used to construct the diagonal elements of the
weighted diagonal matrix. The weight matrix is defined as an N × N diagonal matrix,
where each diagonal element of a row corresponds to the weighting coefficient of the fuzzy
rule generated by the 1 to N training instances. Considering the fuzzy rule matrix rows,
which correspond to the 1 to N training instances in sequential order, if a row’s instance
belongs to a particular class, the diagonal position in the corresponding row of the weight
diagonal matrix is set to the ratio of N to Nc. In this way, the values on the diagonal
of the matrix represent the ratio of the total instance size to the number of instances in
the corresponding class. This approach conveniently constructs the fuzzy rule weighting
diagonal matrix, exemplified by the weight matrix W in Algorithm 1, Step 1.

After generating K initial fuzzy rules for the zero-order TSK fuzzy classifier, we select
K′ “high-quality” fuzzy rules from them. Then, we apply a weighting mechanism to the
antecedent part portion of these K′ fuzzy rules, as detailed in Step 5 of Algorithm 1. The
antecedent part matrix is given by

Φ′t =
[
φk′

t (xn)
]

N×K′
(16)

Each column is the membership information of the fuzzy rule after normalization in
matrix Φ′t, while each row depicts the antecedent part knowledge of a specific instance
across all fuzzy rules. The row corresponding to a particular instance is multiplied by the
weight of the diagonal element in the corresponding row of the weight matrix. This imple-
ments the antecedent part weighting based on the ratio of the total number of instances to
the number of instances in that specific category. By multiplying the weight matrix with the
antecedent part matrix and applying an appropriate transposition, the weighted antecedent
part matrix for the fuzzy rules is obtained.

Φ′t =
[
φk′

t (xn)wc

]
N×K′

(17)
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The weighted fuzzy rules can be described in the following Equation (18):

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xd is Ak
d

THEN yk = wcak, k = 1, 2, · · · , K.
(18)

The output of the TSK fuzzy sub-classifiers, which is composed of the weighted fuzzy
rules expressed in Equation (9), can be calculated as

Y =
K

∑
k=1

φk
t (x)(wcak) (19)

Equations (18) and (19) indicate that the weights do not alter the form of fuzzy rules
and the output, which guarantees the interpretability of the TSK fuzzy sub-classifiers.

The weighting process of the fuzzy rules has been completed. Through this mechanism,
when a specific row in matrix Φ′t encompasses membership function knowledge from
minority class instances, the respective portion of the fuzzy rule is assigned a larger weight.
Conversely, the parts of the fuzzy rule containing membership function information from
majority class instances are given reduced weight. This strategy amplifies the weight of the
minority class within the fuzzy rules while diminishing that of the majority class, thereby
enhancing the classification performance and adaptability for imbalanced data scenarios.
Subsequently, after fuzzy rule weighting, we obtain the renewed antecedent part matrix
Φ′t, and further represent it in a linear form [36].

Φ′ta
′
t = Y (20)

where a′t denotes the consequent part parameter vector that the classifier aims to learn, and
Y is the label of the training set. Via pseudoinverse computation, it is derived as

a′t =
(

1
2λ

I + Φ′t
TΦ′t

)−1
Φ′t

TY (21)

where IK′×K′ signifies the identity matrix, and λ is the introduced large amount. Conse-
quently, we have constructed a zero-order TSK fuzzy classifier optimized through fuzzy
rule selection and fuzzy rule weighting. The detailed training process for the tth fuzzy
rule-optimized sub-classifier is elaborated in Algorithm 1.

To improve the imbalanced classification performance of B-TSK-FC, we leverage
the idea of the Geometric Mean (G-mean) to formulate a loss function encompassing all
classes. We then employ gradient descent to optimize this function over a predefined set of
validation ensemble instances, thereby obtaining a weight matrix for the sub-classifiers that
minimizes class-specific errors. This step allows us to effectively ensemble individual sub-
classifiers to better fit the actual imbalanced instance distribution. Algorithm 2 illustrates
the entire training process for the B-TSK-FC fuzzy classifier. As shown in step 3 of Algorithm
2, we devised a scheme to weight ensemble sub-classifier outputs based on distinct weights,
with the overall output being as follows:

H(x) = w′1
Th1(x) + w′2

Th2(x) + · · ·+ w′T
ThT(x) (22)

where H(x) denotes the output of the ensemble classifier on a given instance x, ht (where
t = 1, 2, . . . , T) is the tth sub-classifier, and w’ =

[
w′1, w′2, . . . , w′T

]T is the ensemble
weights for each sub-classifier. To determine the optimal ensemble coefficients under
class-imbalanced data, we consider the prediction accuracy across all classes, particu-
larly emphasizing the impact of minority class prediction accuracy on the overall predic-
tion outcome. We have introduced a novel loss function based on the product of mean
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squared errors for each class. For instance, in the binary classification scenario, it is defined
as follows:

l
(

w’
)
=

1
P

P

∑
m=1

(w’Tzm − ym)
2
× 1

Q

Q

∑
m=P+1

(w’Tzm − ym)
2

(23)

where P and Q, respectively, denote the number of positive and negative instances in the
validation set and zm is the predicted output of the mth instance across all sub-classifiers.
The gradient of this loss function, upon differentiation, is given by

∇l
(
w’) = 1

PQ

[
P
∑

m=1

∂(w’Tzm−ym)
2

∂w’

Q
∑

m=P+1
(w’Tzm − ym)

2

+
P
∑

m=1
(w’Tzm − ym)

2 Q
∑

m=P+1

∂(w’Tzm−ym)
2

∂w’

]

= 1
PQ

[
P
∑

m=1
2(w’Tzm − ym)zm

Q
∑

m=P+1
(w’Tzm − ym)

2

+
P
∑

m=1

(
w’Tzm − ym

)2 Q
∑

m=P+1
2(w’Tzm − ym)zm

]
(24)

Let Z+ = [ztm]P×T . Z− = [ztm]Q×T , y+ = [y1, y2, . . . , yP]
T , y− =

[
y1, y2, . . . , yQ

]T ,
then

∇l
(
w’) = 2

PQ [ZT
+

(
Z+w’ − y+

)
∗
(
Z−w’ − y−

)T(Z−w’ − y−
)

+
(
Z+w’ − y+

)T(Z+w’ − y+

)
∗ ZT
−
(
Z−w’ − Y−

)
]

(25)

where Z+ and Z+ are the outputs of all sub-classifiers for positive and negative instances
in the validation set, respectively. Meanwhile, y+ and y+ denote the labels of these positive
and negative instances, respectively. Setting Equation (25) to zero and using gradient
descent, we identify the weight matrix w’ corresponding to the minimized loss function as

w’ = w’ − η∇l
(

w’
)

(26)

where η is the learning rate, as illustrated in Step 3 of Algorithm 2. Based on the foundation
established in Step 2, we use the training set D” to train, constituted by the outputs of all sub-
classifiers on the validation set. Through gradient descent, we compute the optimal weight
matrix w’ =

[
w′1, w′2, . . . , w′T

]T . Conveniently, we term this class-imbalanced ensemble
scheme, which considers the testing accuracy of each class, as the G-mean weighted
ensemble. For multi-class data, we ascertain the weights of the sub-classifiers using a
methodology analogous to binary classification. The output post-weighing of the sub-
classifiers is

H(x) = w′1
Th1(x) + w′2

Th2(x) + . . . + w′T
ThT(x) (27)

