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Abstract: In driverless systems (scenarios such as subways, buses, trucks, etc.), multi-modal data
fusion, such as light detection and ranging (LiDAR) points and camera images, is essential for
accurate 3D object detection. In the fusion process, the information interaction between the modes is
challenging due to the different coordinate systems of various sensors and the significant difference in
the density of the collected data. It is necessary to fully consider the consistency and complementarity
of multi-modal information, make up for the gap between multi-source data density, and achieve the
joint interactive processing of multi-source information. Therefore, this paper is based on Transformer
to improve a new multi-modal fusion model called PIDFusion for 3D object detection. Firstly, the
method uses the results of 2D instance segmentation to generate dense 3D virtual points to enhance
the original sparse 3D point clouds. This optimizes the issue that the nearest Euclidean distance
in the 2D image space cannot ensure the nearest in the 3D space. Secondly, a new cross-modal
fusion architecture is designed to maintain individual per-modality features to take advantage of
their unique characteristics during 3D object detection. Finally, an instance-level fusion module is
proposed to enhance semantic consistency through cross-modal feature interaction. Experiments
show that PIDFusion is far ahead of existing 3D object detection methods, especially for small and
long-range objects, with 70.8 mAP and 73.5 NDS on the nuScenes test set.

Keywords: 3D object detection; multi-sensor fusion; transformer
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1. Introduction

In the autonomous driving scenario (for example, subways, buses, trucks), it is essen-
tial for high-speed vehicles to quickly and accurately perceive the surrounding environ-
mental information, such as the type, size, distance, and direction of the object [1]. Sensors
such as LiDAR, RGB (red, green, blue) cameras, and millimeters wave radar are put on the
vehicle to collect information about its surroundings. The data collected by each sensor
have their unique properties. For instance, the point clouds obtained by LiDAR is a sparse
unstructured data set that can preserve the rich original geometric information, but has
poor resolution and data processing requires more computer power [2]. The RGB camera
can gather more information on the texture, but it is less resistant to bad weather and has
poor range and environmental adaptability. As a result, data from a single sensor has
inherent flaws that make it challenging to deal with complicated and dynamic driving
circumstances. Recently, numerous researchers combined data from various sensors [3],
taking full advantage of the benefits of varied data. This multi-modal fusion algorithm
performs significantly better than using just one modality. Unfortunately, the structural
restrictions of the current fusion techniques may result in losing modal information and
weaken the unity of fusion.

Existing multimodal 3D object detection methods usually use projection methods for
one-sided interaction to accomplish pixel-level fusion. For instance, category scores or
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semantic characteristics from images are aggregated into 3D point clouds by PointPaint-
ing [4] and its derivatives Pointaugmenting [5], FusionPainting [6], and Multimodal virtual
point 3D detection [7]. Due to spatial distortion brought on by the sparsity of point clouds,
long-range and small objects will be difficult to identify during the fusion process, leading
to missed detection. The typical approach uses a unilateral interaction approach, which
biases the fusion feature towards a single mode and results in the loss of a significant
amount of modal feature information [8]. While pixel-level feature alignment broadens the
scope of the fusion, it uses semantic image data in an unsatisfactory manner.

To solve the above problems, the text proposes a novel multimodal feature fusion
framework PIDFusion, which adopts a multi-stage cross-modal information fusion ap-
proach for 3D object detection. The multi-modal information is fully utilized and fused, and
the effectiveness of the structure is proved in the detection of small objects and occlusion
objects. (1) Firstly, the dense 3D virtual points creation module builds on the initial sparse
point clouds by creating dense 3D virtual points using a set of 2D segmentation results. This
work optimizes the issue that the nearest Euclidean distance in the 2D image space cannot
ensure the nearest in the 3D space in the 3D virtual point creation algorithm. (2) Secondly,
a novel modal interaction method is proposed to employ the LiDAR points and camera
images from the BEV bird’s-eye view (BEV) perspective as multiple inputs for bilateral in-
teraction fusion instead of the primary method of fusing into a single feature representation.
To ensure information sharing and to keep the special benefits associated with each mode,
the encoder must learn and maintain the features under two distinct operating regimes.
(3) Lastly, this paper conducts similarity constraints on paired 3D and 2D proposal boxes
to bridge the gap between pixel-level and instance-level fusion to address the issue of
rough pixel-level fusion. With the three stages above of the cross-modal information fusion
module, PIDFusion obtained results on the nuScenes test set of 71.5 mAP and 74.2 NDS.