Within the G-mean weighted ensemble strategy, the outputs of the sub-classifiers on
the validation set are treated as features for new training instances. Simultaneously, the
labels of the validation instances are used as labels for these new instances, forming the
new weight-training dataset D”. This dataset facilitates the training of ensemble weights
for each sub-classifier.
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Algorithm 2 Training process of B-TSK-FC

Input: Training set D = [(x1, y1), (x2, y2), . . . , (xN , yN)]T , where xn = [x1, x2, . . . , xd], n = 1, 2 , . . . , N denotes the number of
instances in the training set, and d is the total dimension of the instance. Validation set D’ = [(x1, y1), (x2, y2), . . . , (xM, yM)]T ,
where xm = [x1, x2, . . . , xd], m = 1, 2, . . . , M is the number of instances in the validation set. For binary classification, ynε{0,+1}.
For multi-class classification, yn is encoded using one-hot encoding into a binary vector following [37]. Number of sub-classifiers, T.
Output: Fuzzy rule-improved fuzzy sub-classifier ht(x), B-TSK-FC broad ensemble classifier
H(x) = w′1

Th1(x) + w′2
Th2(x) + . . . + w′T

ThT(x)), where w′t is the ensemble weight of the tth TSK fuzzy sub-classifier,
t = 1, 2, . . . , T.
Procedure:
Step 1 Using T and D, invoke Algorithm 1 to generate T sub-classifiers post-fuzzy rule improvement. Let ht denote the tth

zero-order TSK fuzzy sub-classifier, which has finished fuzzy rule selection and weight optimization, where
t = 1, 2, . . . , T. Algorithm 1 is denoted as Lt. Execute the following iterative procedure.

f or t = 1 to T do

ht = Lt(D);
end f or
Step 2 Use the validation set D’ to generate the training set D” for training the ensemble weightings. Initially set D” = ∅.

Subsequently, execute the following iterative procedure.

f or m = 1 to M do

f or t = 1 to T do
ztm = ht(xm);
end f or

zm = (z1m, z2m, . . . , zTm)
D′′ = D” ∪ (zm, ym);

end f or
Step 3 Use the gradient descent method on D” to compute the ensemble weighting matrix for each sub-classifier, denoted as

w’ =
[
w′1, w′2, . . . , w′T

]T , where each weight w′t is the ensemble weight for the tth sub-classifier to facilitate the weighted
ensemble of all sub-classifiers, with t = 1, 2, . . . , T.
Step 3.1 Define Loss Function.

Drawing inspiration from the G-mean metric, design a loss function l
(
w’) using the mean square error for each

instance class.

l
(

w’
)
=

1
P

P

∑
m=1

(w’Tzm − ym)
2 1

Q

Q

∑
m=P+1

(w’Tzm − ym)
2

(28)

where P and Q, respectively, denote the count of positive and negative instances in the validation set, such that
P + Q = M. zm is the predictive output for the mth instance in the validation set across all sub-classifiers,
serving as the training feature set for the ensemble weights. To minimize this loss, compute the gradient of the
loss function l

(
w’).
∇l
(
w’) = 2

PQ [ZT
+

(
Z+w’ − y+

)
∗
(
Z−w’ − y−

)T(Z−w’ − y−
)

+
(
Z+w’ − y+

)T(Z+w’ − y+
)
∗ ZT
−
(
Z−w’ − Y−

)
]

(29)

where Z+ and Z−, respectively, denote the predicted outputs for all positive and negative instances across all
sub-classifiers. Meanwhile, y+ and y− correspondingly represent the actual classes of all positive and negative
instances.

Step 3.2 Set
w’ = w’ − η∇l

(
w’
)

(30)

where η is the learning rate, thus deriving the optimal solution matrix w’ for the ensemble weights on data D”

using the gradient descent method.
Step 3.3 Use the obtained weight matrix w’ to ensemble all TSK fuzzy sub-classifiers, obtaining the total output for the

classifier post-ensemble as

H(x) = w′1
Th1(x) + w′2

Th2(x) + . . . + w′T
ThT(x) (31)

Step 4 Output ht(x), H(x).
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The reduction of fuzzy rules in the training process of TSK fuzzy sub-classifiers may
lead to the weakness of the related fuzzy rules in the ensemble structure. The effect of a
fuzzy rule in B-TSK-FC can be evaluated by its total output in the following Equation (32):

Y =
T

∑
t=1

w′tw
t
kat

kφt
k(x) (32)

Equation (32) indicates that the effect of a fuzzy rule in B-TSK-FC is jointly determined
by the weight wt

k of the fuzzy rule and the weight w′t of the TSK fuzzy sub-classifier. If a
fuzzy rule is neglected in many TSK fuzzy subclassifiers (corresponding to wt

k = 0), it may
impact the prediction of B-TSK-FC weakly. In other words, besides the interpretable fuzzy
rules, B-TSK-FC is provided with two other understandable parameters, w′t and wt

k, which
demonstrate the importance of the corresponding fuzzy rules.

Specifically, we initially used Algorithm 1 to generate T zero-order TSK fuzzy sub-
classifiers improved through fuzzy rules based on the training set. In Step 2 of Algorithm 2,
we used the outputs of the sub-classifiers on the validation set as features for new instances,
and the validation set labels served as the labels for these new instances, culminating in
the formation of a new training dataset D”. Subsequently, in Step 3, we deployed gradient
descent on D” to calculate the ensemble weights of the sub-classifiers, accomplishing the
system’s weighted ensemble. The selection of the number of sub-classifiers T is contingent
upon the best generalization performance on the testing set. Figure 2 delineates the training
and prediction procedure of B-TSK-FC. We partitioned the original data into training, vali-
dation, and testing sets. The sub-classifiers, generated and improved based on the training
set, predicted outputs on the validation set, serving as new input features, essentially
representing the probabilities of predicted instance categories. Thereafter, employing the
validation set labels as new instance labels, we trained the ensemble weights. Once trained,
we used the ensemble classifier to predict on the testing set, deriving the final outcomes.
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The newly formulated loss function we have introduced places significant emphasis
on the prediction accuracy of each class in imbalanced data, with a heightened focus
on minority classes. This is instrumental in obtaining ensemble weights that ameliorate
the performance of class-imbalanced learning, which, in turn, augments the classifier’s
performance in scenarios with imbalanced class distributions.

3.2. Theoretical Analysis and Proof of the Principle behind B-TSK-FC

This study presents the training process of the B-TSK-FC broad fuzzy classifier, which
can be segmented into three phases: (1) Selection of fuzzy rules in the zero-order TSK
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fuzzy classifier; (2) Weighted optimization of the fuzzy rules; and (3) Final G-mean
weighted ensemble.

(1) In the selection phase, the quality of fuzzy rules varies depending on the chosen
centers of the antecedent parts. Some fuzzy rules align exceptionally well with
particular data, while others do not. It is worth noting that fuzzy rules with larger
antecedent part values typically produce higher values of the membership functions,
suggesting the appropriate selection of the antecedent part centers. As a result, the
constructed fuzzy rules better adhere to the original data distribution. The consequent
part of a fuzzy rule is its weight; the larger its value, the closer its decision boundary
is to the real data boundary. By affecting the output through a linear combination of
antecedent parts and consequent parts (Equation (8)), the selection method proposed
in this study optimizes the overall quality of fuzzy rules, reduces their number,
enhances interpretability, and significantly boosts classification performance. This
approach also tackles the fuzzy rule explosion issue induced by increasing data
complexity, dynamically adapting to complex and variable data environments.