2. Related Works

Currently, there are two main types of 3D object detection, the single-modal approach
based on 2D images captured by cameras and 3D point clouds based on LiDAR scans, and
the cutting-edge multi-sensor fusion approach.

2.1. 3D Object Detection Method Based on Single-Model

Autonomous vehicles are typically fitted with various sensors, including millimeter
wave radar, 360◦ RGB camera, and LiDAR [9]. For a long time, 3D object detection based
on data from a single sensor dominated. The two categories of mainstream approaches are
point clouds-based and vision-based [10].

Unlike the regular distribution of pixels on an image, point cloud is a sparse and
irregular 3D representation [11], which requires the design of a specialized model for feature
extraction, and directly applying traditional convolutional networks to point clouds images
is not an optimal solution. In point clouds-based 3D target detection methods, according to
whether the point clouds is voxelized or not, it can be divided into two categories: point-
based processing and voxel-based processing. In 2017, PointNet, proposed by Charles R. Qi
et al. [12], was a pioneering work to effectively extract features from point clouds, but he did
not take into account the local information, and then the team borrowed the convolutional
neural network’s hierarchical structure to propose an upgraded PointNet++ [13], adding a
sampling grouping network to categorize the local features of the point clouds.

In addition, another mainstream idea is to divide the point cloud into standard-sized
voxels in space, after which the PointNet structure is used several times to extract features,
and finally, 3D convolution operation is used to complete the information interaction
between sparse voxels [14]. Examples of classic representative works include VoxelNet [3]
and PointPillrs [15]. Apple presented Voxelnet in 2017, which clustered and randomly
sampled point clouds, but its computing cost was high and real-time detection applications
were challenging to implement. To extract 3D voxel features in 2019, SECOND [16] invented
the sparse convolutional network. The network architecture was employed in a multitude
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of research and emerged as the backbone network with the most adoption in voxel-based
detectors. Point clouds still have problems extracting detailed semantic data despite having
strong spatial information. On the other hand, detection in autonomous driving scenarios
usually requires real-time reasoning. As point cloud-based algorithms require a lot of
processing, it is not easy to create models that can efficiently handle point clouds data.

A vision-based approach with an innate semantic-awareness advantage [17]. Previous
techniques for monocular images tried to predict 3D boxes directly [18–20] using graphical
features or use intermediate representations [21,22]. It is still far-fetched to utilize a single
camera to precisely detect objects in 3D space since it needs to give more 3D information.
Autonomous vehicles typically have many cameras to collect accurate environmental data
from various angles [23]. One of the main challenges for multi-camera 3D object recognition
is recognizing the same thing from multiple photos and combining the object attributes
received from various views. Cross-view geometric constraints were suggested as a method
for resolving the multi-view object localization problem by Rubino et al. in 2017 [24]. In
2022, DETR3D [25] proposed to convert multi-view features into unified 3D features to deal
with the multi-view feature aggregation problem, but due to the loss of 2D image depth
information, the 3D geometric information cannot be accurately estimated, and the use of
multi-camera fusion does not improve much in detection accuracy. Overall, making full
use of multi-sensor information and using the fusion method for feature extraction is the
most effective solution.

2.2. 3D Object Detection Method Based on Multi-Modal

The conversion of multi-modal views into expressions from the perspective of BEV is
becoming increasingly common in the present methodologies [26]. On the one hand, it is
practical for tasks involving the planning control module that come after. On the other hand,
from the viewpoint of the image, objects under BEV have no scaling or occlusion issues.
The BEV fusion method has two types of association: hard association and soft association.
The processing of two modes separately using calibration matrices for fusion, such as
BEVFusion [27], is known as hard association. The approach of constructing pseudo-point
clouds by depth estimation, such as LSS [28] and Centernet [29], is where hard association
suffers. The created point clouds are not very accurate and involve a lot of calculations,
which is rather different from the actual picture. A better solution to this issue is a soft
association, a transformer [30] extension that uses one modality (as q) to concentrate on
another modality (as k, v) and extract the associated characteristics for fusion, such as
Transfusion [31] and DeepInteraction [32]. The two modes’ alignment is the key to the
soft association. LiDAR is often used as Q to fuse image features. This not only has the
problem of query omission caused by LiDAR feature sparseness, but also has the problem
of multiple q mapping to the same object due to LiDAR density.