(2) In the weighting phase, traditional zero-order TSK fuzzy classifiers underperform
when dealing with imbalanced data. Hence, leveraging class-specific information, we
generate a concise weight matrix that assigns higher weights to fuzzy rules encom-
passing minority class membership function knowledge, enhancing training efficacy.
In contrast, fuzzy rules with majority class membership function information are
assigned lower weights, which improves the capability to handle class imbalances.

(3) At the ensemble stage, we define a new loss function inspired by the G-mean metric
from imbalanced learning to compute the rational weights of each fuzzy sub-classifier
in imbalanced scenarios. This G-mean weighted ensemble scheme effectively ame-
liorates prediction performance, precludes the negligence of minority classes, and
mitigates overfitting risks.

Through the design of these three stages, the B-TSK-FC broad fuzzy classifier not only
bolsters its capability to process imbalanced classes but also refines the overall classification
accuracy and efficiency by meticulously adjusting fuzzy rules, making it more adaptable to
complex and variable data environments.

In what follows, we will prove that the fuzzy rule selection strategy proposed in this
study can significantly enhance the generalization performance of the fuzzy classifier. This
proof is based on the testing set and uses the cross-entropy loss function for evaluation.

Taking a binary classification as an example, let the positive class label of an instance
be y = 1 and the negative class label be y = 0. The output expression for the zero-order
TSK fuzzy classifier is given by

y =
∑K

k=1 µk(x)ak

∑K
r=1 µr(x)

(33)

where µk(x) denotes the antecedent part of the fuzzy rule for the testing instance under
the kth fuzzy rule, and ak is the consequent part of the kth fuzzy rule. The classifier output
y resides in the (0,1) range after normalization. Typically, this output is perceived as the
probability of predicting the instance as the positive class (y = 1). Consequently, the
probability of predicting the instance as the negative class (y = 0) can be represented by
(1− y). If y > 0.5, it becomes straightforward to classify the input instance as the positive
class; otherwise, it is classified as the negative class [41]. Equation (33) suggests that the
larger the product of the antecedent part and the consequent part of the fuzzy rule, the
closer the output y is to 1, implying a higher probability for the classifier to predict the
instance as the positive class; conversely, the higher the likelihood of predicting it as the
negative class.

Assume that before the selection of the fuzzy rule, the product of the antecedent
part and the consequent part of the fuzzy rule is given by µk1(x)ak1, leading to an output
from the classifier as ŷ1

p. At this juncture, the probability of the classifier predicting the
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label as y = 1 is ŷ1
p, and for the label y = 0, the probability is 1− ŷ1

p. After the selection
process, the product of the antecedent part and the consequent part of the fuzzy rule
changes to µk2(x)ak2. As the selection is based on the value of this product, it follows that
µk2(x)ak2 > µk1(x)ak1. Consequently, the classifier output shifts to ŷ2

p. At this point, the
classifier’s probability for predicting the label as y = 1 is ŷ2

p, while for the label y = 0, it is
1− ŷ2

p.
To evaluate performance, the cross-entropy loss function is employed, and its expres-

sion is

L = −1
I

I

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (34)

where I denotes the number of testing set instances, yi is the label of the ith testing instance
(1 for the positive class and 0 for the negative class), and ŷi is the predicted probability,
where ŷi belongs to the interval (0, 1).

(1) Assuming the label of the ith instance is yi = 1 (i.e., the instance belongs to the positive
class), the cross-entropy loss function becomes

L = − log(ŷi) (35)

Its derivative is
∇L = − 1

ŷi
< 0 (36)

where ŷi ∈ (0, 1). It is evident that the cross-entropy loss function is monotonically
decreasing within this interval.

The classifier’s probability for predicting the instance as the positive class is ŷ1
i before

the fuzzy rule selection, and its output corresponds to ŷ1
ip. The loss for the classifier in this

instance is
L1 = − log

(
ŷ1

i

)
(37)

After the reduction through fuzzy rule selection, the classifier’s probability for predict-
ing the instance as positive becomes ŷ2

i , leading to an output of ŷ2
ip. At this juncture, the

classifier’s loss for this instance is

L2 = − log
(

ŷ2
i

)
(38)

When the true label yi = 1, we have

ŷ1
i = ŷ1

ip (39)

ŷ2
i = ŷ2

ip (40)

Furthermore, we understand that

µk2(x)ak2 > µk1(x)ak1 (41)

referring to the output expression of the fuzzy classifier in Equation (33).
Thus,

ŷ2
ip > ŷ1

ip (42)

It follows that
ŷ2

i > ŷ1
i (43)

Given that the loss function is monotonically decreasing for ŷi ∈ (0, 1), it leads to

L2 < L1 (44)
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which implies
L2 − L1 < 0 (45)

This demonstrates that when the label yi = 1, the classifier’s loss after fuzzy rule
selection improvement is lower than before the selection.

(2) Assuming the label of the ith instance is yi = 0 (i.e., the instance belongs to the
negative class), the cross-entropy loss function is expressed as

L = − log(1− ŷi) (46)

Its derivative becomes
∇L =

1
1− ŷi

> 0 (47)

Given that ŷi lies within the interval (0, 1), it is evident that the cross-entropy loss
function is monotonically increasing within this range.

Before the fuzzy rule selection, the classifier’s probability of predicting the instance as
the negative class is ŷ1

i , and the output of the classifier corresponds to ŷ1
ip. The loss incurred

by the classifier for this instance at this juncture is

L1 = − log
(

ŷ1
i

)
(48)

The classifier’s probability of predicting the instance as the negative class becomes ŷ2
i

after the fuzzy rule selection, with the corresponding classifier output being ŷ2
ip. Conse-

quently, the classifier’s loss for this instance is

L2 = − log
(

ŷ2
i

)
(49)

In the context where the true label yi = 0, we have

ŷ1
i = 1− ŷ1

ip (50)

ŷ2
i = 1− ŷ2

ip (51)

Moreover, the following holds true:

µk2(x)ak2 > µk1(x)ak1 (52)

referencing the output formula of the fuzzy classifier, Equation (37).
It follows that

ŷ2
ip > ŷ1

ip (53)

Substituting from Equations (50) and (51), we deduce

ŷ2
i < ŷ1

i (54)

Given that the loss function is monotonically increasing for ŷi within the interval (0,
1), it results in

L2 < L1 (55)

which implies
L2 − L1 < 0 (56)

This establishes that the loss of the classifier post-fuzzy rule selection improvement is
less than its loss prior to the improvement when the label yi = 0.

In summary, we have demonstrated that under the same number of fuzzy rules, the
fuzzy rule selection improvement scheme proposed in this study effectively reduces the
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classification loss of the fuzzy classifier, thereby significantly enhancing its generalization
performance. This validates our hypothesis.

3.3. Complexity Analysis

The time complexity of the B-TSK-FC method proposed in this paper mainly comprises
two parts: the first is the training time complexity of each fuzzy sub-classifier in Algorithm
1, and the second is overall time complexity during the ensemble phase in Algorithm 2.