The main improvement of the hard correlation method is the calibration matrix,
and the hardware optimization has a greater enhancement effect than the algorithmic
optimization, so there was a proliferation of recent improvements on soft correlation
algorithms. To obtain useful semantic data, Chen et al. [33] suggested in 2017 projecting
point clouds directly onto images. Geometric distortion results from this method’s disregard
for the depth information contained in point clouds. In 2020, Pointpainting [4] invented
the method of decorating 3D point clouds with category scores or semantic characteristics
in 2D instance segmentation networks. Semantic data are first collected from the image
and assigned to the point clouds. The camera pixels are significantly richer than the
LiDAR pixels due to the point clouds’ sparseness, which inevitably wastes the image’s 2D
features and causes the fusion result to be biased toward single-modal features. Unlike
MVP [7], BEVFusion [27] uses each image feature pixel as a seed, and these two exemplary
methods address the issue of sparse point clouds. In 2021, Yin et al. [7] suggested choosing
pixels from camera foreground objects and projecting them into 3D space for point clouds
augmentation. Nevertheless, because of the distance issue, genuine 3D space cannot be
recovered when projecting 2D images into 3D space; 4D-Net [34] adopts a unilateral fusion
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strategy, prefers point clouds data, and does not fully utilize the semantic information of the
image. It uses point clouds features to dynamically focus on image features and combines
2D camera images with 3D point clouds data to improve the accuracy of long-distance
object recognition. MLF-DET [35] integrates feature-level fusion and decision-level fusion,
and uses a multi-layer fusion network to improve the utilization of image information.
FBMNet [36] learns the assignments between 3D and 2D object proposals and combines
their region of interest (ROI) features for detection fusion. Thus, the fusion method’s
current focus is on correlating multi-modality.

3. Method

This section introduces the PIDFusion multi-modal feature fusion framework for 3D
object detection. Unlike previous research, PIDFusion is based on a multi-stage fusion
architecture consisting of three stages, as shown in Figure 1: the point clouds densification
module, the use of 2D image instance segmentation information to increase the number of
3D point clouds, generating dense point clouds; bilateral interaction module, respectively,
the image features and point clouds features as Query cross-attention learning, multi-modal
information complementary; and the instance-level fusion module, the captured 3D box
and the corresponding 2D box similarity constraints, to maximize the similarity between
the two.
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3.1. Point Clouds Densification Based on Long-Distance Sampling

Multi-modal feature fusion fuses LiDAR and image features into a unified scene for
representation. In the process of image feature fusion, there is a problem that the point
clouds in 3D space cannot accurately reflect the geometric structure of the target in 3D
space. The MVP algorithm selects seeds from the 2D image plane and performs depth
estimation to generate dense 3D virtual points and enhance the original sparse 3D point
clouds. MVP first performs instance segmentation on the image and then projects the laser
points onto the image, so that there will be several laser points on each instance on the
image. Then, the pixels in each instance are randomly sampled, and the nearest neighbor
association is performed with the pixels projected on the laser point, and the depth of the
associated laser point is taken as the depth of the current pixel. Finally, these points are
projected back to the laser coordinate system to obtain dense LiDAR points, which are then
processed using the popular point clouds processing algorithm.

Although MVP is effective, some randomly generated virtual point clouds will distort
and lose the authenticity of the target, resulting in the change in spatial structure of the
two-dimensional target in the camera after being converted to three-dimensional space. In
order to solve this problem, this paper proposes a point clouds densification method based
on long-distance sampling and depth estimation using bilinear interpolation.
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The long-distance sampling method can ensure the discreteness of the sampling points
and cover the entire instance more evenly. Firstly, the first seed A is sampled, and the
second seed B is sampled at the farthest point in the remaining instance region. Any pixel
P in the remaining region is randomly selected, and the distance from the point P to the
selected seed (A, B) is calculated. The minimum distance from seed A and seed B is taken
as the distance from the point P to the selected seed, and the distance from the pixel in the
remaining region to the selected seed is calculated. The pixel with the largest distance is
selected as seed C. Repeat the steps until sampling N’ points. In order to make the depth
estimation of the virtual point more accurate, this paper takes the surrounding K pixels
on the projection of the laser point for each seed and takes the real depth and coordinates
of the K-associated laser points for bilinear interpolation as the depth of the current seed.
As shown in Figure 2, (a) randomly select a point as the first sampling point, i.e., the
yellow point. (b) The second sampling point is the furthest point from the first sampling
point among all the points, i.e., the red point. (c) Selecting the third sampling point: any
point is taken to calculate the distance to the first two sampling points, and the shortest
distance is taken after comparing them, and repeated, so that after obtaining the ensemble
of distances from each point to the sampled points, the largest distance is selected, i.e., the
third sampling point. For example, to determine who is the farthest point from point 1 and
point 2, calculate the distance from point 1 to the red point and the yellow point, take the
shortest distance, repeat the operation for point 2, and then select the largest distance from
the ensemble, that is, the third sampling point.
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MVP and PIDFusion use the K-Nearest Neighbor method and the long-distance
sampling method for depth estimation, respectively. As shown in Figure 3, the K-Nearest
Neighbor method takes the depth of the nearest reference point as the depth of the sampling
point, and the long-distance sampling method takes the mean value of the depth of the
surrounding N reference points as the depth of the sampling point. Compared with K-
Nearest Neighbor method, the long-distance sampling method reduces the accidental
error of taking the depth of a single reference point, and PIDFusion can obtain a more
reliable depth.
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3.2. Bilateral Interaction of Multi-Modal Features in BEV Space

Traditional modal fusion usually aggregates multi-modal inputs into a mixed feature
map. Different from the traditional strategy, this paper learns and maintains each modal
feature through multi-modal representation interaction within the encoder. The encoder is a
multi-input multi-output mode, which takes the features extracted independently from the
BEV perspective of the laser radar and camera image trunk as input, and the refined features
as output. The encoder consists of three parts: interaction between multiple modalities, as
shown in Figure 4, interaction within each modality and feature integration, to maximize
the exploration of their complementary strengths and retain their respective advantages.
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3.2.1. Feature Interaction between Multimodalities

1. The image coordinate system C and the point clouds coordinate system P are con-
structed, respectively. BC and BP represent the image representation and LiDAR
representation from the perspective of BEV, respectively. Establish the alignment
from IMAGE BEV to LiDAR BEV coordinate system: BC→BP. Given a coordinate
(ic, jc) in IMAGE BEV, use LSS [28] to find the pixel coordinates (xc, yc, zc) in the
corresponding image. Then, according to the camera and LiDAR’s internal and exter-
nal reference matrices, the corresponding relationship between the pixel coordinate
system (xc, yc, zc) and the LiDAR coordinate system

(
xp, yp, zp

)
is found. The Z-axis

compressed by the LiDAR coordinate system is the LiDAR BEV coordinate system.
Then, find

(
ip, jp

)
in LiDAR BEV to complete the mapping between the IMAGE BEV

representation and the LiDAR BEV representation and the corresponding relationship
BP→C

(
ip, jp

)
= (ic, jc). Similarly, from LiDAR BEV to Ithe MAGE BEV coordinate sys-

tem Bp → Bc , a coordinate
(
ip, jp

)
in LiDAR BEV is given, and the pixel coordinates(

xp, yp, zp
)

of the corresponding position in the point clouds are found. The pixel
coordinates (xc, yc, zc) in the picture are obtained by the coordinate matrix and then
projected to IMAGE BEV. The corresponding relationship is BC→P(ic, jc) =

(
ip, jp

)
.

2. The interaction process from camera images to point clouds: A feature point of IMAGE

BEV is used as Q = g[ic ,jc ]
C , and the cross-modal feature NP = g[BC→P(ic ,jc)]

P is used as K
and V for cross-attention learning; g[i,j] denotes indexing the element at location (i, j)
on the 2D representation g. This is image-to-LiDAR representational interaction.