In the first phase, assuming there are T sub-classifiers, the number of training instances
for the tth sub-classifier is N. According to Equations (5), (7) and (8) in Algorithm 1, the
time complexity at this stage can be inferred as O

(
Nd2K + K3). Concurrently, the time com-

plexity for fuzzy rule selection is O(NK + K). Furthermore, the time complexity for fuzzy
rule weighting is O(3NK′), and for calculating the consequent part from Equation (10), it is
O
(

K′
3
)

. Hence, the total time complexity for each fuzzy sub-classifier can be expressed as

O
(

Nd2K + K3 + 3NK′ + NK + K + K′
3
)

, which simplifies to O
(

Nd2K + K3 + K′
3
)

. Here,

K is the initial number of fuzzy rules, K′ is the number of fuzzy rules after selection
(K′ < K), and d is the dimension of the instances. It is noteworthy that after fuzzy rule
selection and weighting, the time complexity of the improved zero-order TSK fuzzy clas-
sifier only increases by O

(
K′

3
)

compared to the original zero-order TSK fuzzy classifier

O
(

Nd2K + K3). This is mainly due to the improved techniques involving mostly low-
dimensional matrix operations, signifying that our fuzzy rule improvement approach
does not significantly increase the time complexity yet markedly enhances the perfor-
mance of the fuzzy classifier to address imbalanced data. Following Algorithm 2, each
sub-classifier has the same training time complexity. Therefore, the collective time com-
plexity for all sub-classifiers is O(∑T

t=1

(
N d2K + K3 + K′

3
)
). Adding the complexity of the

weighted ensemble, which is O(T), the resulting overall time complexity after the ensemble
is O(∑T

t=1

(
N d2K + K3 + K′

3
)
+ O(T)) = O(∑T

t=1

(
N d2K + K3 + K′

3
)
). In summary, the

complete time complexity of the method is O(∑T
t=1

(
N d2K + K3 + K′

3
)
).

4. Experimental Results

In this section, we conduct an in-depth experimental evaluation of the newly pro-
posed B-TSK-FC method. The experimental data are sourced from benchmark datasets of
KEEL [42] and UCI [43]. Moreover, we have also compared the B-TSK-FC method with
five other leading imbalanced class classifiers and ensemble classifiers. The layout of this
section is as follows: Sections 4.1–4.3 provide detailed descriptions of the datasets used
in the experiment, the comparative methods, parameter settings, and evaluation criteria,
respectively. In Section 4.4, we present and analyze the experimental results in detail.
Finally, in Section 4.5, we conduct a statistical analysis of the results.

4.1. Datasets

To ensure the fairness and comprehensiveness of our study, we selected 15 benchmark
datasets from KEEL [42] and UCI [43] to conduct a consistent evaluation of the B-TSK-FC
method compared to other comparative methods. In order to thoroughly evaluate the
classification performance of the proposed B-TSK-FC, fifteen datasets of various numbers of
dimensionalities, classes, instances and imbalance ratios in a wide range are adopted in this
experiment. The class imbalance ratios of these datasets range from 2 to 175, encompassing
a wide spectrum from mildly imbalanced to highly imbalanced data environments. In
addition, the dimensionality of the datasets varies from 3 to 241, with instance sizes
ranging from 1000 to 240,000 and the number of classes ranging between 2 and 10. Hence,
these datasets adequately represent imbalanced data scenarios across different dimensions,
instance counts, and class counts. Table 2 provides a detailed list of the attributes of these
15 datasets, where IR denotes the imbalance ratio of the instances.
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Table 2. Summary of 15 datasets.

# Datasets IR No. of
Instances

No. of
Features

No. of
Classes

1 penbased(PEN) 1.95 1100 16 10

2 marketing(MAR) 2.49 6877 13 9

3 turkiyestudentevaluationRSpecific(TUR) 3.03 5820 33 5

4 DNA(DNA) 3.29 3186 180 2

5 skin(SKI) 3.82 245,057 3 2

6 usps(USP) 4.00 1500 241 2

7 musk(MUS) 5.49 6598 166 2

8 vowel0(VOW) 9.98 988 13 2

9 car-good(CAG) 24.04 1728 6 2

10 thyroid(THY) 40.16 7200 21 3

11 poker-8-9_vs_6(P96) 58.40 1485 10 2

12 shuttle-2_vs_5(SHU) 66.67 3316 9 2

13 poker-8_vs_6(P86) 85.88 1477 10 2

14 letterA(LET) 112.64 2000 21 2

15 page_blocks(PAB) 175.46 5473 10 5

4.2. Comparative Methods

We adopt seven class-imbalanced learning methods for comparison against the pro-
posed method in this experiment. Since the B-TSK-FC method is premised on improving
the zero-order TSK fuzzy system, we selected the original zero-order TSK fuzzy system
as our initial comparative method, aiming to highlight the performance improvement of
B-TSK-FC over the base TSK fuzzy classifier. However, considering that the original TSK
fuzzy system was not specifically designed to handle class-imbalanced data, we first used
the SMOTE [7] method to balance the imbalanced dataset and labeled this comparative
method as SMOTE+TSK. The subsequent method for comparison is the Loss-Weighted
TSK method (W-TSK), which is widely regarded as an effective method within the field
of class-imbalanced learning. W-TSK builds upon the cost-sensitive approach, allocating
distinct weights to the losses of minority and majority class instances, assigning higher
weights to the losses of minority class instances and correspondingly reducing the weights
for majority class instances, thus effectively enhancing the attention paid to the minority
class. We also chose the classical K-Nearest Neighbors method, called KNN, as the third
comparative method. Since KNN does not inherently address class imbalance, we again
used the SMOTE method for data preprocessing and called this method SMOTE+KNN.

Considering the ensemble learning strategy adopted by the B-TSK-FC method, we
further selected four methods renowned for their robustness and superior performance
in the imbalanced ensemble field: RUSBoost [18], OverBoost [23], SMOTEBagging [19],
and SMOTEBoost [20]. The RUSBoost method combines under-sampling strategies with
the Boosting ensemble method, establishing itself as a hallmark method for imbalanced
ensemble learning. Similarly, the OverBoost method integrates over-sampling with the
Boosting ensemble, using random over-sampling techniques to balance data and further
harnessing the potent capabilities of Boosting, thereby offering notable robustness and ac-
curacy when handling class-imbalanced data. SMOTEBagging is a combination of SMOTE
and Bagging (Bootstrap Aggregating) [7]. Before each sub-sample training, it first uses the
SMOTE method to increase minority class instances and then trains the base classifier on
this expanded dataset. This method aims to enhance the base classifier’s ability to identify
minority classes, thereby making the entire bagging ensemble perform better in the face
of class imbalance problems. SMOTEBoost is a combination of SMOTE and Boosting. In
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each round of Boosting, SMOTEBoost first uses the SMOTE method to oversample the
currently misclassified minority class instances and then trains a new base classifier on
this expanded dataset. Compared with traditional Boosting methods, this method not
only focuses on misclassified instances but also particularly emphasizes the importance
of minority classes. In this way, with the iteration of Boosting, the model’s sensitivity to
minority classes will gradually increase. SMOTEBagging and SMOTEBoost are strategies
that combine SMOTE with ensemble learning methods to improve the classification model’s
ability to identify minority classes. They are all the most advanced and robust methods
in the field of class imbalance learning. Therefore, we used these two ensemble methods
combined with SMOTE as comparative methods