FφC→P(gC, gP)
[i,j] = ∑

K,VεNP

so f t max
(

QK√
d

)
V (1)

Given the LiDAR BEV feature point as the query Q = g
[ip ,jp ]
P , do the above, which is

the point clouds-to-image interaction.

3.2.2. Feature Interaction within a Single Modality

To fully fuse features, feature interactions within separate modalities are needed
for complementary multimodal interactions. The same local attention as defined in
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Equation (1) is consistently applied. In any of the modes alone, we use the n × n
grid neighborhood as the key and value. For a feature point as query, q = g(i,j).
Formally, we denote FφC→C(gC) = ∑

K,VεNC
so f t max

(
QK√

d

)
V for image representation and

FφP→P(gP) = ∑
K,VεNP

so f t max
(

QK√
d

)
V for LiDAR representation.

3.2.3. Feature integration

Integrating the results of multimodal feature interactions and unimodal feature in-
teractions, the encoder outputs two integrated features. gP→C

C is the point cloud-to-image
interaction feature, gC→P

C is the image-to-point cloud interaction feature, gC→C
C and gP→P

P
are the interaction features within a single modality of the image and point cloud, re-
spectively, (FFN refers to feed-forward network and Concat denotes elements in series).

gC
′ = FFN

(
concat

(
FFN

(
concat

(
gP→C

C , gC→C
C

))
, gC

))
, (2)

gP
′ = FFN

(
concat

(
FFN

(
concat

(
gC→P

P , gP→P
P

))
, gP

))
. (3)

3.3. Instance-Level Fusion with Siamese Networks

Although the pixel-level fusion process preserves the object’s integrity, the object’s
pixel-level projection ignores global information, which results in semantic information
loss and coarse feature aggregation. This study suggests an instance-level fusion module to
capture semantic information to address the issues above, as shown in Figure 5. Several
3D boxes obtained in the previous step are randomly selected, and then projected onto the
2D BEV feature map according to the camera matrix to obtain the corresponding 2D boxes.
The paired detection boxes use the cross mode for similarity constraints. ROI pooling and
ROI align to aggregate RoI-specific features were performed, respectively, to obtain F3D

i
and F2D

i with higher detection accuracy. The encoder network f consists of a backbone
and a projection MLP head. To maximize the similarity of the two modal features, the
features from the image branch and the voxelization feature from the point branch are
sent to the encoder f to obtain V1 = f

(
F3D

i
)

and V2 = f
(

F2D
i
)
, the network structure is the

same, and the weights are shared. One side applies MLPh(predictor h), convert f
(

Fi3D) to
W1 = h

(
f
(

F3D
i
))

, and the other applies the stop-gradient (stopgrad) operation to maximize
the similarity between the two, and we minimize their negative cosine similarity:

D(W1, V2) = −
W1

‖W1‖2
· V2

‖V2‖2
. (4)
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Stopgrad operation is an important component, and the Formula (4) is modified
as D(W1, stopgrad(V2)). In order to minimize the loss value of the two modal fusion
representations, the loss function is:

LIL =
1
2

D(W1, stopgrad(V2)) +
1
2

D(W2, stopgrad(V1)). (5)

According to DETR [37], find bipartite graph matching between predicted and real
targets by the Hungarian algorithm [38]. The loss has three parts: classification, regression
and IoU, and the total loss L, designed as:

L = λ1Lcls(p, p̂) + λ2Lreg(b, b̂) + λ3Liou(b, b̂) + λ4LIL. (6)

In the formula: λ1, λ2, λ3 are the coefficients of a single loss, Lcls is the binary cross
entropy loss, Lreg is the loss of the projection BEV center and the ground real center, and
Liou is the IoU loss between the prediction box and the real box.

4. Experiment
4.1. Dataset Introduction

The complete nuScenes dataset [39] contains all 1000 scenes, 700 for training, 150 for
validation, and 150 for testing. The sensor suite includes six cameras, one LiDAR, five
radars, GPS, and IMU. The entire dataset contains about 1.4 million camera images,
390,000 LiDAR scans, 1.4 million millimeters-wave radar scans, and 1.4 million object
bounding boxes in 40,000 key frames, and is divided into 10 categories: car, truck, bus,
trailer, construction vehicle, pedestrian, motorcycle, bicycle, barrier, and traffic cone.