4.3. Parameter Settings and Evaluation Metrics

To ensure the comparability of the experimental results, we used a grid search ap-
proach to find the optimal parameter combinations for the B-TSK-FC method and its
comparative methods across all datasets. Within the B-TSK-FC method, there are three
primary parameters: the center µ of the Gaussian function in the antecedent part of the
TSK fuzzy system, the number of fuzzy rules K in the TSK fuzzy classifier, and the number
T of TSK sub-classifiers in the ensemble. Firstly, for the center value µ of the Gaussian
membership function, we constrained it to randomly select from the range [0, 0.25, 0.5,
0.75, 1] drawing on recommendations from [44]. This configuration also ensures the lan-
guage interpretability of the TSK fuzzy classifier, e.g., interpretations such as very bad,
bad, medium, good, and very good. Secondly, for the number of fuzzy rules K in each TSK
fuzzy sub-classifier, we searched for the optimal fuzzy rule count in the range of 5 to 500 in
increments of 5. This approach ensures a thorough exploration of the parameter space to
identify the best fuzzy rule parameter. Lastly, for the number T of TSK fuzzy sub-classifiers
in the B-TSK-FC ensemble system, we also adopted a search range of 5 to 500, with incre-
ments of 5, until we found the optimal parameter settings under the G-mean evaluation
metric. Such parameter-setting strategies are designed to ensure exhaustive exploration of
the parameter space while identifying the parameter combination that achieves optimal
performance. Detailed parameter settings for B-TSK-FC can be found in Table 3.

Table 3. Parameter settings for the B-TSK-FC method.

Parameters Ranges and Intervals

µ: Center value of the Gaussian membership function [0, 0.25, 0.5, 0.75, 1]

K: Number of fuzzy rules for the TSK fuzzy sub-classifier 5:5:500

T: Number of sub-classifiers in the ensemble 5:5:500

Table 4 provides the parameter settings for the comparative methods used in the
experiments. In this context, µ denotes the center value of the Gaussian membership
function for the antecedent part of the fuzzy system, while K is the number of fuzzy rules
in the TSK fuzzy classifier. To maintain experimental fairness, we set the parameters for the
SMOTE+TSK comparative method based on the default values listed in Table 4. Similarly,
we determined the center µ of the Gaussian membership function and the fuzzy rule
number K for the TSK fuzzy system by a grid search approach, ensuring that the search
range and step size matched the settings for the µ parameter and fuzzy rule number K in
the B-TSK-FC method as presented in Table 3. For the Weighted TSK method (W-TSK), the
parameter settings for the components µ and K were aligned with those of the B-TSK-FC
method. As for the SMOTE+KNN comparative method, its principal parameter was the
number of neighbors in the KNN method. We conducted a search within the range of
2 to 200 with a step size of 1 to fully exploit its performance potential. Regarding the
ensemble methods designed for class imbalance, RUSBoost and OverBoost, we adhered to
the general parameter settings provided in Table 4. Consistent with the B-TSK-FC method,
we looked for the optimal ensemble size of sub-classifiers in the range of 2 to 500, with
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a step size of 1, using a grid search approach to derive the best parameter values. This
setup was implemented to guarantee the reliability and impartiality of the experimental
results. Through these rigorous parameter settings and optimization processes, we ensured
that the experimental results for all methods and datasets accurately reflected performance
under the optimal hyperparameter combinations. The parameter settings of the last two
ensemble comparative methods, SMOTEBagging and SMOTEBoost, are listed in detail in
Table 4. The number of their sub-classifiers also uses the grid search method to range from
5 to 500 with a step size of 5 and is searched step by step.

For learning from class-imbalanced data, traditional overall accuracy metrics often
fail to comprehensively reflect the method’s predictive performance for the minority class.
Hence, we opted for the G-mean as the primary metric for evaluating the performance
of each method in this study. The G-mean effectively gauges the balanced accuracy of
predictions across classes in the context of class imbalance. Thus, using it as a criterion
provides a more objective and comprehensive reflection of the performance of various
methods in solving the class imbalance issue. Additionally, the confusion matrix defines
various metrics for evaluating method performance, with detailed information provided in
Table 5. The specific formula for G-mean is as follows:

G−mean =

√
TP

TP + FN
× TN

TN + FP
(57)

Table 4. Parameter settings of the comparative methods.

Approaches Default Values of Parameters Ranges and Intervals of Parameters

SMOTE+TSK
sampling_strategy = ‘auto’,

random_state = None,
k_neighbors = 5

µ : [0, 0.25, 0.5, 0.75, 1]
K: 5:5:500

W-TSK - µ : [0, 0.25, 0.5, 0.75, 1]
K: 5:5:500

SMOTE+KNN
sampling_strategy = ‘auto’,

random_state = None,
k_neighbors = 5(KNN)

k_neighbors(KNN): 2:1:100

RUSBoost learning_rate = 1.0,
random_state = None n_estimators: 5:5:500

OverBoost
random_state = None,

k_neighbors = 5,
early_termination; False

n_estimators: 5:5:500

SMOTEBagging
random_state = None,

k_neighbors = 5,
sampling_strateg = ‘auto’

n_estimators: 5:5:500

SMOTEBoost
random_state = None,

learning_rate = 1.0,
k_neighbors = 5

n_estimators: 5:5:500

Table 5. Confusion matrix for binary classification.

True Condition
Predicted Result

Positive Negative

Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)
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4.4. Comparative Experimental Study

To thoroughly evaluate the performance of the B-TSK-FC method for class-imbalanced
learning proposed in this research, we designed and conducted a series of comparative ex-
periments. In these experiments, we selected two class-imbalanced learning methods based
on the TSK fuzzy system (i.e., SMOTE+TSK and W-TSK), one SMOTE+KNN method using
the K-nearest neighbors approach, and four advanced methods in the class-imbalanced
ensemble learning field (RUSBoost, OverBoost, SMOTEBagging, and SMOTEBoost) as
comparative methods. Since the proposed B-TSK-FC is constructed through an ensemble
manner, the ensemble methods RUSBoost, OverBoost, SMOTEBagging, and SMOTEBoost
are adopted. TSK fuzzy classifiers SMOTE+TSK and W-TSK, which tackle imbalanced data
by different means from B-TSK-FC, are adopted to evaluate the efficiency of the method-
ology of B-TSK-FC. RusBoost, OverBoost, and SMOTE+KNN are the state-of-the-art or
typical methods; thus, the experimental comparison between B-TSK-FC and them may be
helpful for fair evaluation. Following the parameter-setting strategies mentioned above,
we optimized each parameter using grid search to ensure fairness in experimentation.
All experiments were conducted on 15 benchmark datasets sourced from KEEL and UCI
using G-mean as the evaluation metric. Following our parameter optimization strategy,
we executed the B-TSK-FC method and the seven comparative methods ten times each
on every dataset. Subsequently, we recorded the G-mean scores of each method on the
training and testing sets and calculated the average of the ten runs for each method on the
respective training and testing sets, representing the final G-mean score. Table 6 presents
the detailed experimental results, where K denotes the fuzzy rule count in the TSK fuzzy
system, and T is the number of sub-classifiers in the ensemble learning method. The best
performance of the methods carried out on each dataset is marked in bold in Table 6. To
offer a more intuitive performance comparison, we visualized the average final G-mean
scores of B-TSK-FC and the comparative methods on each testing dataset in a bar chart
format (as illustrated in Figure 3). This representation vividly highlights the performance
advantage of the B-TSK-FC method over other methods across various datasets.
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Table 6. Average number of fuzzy rules, number of sub-classifiers in the ensemble framework, average G-mean value, and standard deviation for TSK classifier
classification performance on benchmark datasets.