4.2. Implementation Details

The implementation of this paper is based on the mmdetection3d code library. To verify
the validity of the structure, we selected PointPillars and SECOND as the representative
methods of our experiment. Our model uses a set of 3D sparse convolution blocks [40]; we
set the voxel size to (0.075 m, 0.075 m, and 0.2 m). The X and Y-axis detection distance is
[−51.2 m, 51.2 m], and the Z-axis detection distance is [−5 m, 3 m]. The maximum number
of non-empty voxels for training and inference is set to 120,000 and 160,000, respectively.
Following MVP, we select 50 seeds on each instance unless otherwise specified. For the
image branch, Faster RCNN [41] with ResNet50 [42] is used as the 2D detector, and the
hidden units of the cross-attention alignment module are set to 128. Global features are
extracted from a given image, and the weights are frozen during training. Following
MVP [7], we select 50 seeds on each instance unless otherwise specified. The output sizes
of 2DRoIAlign and 3DRoIPooling are both set to 4. Our LiDAR-only baseline is trained for
20 epochs and LiDAR-image fusion for 6 epochs.

In terms of the data enhancement strategy, this paper adopts random flipping along
the X-axis and Y-axis, global scaling with [0.9, 1.1] as a random factor, and global rotation
between [-π/4 and π/4]. Following Transfusion, we also use the class-balanced resampling
in CBGS [43] to balance the class distribution for nuScenes and optimize the network
using the AdamW optimizer with one-cycle learning rate policy, with max learning rate
0.001,weight decay 0.01, and momentum 0.85 to 0.95.

4.3. Evaluation Metrics

For 3D object detection, nuScenes defines a set of evaluation protocols, including the
nuScenes detection score (NDS), mean average precision (mAP), as well as mean average
translation error (mATE), mean average scale error (mASE), mean average orientation error
(mAOE), mean average velocity error (mAVE), and mean average attribute error (mAAE).
The final mAP is computed by averaging over the distance thresholds of 0.5 m, 1 m, 2 m,
and 4 m across 10 classes. NDS is a weighted average of mAP and other attribute metrics,
including translation, scale, orientation, velocity, and other box attributes. NDS is the
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weighted combination of mAP, mATE, mASE, mAOE, mAVE, and mAAE. For this problem,
the sample data can be classified into four cases: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). The evaluation metric formulas deduced by them
are as follows:

P =
TP

FP + TP
, (7)

R =
TP

FN + TP
, (8)

AP =
∫ 1

0
p(R)dR, (9)

mAP =
1
k

k

∑
i=1

AP(i). (10)

4.4. Experimental Results on nuScenes Dataset

We compare PIDFusion with state-of-the-art approaches on the nuScenes validation
and test sets. Our multimodal fusion method achieved very good results, as shown in
Table 1. In this paper, by adding the virtual point cloud, the sparse point cloud is densified
and the characteristics of the object are strengthened. By using the bilateral interaction
module, the semantic information and geometric information are fully preserved. The
instance-level fusion module makes the feature aggregation more detailed. The three
modules introduced improved the detection effect of the overall object, maintaining a
consistent performance advantage in most object categories, especially for long-distance
objects and small objects (Barrier and Bike) with unclear features. The mAP increases of
these two categories are 0.8 and 0.5, respectively. The results of visualizing the detection on
the nuScenes dataset are shown in Figure 6.

Table 1. Comparison with state-of-the-art methods on the nuScenes val (top) and test (bottom) set.
Metrics: mAP(%)↑, NDS(%)↑, and AP(%)↑ for each category. ‘C.V.’, ‘Ped.’, and ‘T.C.’,‘M.T.’ and ‘T.L.’
are short for construction vehicle, pedestrian, traffic cone, motor, and trailer, respectively. ‘L’ and ‘C’
represent LiDAR and camera, respectively.