DAS
B-TSK-FC SMOTE+TSK W-TSK SMOTE+KNN RusBoost OverBoost SMOTEBagging SMOTEBoost

Training ± Std
Testing ± Std K T Training ± Std

Testing ± Std K Training ± Std
Testing ± Std K Training ± Std

Testing ± Std
Training ± Std
Testing ± Std T Training ± Std

Testing ± Std T Training ± Std
Testing ± Std T Training ± Std

Testing ± Std T

PEN 0.9714 ± 0.0001
0.9811 ± 0.0001 230 10 0.9517 ± 0.0000

0.9434 ± 0.0003 200 0.9774 ± 0.0000
0.9672 ± 0.0001 300 0.9778 ± 0.0000

0.9612 ± 0.0001
0.7791 ± 0.0006
0.7209 ± 0.0015 350 0.8810 ± 0.0003

0.8804 ± 0.0005 55 1.0000 ± 0.0000
0.9783 ± 0.0000 500 0.1408 ± 0.0470

0.1364 ± 0.0443 100

MAR 0.2455 ± 0.0001
0.2518 ± 0.0001 180 10 0.2731 ± 0.0001

0.2227 ± 0.0003 400 0.3143 ± 0.0000
0.2306 ± 0.0001 200 0.4155 ± 0.0000

0.2274 ± 0.0001
0.2205 ± 0.0002
0.1977 ± 0.0005 170 0.2523 ± 0.0000

0.2353 ± 0.0002 90 0.9133 ± 0.0000
0.2324 ± 0.0000 50 0.2436 ± 0.0086

0.2264 ± 0.0124 25

TUR 0.8706 ± 0.0001
0.8297 ± 0.0002 80 50 0.8579 ± 0.0000

0.8170 ± 0.0001 250 0.8678 ± 0.0000
0.8178 ± 0.0001 275 0.8601 ± 0.0000

0.8272 ± 0.0001
0.8234 ± 0.0009
0.8241 ± 0.0012 300 0.8485 ± 0.0001

0.8294 ± 0.0002 250 0.9990 ± 0.0000
0.8448 ± 0.0001 25 0.8468 ± 0.0095

0.8432 ± 0.0114 30

DNA 0.8206 ± 0.0002
0.7487 ± 0.0003 360 30 0.7614 ± 0.0000

0.6300 ± 0.0004 450 0.7793 ± 0.0001
0.6223 ± 0.0007 450 0.4978 ± 0.0000

0.3622 ± 0.0003
0.8409 ± 0.0000
0.7994 ± 0.0002 100 0.8526 ± 0.0000

0.8294 ± 0.0002 40 0.9740 ± 0.0000
0.7121 ± 0.0005 5 0.8303 ± 0.0092

0.8200 ± 0.0137 5

SKI 0.9793 ± 0.0000
0.9814 ± 0.0000 200 10 0.9669 ± 0.0000

0.9665 ± 0.0000 10 0.9670 ± 0.0000
0.9672 ± 0.0000 19 0.9791 ± 0.0000

0.9782 ± 0.0000
0.9652 ± 0.0001
0.9629 ± 0.0001 24 0.9643 ± 0.0000

0.9614 ± 0.0001 18 0.9999 ± 0.0000
0.9993 ± 0.0000 20 0.9438 ± 0.0007

0.9434 ± 0.0014 10

USP 0.9569 ± 0.0001
0.9444 ± 0.0003 200 10 0.9536 ± 0.0001

0.8938 ± 0.0006 240 0.9481 ± 0.0000
0.8710 ± 0.0014 325 0.9468 ± 0.0000

0.9467 ± 0.0004
0.8795 ± 0.0001
0.8293 ± 0.0005 20 0.9479 ± 0.0001

0.9371 ± 0.0002 10 1.0000 ± 0.0000
0.8550 ± 0.0004 500 0.9996 ± 0.0007

0.8251 ± 0.0008 100

MUS 0.9696 ± 0.0000
0.9653 ± 0.0000 480 50 0.9582 ± 0.0000

0.9396 ± 0.0001 600 0.9579 ± 0.0000
0.9464 ± 0.0001 500 0.9687 ± 0.0000

0.9311 ± 0.0000
0.9649 ± 0.0000
0.9385 ± 0.0002 80 0.9559 ± 0.0000

0.9250 ± 0.0001 50 0.9995 ± 0.0000
0.9355 ± 0.0002 25 0.9999 ± 0.0000

0.9601 ± 0.0000 250

VOW 0.9979 ± 0.0000
0.9969 ± 0.0000 180 300 0.9811 ± 0.0000

0.9794 ± 0.0001 90 0.9822 ± 0.0001
0.9795 ± 0.0000 85 0.9890 ± 0.0000

0.9868 ± 0.0000
0.9650 ± 0.0025
0.9386 ± 0.0025 29 0.9944 ± 0.0000

0.9529 ± 0.0006 10 0.9958 ± 0.0000
0.9702 ± 0.0008 5 1.0000 ± 0.0000

0.9789 ± 0.0168 80

CAG 0.9832 ± 0.0000
0.9854 ± 0.0000 80 150 0.9247 ± 0.0000

0.9117 ± 0.0009 170 0.9210 ± 0.0000
0.9203 ± 0.0001 130 0.9589 ± 0.0000

0.9361 ± 0.0003
0.8671 ± 0.0093
0.8842 ± 0.0059 475 0.9625 ± 0.0000

0.9612 ± 0.0000 25 1.0000 ± 0.0000
0.8908 ± 0.0036 20 0.9572 ± 0.0153

0.9049 ± 0.0773 30

THY 0.7511 ± 0.0006
0.7580 ± 0.0004 250 10 0.7450 ± 0.0000

0.7227 ± 0.0007 475 0.7571 ± 0.0000
0.7291 ± 0.0004 300 0.7263 ± 0.0000

0.7034 ± 0.0006
0.8442 ± 0.0366
0.8097 ± 0.0469 15 0.9910 ± 0.0000

0.9897 ± 0.0000 50 0.9978 ± 0.0000
0.9820 ± 0.0001 5 0.9925 ± 0.0020

0.9916 ± 0.0029 5

P96 0.9776 ± 0.0008
0.9573 ± 0.0031 130 10 0.9529 ± 0.0010

0.8928 ± 0.0083 475 0.9770 ± 0.0004
0.8875 ± 0.0061 180 0.9045 ± 0.0000

0.8960 ± 0.0002
0.6709 ± 0.0009
0.4454 ± 0.0312 17 0.9483 ± 0.0003

0.4573 ± 0.0279 375 0.9295 ± 0.0021
0.4812 ± 0.0468 5 0.6205 ± 0.0544

0.2446 ± 0.2092 20

SHU 0.9991 ± 0.0000
0.9984 ± 0.0000 160 10 0.9693 ± 0.0002

0.9689 ± 0.0028 250 0.9622 ± 0.0000
0.9831 ± 0.0007 180 0.9980 ± 0.0000

0.9965 ± 0.0000
0.9982 ± 0.0000
0.9810 ± 0.0024 20 1.0000 ± 0.0000

0.9827 ± 0.0027 50 1.0000 ± 0.0000
1.0000 ± 0.0000 5 1.0000 ± 0.0000

1.0000 ± 0.0000 5
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Table 6. Cont.