Method Modality mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

FUTR [44] LC 64.2 68.0 86.3 61.5 26.0 71.9 42.1 64.4 73.6 63.3 82.6 70.1
TransFusion [31] LC 67.3 71.2 87.6 62.0 27.4 75.7 42.8 73.9 75.4 63.1 87.8 77.0
BEVFusion [23] LC 67.9 71.0 88.6 65.0 28.1 75.4 41.4 72.2 76.7 65.8 88.7 76.9
MSMDFusion [45] LC 69.1 71.8 88.5 64.0 29.2 76.2 44.7 70.4 79.1 68.6 89.7 80.1
DeepInteraction [32] LC 69.9 72.6 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7
PIDFusion LC 70.2 73.5 87.8 65.8 30.0 75.8 59.6 79.5 77.6 69.0 90.3 86.2

Method Modality mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

PointPillars [15] L 40.1 55.0 76.0 31.0 11.3 32.1 36.6 56.4 34.2 14.0 64.0 45.6
CenterPoint [46] L 60.3 67.3 85.2 53.5 20.0 63.6 56.0 71.1 59.5 30.7 84.6 78.4
TransFusion-L [31] L 65.5 70.2 86.2 56.7 28.2 66.3 58.8 78.2 68.3 44.2 86.1 82.0

PointPainting [4] LC 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4
3D-CVF [26] LC 52.7 62.3 83.0 45.0 15.9 48.8 49.6 65.9 51.2 30.4 74.2 62.9
TransFusion [31] LC 68.9 71.7 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7
BEVFusion [27] LC 70.2 72.9 88.6 60.1 39.3 69.8 63.8 80.0 74.1 51.0 89.2 86.5
MSMDFusion [45] LC 70.8 73.2 87.9 61.6 38.1 70.0 64.4 79.0 73.9 56.6 89.7 87.1
DeepInteraction [32] LC 70.8 73.4 87.9 60.2 37.5 70.8 63.8 80.4 75.4 54.5 91.7 87.2
PIDFusion LC 71.5 74.2 88.1 61.3 39.6 71.2 64.1 81.2 74.8 57.1 92.9 87.6
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4.5. Ablation Experiment

We conduct comprehensive ablation studies for each proposed component, as shown
in Table 2. In this article, we use TransFusion [31] as a comparison standard. To be fair,
we use the same number of encoder and decoder layers. The point clouds densification
module, bilateral interaction module, and instance-level fusion module are added in turn.
From the results of Table 2, the dense module is added to obtain reliable virtual points
from the image. The virtual point clouds strengthen the characteristics of small objects,
and mAP increases by 1.0. A bilateral interaction module is introduced to maintain the
representation of two specific modalities and establish their interaction for representation
learning and predictive decoding. It brings 1.4 mAP growth, indicating that the feature
interaction module makes the fusion result more sufficient and facilitates feature extraction.
The addition of the instance-level fusion module uses 2D joint training. The joint training
paradigm standardizes the optimization of the image backbone, reduces the training gap
between the 2D and 3D models, and maintains feature consistency in the cross-modal
feature fusion process. The mAP is increased by 1.8, which shows that the instance-level
fusion module has a great breakthrough in identifying occlusion objects.

Table 2. Effect of each component in BEVFusion. Results are reported on the nuScenes validation set
with SECOND.

Point Cloud
Densification

Bilateral
Interaction

Instance-Level
Fusion mAP NDS

67.3 71.2√
68.3 71.6√ √
69.7 72.9√ √ √
71.5 74.2

Small objects require more points for voxel extraction. In this paper, the image and
point clouds are fully fused by the method of point clouds densification with BEVFu-
sion [23], BEVFusion [27], and MSMDFusion [45], and the degree of point clouds densifica-
tion and detection accuracy is compared. As shown in Table 3, by comparing mAP and
NDS, the method of generating 3D virtual points in this paper is superior to the first three
methods and achieved remarkable results in improving the recognition accuracy of small
objects and occluded objects.
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Table 3. Number of virtual points per frame (NVPF) and performance comparison with three
strongest methods on the nuScenes test set.

Method NVPF3 mAP NDS

BEVFusion [23] 5M 69.2 71.8
BEVFusion [27] 2M 70.2 72.9
MSMDFusion [45] 16K 70.8 73.2
PIDFusion 10K 71.5 74.2

The generalization ability of the structure of this paper is verified by extracting the
backbone network using two different point cloud features. For SECOND, the voxel size
is set to (0.4 m, 0.2 m, and 0.2 m). For PointPillars, this paper set the voxel size to (0.2 m,
0.2 m) while keeping the remaining settings the same as PIDFusion. For a fair comparison,
this paper uses the same number of queries as TransFusion and DeepInteraction. As shown
in Table 4, due to the proposed point clouds densification and multi-modal interaction
architecture, PIDFusion exhibits consistent improvements over LiDAR-only baseline using
either backbone. It proves the universal applicability of the structure in different point
clouds encoders.

Table 4. Evaluation on different LiDAR backbones. The mAP and NDS are evaluated on the nuScenes
val set.

(a) Comparison between PointPillars-Based Methods

Methods Modility mAP NDS

PointPillars [15] L 46.2 59.1
Transfusion-L [31] L 54.5 62.7
Transfusion [31] L+C 58.3 64.5
PIDFusion L+C 61.5 66.3

(b) Comparison between SECOND-Based Methods

Methods Modility mAP NDS
SECOND [16] L 52.6 63.0
Transfusion-L [31] L 65.1 70.1
Transfusion [31] L+C 67.5 71.3
PIDFusion L+C 71.5 74.2

The nuSences dataset is created by vehicles designed specifically to collect the dataset.
In the natural environment, due to various reasons, it cannot reflect the real data distri-
bution. In order to verify the robustness of the model and simulate the real scene, the
robustness benchmark toolkit proposed by Yu et al. [47] in 2022 is used for verification.
There are three common scenes: limited LiDAR field-of-view (FOV), LiDAR object failure,
and missing of camera inputs. When the number of radar sensors installed on the vehicle
is insufficient or the radar is temporarily blocked, the lidar data are unavailable. Firstly, the
point cloud coordinates are converted from the radar Euclidean coordinate system (x, y, z)
to the polar coordinate system (r, θ, z), and then the restricted FOVs can be simulated by
discarding the points that satisfied θ ∈ (−θ0, θ0). In this paper, it will be set to 90◦, indicat-
ing that only the forward-looking 180◦ is retained. Under some constraint conditions, the
laser radar may turn a blind eye to the object. This paper simulates the scene by randomly
discarding the points in the bounding box with a probability of 0.5. Since the camera mod-
ule is usually smaller than the radar module, the camera may lose the scene. This paper
abandons the input of the entire camera to simulate the coverage scene. In the experiment,
a camera is discarded in turn for the control variable. As shown in Table 5, comparing the
NDS of BEVFusion and PIDFusion in three different noise environments, it can be seen that
the robustness of PIDFusion is better than that of BEVFusion. The visualization results for
three different noise scenarios are shown in Figure 7. We compared the inference speeds of
different detection methods on the NVIDIA 2080, as shown in Table 6.
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Table 5. NDS percentage on nuScenes.

Methods LiDAR-FOV LiDAR-Object Camera-Missing

BEVFusion [27] 51.3 54.7 69.2
PIDFusion 55.6 59.3 70.5
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Table 6. Running time.

Methods mAP(%)↑ NDS↑ FPS↑
(RTX2080 ti)

FUTR3D [44] 64.2 68.0 1.2
Transfusion [31] 67.5 71.3 2.6
DeepInteraction [32] 69.9 72.6 1.8
PIDFusion 70.2 73.5 1.6

5. Conclusions

The aim of this paper is to address the problem that traditional fusion methods reduce
the uniformity of the fusion and lose the information of each modality. We propose a new
fusion architecture for 3D object detection. The framework uses point clouds densification
to obtain accurate LiDAR information, improving small objects’ detection effect. Fully fuse
image and point clouds information using bilateral interactive fusion. Instance level fusion
is also added to solve the problem of coarse feature aggregation. With the above three-stage
cross-modal information fusion module, PIDFusion achieved good results of 71.5 mAP and
74.2 NDS on the nuScenes dataset.

Real-life autonomous driving scenarios are extremely complex, in addition to the
sensor occlusion problem mentioned in this paper, there is also the problem of low visibility
in natural environments such as rain, fog, and night. According to the research in this
paper, it can be seen that LiDAR has a relatively large impact on the occlusion problem,
and in the future, we can continue to optimize the backbone of the point cloud feature
extraction as well as reduce the information loss in the fusion process. Subsequent research
will also focus on low visibility environments to optimize the structure.
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