DAS
B-TSK-FC SMOTE+TSK W-TSK SMOTE+KNN RusBoost OverBoost SMOTEBagging SMOTEBoost

Training ± Std
Testing ± Std K T Training ± Std

Testing ± Std K Training ± Std
Testing ± Std K Training ± Std

Testing ± Std
Training ± Std
Testing ± Std T Training ± Std

Testing ± Std T Training ± Std
Testing ± Std T Training ± Std

Testing ± Std T

P86 0.9887 ± 0.0001
0.9595 ± 0.0029 120 10 0.9811 ± 0.0000

0.9373 ± 0.0034 200 0.9811 ± 0.0001
0.8519 ± 0.0135 170 0.9667 ± 0.0000

0.9045 ± 0.0085
0.6304 ± 0.0195
0.4575 ± 0.0772 22 0.9746 ± 0.0001

0.3647 ± 0.0416 100 0.8858 ± 0.0047
0.0947 ± 0.0360 5 0.6149 ± 0.0617

0.4122 ± 0.2328 5

LET 0.9492 ± 0.0000
0.9519 ± 0.0000 200 10 0.9541 ± 0.0000

0.9437 ± 0.0001 250 0.9554 ± 0.0000
0.9387 ± 0.0002 275 0.9468 ± 0.0000

0.9055 ± 0.0003
0.8895 ± 0.0083
0.8813 ± 0.0062 15 0.9888 ± 0.0000

0.9218 ± 0.0007 50 0.9579 ± 0.0001
0.7320 ± 0.0013 5 0.9455 ± 0.0122

0.9229 ± 0.0197 10

PAB 0.8498 ± 0.0010
0.8543 ± 0.0013 140 200 0.8263 ± 0.0002

0.8092 ± 0.0014 25 0.8369 ± 0.0002
0.7976 ± 0.0025 40 0.8150 ± 0.0001

0.8039 ± 0.0006
0.8206 ± 0.0051
0.7951 ± 0.0033 300 0.3754 ± 0.1055

0.3912 ± 0.1154 375 0.9942 ± 0.0000
0.8306 ± 0.0020 300 0.3818 ± 0.2045

0.2936 ± 0.2520 60
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includes the comparison results of seven data sets.

From the experimental results presented in Table 6 and Figure 3, we can draw the
following conclusions:

(1) On the majority of the datasets, the proposed B-TSK-FC method exhibits superior
generalization performance. Particularly on datasets such as PEN, MAR, MUS, VOW,
CAG, P96, P86, LET, and PAB, B-TSK-FC significantly outperforms the comparative
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methods, indicating its exceptional effectiveness in handling class-imbalanced scenar-
ios.

(2) For certain datasets, including TUR, DNA, and THY, the performance of B-TSK-FC
is comparable to some of the comparative methods yet remains competitive. This
suggests that the B-TSK-FC method maintains consistent generalization performance
across various datasets.

(3) On some datasets, especially those with higher imbalance ratios, B-TSK-FC achieves
the best results. This demonstrates that in specific settings, such as highly imbalanced
complex datasets, B-TSK-FC can provide superior classification outcomes. This also
indicates that our designed mechanism for the selection of fuzzy rules is not overly
dependent on data distribution but can obtain higher quality fuzzy rules accordingly
based on the specific data distribution, thereby efficiently tackling diverse and complex
datasets.

(4) Please note that some comparative methods achieve much lower testing accuracies
than training accuracies when carried out on some datasets, e.g., SMOTEBagging
carried out on the datasets MAR, TUR, DNA, USP, P96, P86, LET, PAB, and SMOTE-
boost implemented on the datasets USP, CAG, P96, P86, and PAB. The big margin
between testing accuracies and training accuracies indicates that the method has
seriously overfitted the training instances and lost the generalization capability for
the testing instances. In contrast, the testing accuracies and the training accuracies of
B-TSK-FC are much closer than that of the comparative methods, which demonstrates
the advantage of the generalization capability of B-TSK-FC.

In summary, the experimental results robustly affirm the superior and consistent
performance of the B-TSK-FC method when dealing with most imbalanced datasets. This
provides a testament to the efficacy of our designed fuzzy rule weighting technique for
imbalanced data. While the method may slightly underperform on some datasets, we aim
to further optimize it in future research to enhance its performance. Additionally, the results
emphasize the effectiveness of selecting fuzzy rules based on the specific characteristics of
datasets in practical applications.

From another perspective, the results from Table 6 also reveal that, compared to
the advanced methods, our B-TSK-FC method has a smaller number of fuzzy rules and
ensemble classifiers. The former implies that B-TSK-FC ensures superior generalization
while retaining good linguistic interpretability. This is attributed to our reduction of fuzzy
rules, enhancing the overall quality of the fuzzy rules by refining them. The latter indicates
that, in comparison to conventional imbalanced ensemble learning methods, B-TSK-FC
achieves better classification with fewer classifiers, significantly reducing the method’s
overall complexity and consequently saving time and memory resources.

To more explicitly highlight the advantages of our proposed B-TSK-FC method in per-
formance compared to both individual class-imbalanced processing methods and ensemble
imbalance processing techniques, we categorize the comparative methods into two groups.
The first group encompasses the SMOTE+TSK, W-TSK, and SMOTE+KNN methods, repre-
senting individual class imbalance processing techniques. The second group includes the
RUSBoost, OverBoost, SMOTEBagging, and SMOTEBoost methods, representing ensemble
imbalance processing techniques. Based on the average G-mean experimental results of
each method across different testing datasets in Table 6, we calculate the percentage perfor-
mance improvement of B-TSK-FC over each comparative method for all 15 testing datasets.
Subsequently, we determine the average percentage improvement for each category of
methods. The related statistical results are presented in Table 7.

From the analysis of Table 7, it is evident that whether compared to individual class-
imbalanced processing methods or ensemble imbalance processing techniques, our pro-
posed B-TSK-FC method achieves a notable performance boost in addressing class imbal-
ance issues. This further underscores the comprehensive superiority and efficiency of the
B-TSK-FC method when tackling imbalanced data problems.
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Table 7. Average percentage improvement in generalization performance of B-TSK-FC method
compared to individual and ensemble imbalanced methods across different datasets.

Method Type Performance Improvement Percentage (%)

Single-Class-Imbalanced Method 5.44

Class-Imbalanced Ensemble Method 15.48

4.5. Statistical Test

In this subsection, we conducted a statistical test on the performance of eight class-
imbalanced learning methods, including our proposed B-TSK-FC method and seven ad-
vanced existing imbalanced learning methods, including SMOTE+TSK, W-TSK, SMOTE+KNN,
RUSBoost, OverBoost, SMOTEBagging, and SMOTEBoost. The experimental data com-
prised 15 benchmark imbalanced datasets sourced from KEEL [42] and UCI [43]. To assess
the performance of these methods, we conducted the Friedman test.

The Friedman test [45] is a classic non-parametric test designed to determine whether
significant differences exist among multiple variables. The test procedure is as follows.

Firstly, using the experimental results from Table 6 related to the average G-mean
metric, we compute the rank {Ru

v}U×V for each method on every dataset. Here, {Ru
v}U×V

is the rank of the uth method on the vth dataset, where u ∈ {1, . . . , U}, v ∈ {1, . . . , V}. U is
the number of methods, while V is the count of datasets used for experimentation. The test
statistic, Ω, is then computed as

Ω =
12V

U(U + 1)

[
U

∑
u

R2
u −

U(U + 1)2

4

]
(58)

where the average rank Ru is given by

Ru = 1/V
V

∑
v=1

Rv
u (59)

When U > 4 and V > 15, the distribution of Ω approximates a chi-squared χ2

distribution with U − 1 degrees of freedom. Setting the significance level, α = 0.05, the
p-value is calculated as

p = P
(

χ2
α[U−1] ≥ Ω

)
(60)

Should the p-value be less than the predetermined significance level α, the null hypoth-
esis asserting no significant difference is rejected. In such cases, the significant difference is
validated. Typically, multiple post hoc tests are conducted to compare the control method
with other comparative methods. This encompasses tests including Hochberg, Holm,
Hommel, and adjusted p-value tests.

In this study, we conducted experiments on 15 benchmark class-imbalanced datasets
from UCI and KEEL repositories to evaluate the performance of our proposed B-TSK-FC
method in comparison to state-of-the-art comparative methods. These comparative meth-
ods include SMOTE+TSK, W-TSK, SMOTE+KNN, RUSBoost, OverBoost, SMOTEBagging,
and SMOTEBoost. For statistical validation, the Friedman test was used. Table 8 presents
the average ranking results of the B-TSK-FC method based on the Friedman test. The
Friedman statistic, which follows a chi-squared distribution with 7 degrees of freedom, was
found to be 26.694444. The p-value obtained from the Friedman test was 0.000378.

The Friedman statistic was recorded at 26.694444 and corresponds to a chi-squared
distribution with 7 degrees of freedom. The p-value obtained from the Friedman test
was 0.000378. This result rejects the null hypothesis, suggesting that there is a significant
difference in performance between at least one method and the others. As can be clearly
observed from Table 8, the B-TSK-FC method proposed in this study is ranked first.
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Table 8. Average rankings of the methods (Friedman).

Method Ranking

B-TSK-FC 1.8667

SMOTE+TSK 4.8667

W-TSK 4.4667

SMOTE+KNN 4.3333

RUSBoost 6.2667

OverBoost 4.8667

SMOTEBagging 4.3

SMOTEBoost 5.0333

To delve deeper into the performance differences between the methods, we conducted
post hoc comparisons using the Friedman test. At a significance level of α = 0.05, we
present Table 9, which showcases the p-values obtained by applying post hoc methods over
the results of the Friedman procedure.

Table 9. Post hoc comparison table for α = 0.05 (Friedman).

i Method z=(R0−Ri)/SE p Holm Hommel

7 RUSBoost 4.91935 0.000001 0.007143

6 SMOTEBoost 3.540441 0.000399 0.008333

5 SMOTE+TSK 3.354102 0.000796 0.01

4 OverBoost 3.354102 0.000796 0.0125

3 W-TSK 2.906888 0.00365 0.016667

2 SMOTE+KNN 2.757817 0.005819 0.025

1 SMOTEBagging 2.720549 0.006517 0.05

The outcomes of the post hoc tests using the Holm–Hommel procedure lead to the
rejection of all null hypotheses and indicate significant differences between B-TSK-FC and
the seven comparative methods. Subsequently, to control the family-wise error rate, we
adjusted the original p-values. Table 10 details the adjusted p-values acquired through the
application of the post hoc methods based on the Friedman test.

Table 10. Adjusted p-values (Friedman).

i Method Unadjusted p pHolm pHommel

1 RUSBoost 0.000001 0.000006 0.000006

2 SMOTEBoost 0.000399 0.002397 0.001991

3 SMOTE+TSK 0.000796 0.003981 0.003185

4 OverBoost 0.000796 0.003981 0.003185

5 W-TSK 0.00365 0.010951 0.006517

6 SMOTE+KNN 0.005819 0.011638 0.006517

7 SMOTEBagging 0.006517 0.011638 0.006517

The adjusted p-values in Table 10 further reinforce the significant superiority of the pro-
posed B-TSK-FC in the field of classification performance to the seven comparative methods.

In summary, based on the statistical insights garnered from the Friedman test and
the subsequent post hoc evaluations, we deduce that our proposed B-TSK-FC method



Mathematics 2023, 11, 4284 29 of 32

demonstrates pronounced superiority in addressing class-imbalanced datasets relative to
current advanced methods.

5. Conclusions

In this study, we propose a novel approach for handling class imbalance issues based
on the zero-order TSK fuzzy classifier, wherein the fuzzy rules have a reduction improve-
ment process. Adapting to the dynamic changes in data scenarios, we select pertinent
fuzzy rules. By acknowledging the differences in the antecedent parts of the fuzzy rules
generated by different class instances, we apply varied weights accordingly. With these
two steps, we have constructed an array of enhanced zero-order TSK fuzzy sub-classifiers.
Lastly, by defining the mean squared loss product of various class instances as the learning
loss function, we deduce the output weighting coefficients for each sub-classifier, hence
achieving a dynamically weighted ensemble output.

The approach proposed in this paper not only refines the overall quality of the fuzzy
rules, thereby augmenting the intrinsic classification performance of the fuzzy classifier, but
also ensures commendable linguistic interpretability by reducing the number of fuzzy rules.
Furthermore, by selecting fuzzy rules based on specific data scenarios, we have endowed
the classifier with the performance to cater to more complex and changeable data. Our
proposed weighted fuzzy rule scheme considerably elevates the fuzzy classifier’s efficacy
in handling imbalanced data. Additionally, our introduction of a weighted ensemble
strategy, which guarantees the prediction precision of each class, further augments the
overall ensemble system’s classification generalization on imbalanced data. Experimental
outcomes on 15 benchmark class-imbalanced datasets manifest that the performance of our
proposed B-TSK-FC method surpasses other avant-garde popular comparative methods.
These results emphatically validate the effectiveness and superiority of our approach in
grappling with class imbalance challenges.

Nevertheless, despite the significant advancements achieved in our research, there
remain copious potential avenues for future exploration. Initially, our methodology for
optimizing fuzzy rules possesses further scope for refinement to cater to more sophisticated
datasets and severe class imbalance scenarios. Moreover, our approach can be broadened
to other types of fuzzy classifiers or distinct machine learning models to further optimize
their performance in solving class imbalance issues. Finally, amalgamating our technique
with other pre-existing solutions for class imbalances could pave the way for a more robust
and flexible strategy.
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Appendix A

Table A1. Introduction of the Abbreviations.

Abbreviation Full Form

TSK Takagi–Sugeno–Kang

IR Imbalanced Ratio

diag Diagonal Matrix

G-mean Geometric Mean

ROS Random Over-Sampling

RUS Random Under-Sampling

SMOTE Synthetic Minority Over-sampling Technique

LLM Lazy Learning Machine

KEEL Knowledge Extraction based on Evolutionary
Learning

UCI University of California, Irvine

W-TSK Loss-Weighted TSK

KNN K-Nearest Neighbors

RUSBoost Random Under-Sampling Boosting

OverBoost Over-Sampling Boosting

SMOTEBagging Synthetic Minority Over-Sampling Technique
Bootstrap Aggregating

SMOTEBoost Synthetic Minority Over-Sampling Technique Boosting
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