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Abstract: Deep learning approaches have demonstrated great achievements in the field of computer-
aided medical image analysis, improving the precision of diagnosis across a range of medical disor-
ders. These developments have not, however, been immune to the appearance of adversarial attacks,
creating the possibility of incorrect diagnosis with substantial clinical implications. Concurrently,
the field has seen notable advancements in defending against such targeted adversary intrusions
in deep medical diagnostic systems. In the context of medical image analysis, this article provides
a comprehensive survey of current advancements in adversarial attacks and their accompanying
defensive strategies. In addition, a comprehensive conceptual analysis is presented, including several
adversarial attacks and defensive strategies designed for the interpretation of medical images. This
survey, which draws on qualitative and quantitative findings, concludes with a thorough discussion
of the problems with adversarial attack and defensive mechanisms that are unique to medical im-
age analysis systems, opening up new directions for future research. We identified that the main
problems with adversarial attack and defense in medical imaging include dataset and labeling,
computational resources, robustness against target attacks, evaluation of transferability and adapt-
ability, interpretability and explainability, real-time detection and response, and adversarial attacks
in multi-modal fusion. The area of medical imaging adversarial attack and defensive mechanisms
might move toward more secure, dependable, and therapeutically useful deep learning systems by
filling in these research gaps and following these future objectives.

Keywords: medical image analysis; deep learning; adversary attack; adversarial defense; deep
neural networks

MSC: 68T01

1. Introduction

Deep neural networks (DNNs) have achieved remarkable success in natural image-
processing tasks. The field of medical image analysis is not left out [1–3], including skin
lesion diagnosis [4], diabetic retinopathy detection, and tumor segmentation [5,6]. Notably,
an AI-based diabetic retinopathy detection system [7,8] has been approved by the Food and
Drug Administration (FDA) of the United States [9]. In addition to enhancing efficiency
and patient outcomes, medical diagnosis models driven by deep learning can reduce
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clinical costs. Nevertheless, despite its promise, deep learning is vulnerable to adversarial
attacks [10,11], which can severely disrupt DNNs (Figure 1). These adversarial attacks can
be generated by introducing imperceptible perturbations into legitimate samples, making
them difficult to detect manually. Adversarial vulnerability poses a significant challenge for
the application of DNNs in safety-critical scenarios such as medical image analysis [12–14],
as it can result in misdiagnosis, insurance fraud, and a loss of confidence in AI-based
medical technology.
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Figure 1. Examples of medical image adversarial attack.

The significance of robustness against adversarial attacks in medical image analysis
was put forward by researchers who have analyzed the adversarial exposure of computer-
aided diagnosis models from different perspectives [13,15,16]. As a result, much research
has focused on defending against these adversarial attacks. Previous research focuses
predominantly on adversarial training to improve network resilience and adversarial
detection to identify adversarial attacks [17–19]. Some methods include image-level pre-
processing [20] or feature enhancement techniques [21] within the adversarial defense
context. These defense strategies have proven effective in establishing robustness against
adversarial attacks for medical diagnosis’s unified pattern recognition [22]. However, there
is a substantial divide between the research-oriented settings and evaluations of various
defense methods, making comparisons difficult. There exist several survey papers on
adversarial attacks and defenses in medical image analysis. However, many focus on
particular medical tasks or need a detailed taxonomy and exhaustive evaluation of existing
attack and defense methods for computer-assisted diagnosis models. In addition, recent
developments in adversarial attack and defense for medical image analysis systems still
need to be adequately addressed.

Medical image analysis is essential to healthcare because it enables precise illness
diagnosis, planning of treatments, and disease monitoring. However, as machine learning
(ML) and artificial intelligence (AI) are used more often in the processing of medical images,
concerns have been raised concerning the possible effects of adversarial assaults. The
importance of minimizing false alarms through thorough image analysis was highlighted by
Marinovich et al. in their article “Artificial Intelligence (AI) for breast cancer screening” [23].
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They showed that an AI model designed for breast cancer diagnosis using mammograms
had a false-positive rate of 3.5%. On the other side, a hospital in the US resolved a lawsuit
in 2019 for USD 8.5 million after a radiologist failed to detect a tumor in a patient’s
CT scan [24]. A reliable second opinion may be provided via accurate AI-based image
analysis, which lowers the likelihood of such mistakes. Zbrzezny et al.’s adversarial
attack against a deep learning model used to diagnose diabetic retinopathy was proven
in 2021 [25]. They deceived the model into incorrectly identifying the severity of the
disease by introducing barely noticeable noise to retinal pictures. This demonstrates how
susceptible AI healthcare systems are. A significant healthcare organization encountered a
data breach in 2023 when nefarious individuals were able to obtain patient details, including
medical photographs [26]. Personal health information abuse and identity theft may result
from such breaches. Mobile applications with AI capabilities are being used to analyze
medical images in several African nations, eliminating the need for radiology specialists
and increasing diagnosis precision. For precise medical diagnosis and treatment choices,
medical image analysis is essential. However, the vulnerability of AI systems to adversarial
assaults and the possibility of human mistakes highlights the need for reliable and secure
image analysis solutions to protect patient privacy and health.

The purpose of this research article is to address the aforementioned research problems
by providing a systematic overview of recent advances in adversarial attack and defense
for medical image analysis and discussing their benefits and limitations. In addition,
we experimented with the widely known attack and defense adversarial strategy. The
significant contribution of the manuscript is summarized as follows;

• This review article presents a, to date, comprehensive analysis of adversarial attack
and defense strategies in the context of medical image analysis including the type of
attack and defense tactics together with a cutting-edge medical analysis model for
adversarial attack and defense.

• In addition, a comprehensive experiment was carried out to support the findings of
this survey including classification and segmentation tasks.

• We conclude by identifying current issues and offering insightful recommendations
for future research.

The introduction section is followed by the background of medical image analysis.
This section is followed by Section 3, which talks about the overview of medical image
adversarial attack and defense. In Section 3, more details of the medical adversarial attacks
and defense are presented. Next, we have Section 4, where we carried out an extensive
experiment to support our findings. The challenges and future works are presented in
Section 5, while we conclude in Section 6. Figure 2 illustrates the PRISMA model strategy
we used in this survey.

2. Review Background
2.1. Medical Image Analysis

Recently, deep learning has been applied in several domains extensively [27–29], of
which the medical sector is not left out. It may also be applied to the development of new
medications, medical decision-making, and novel approaches to the creation of various
forms of medicine [30,31]. Computerized clinical results heavily depend on medical imag-
ing such as X-rays, ultrasound, computed tomography (CT), positron emission tomography
(PET), and magnetic resonance imaging (MRI) as they are further examined by profession-
als or radiologists [32,33]. The main purpose of the processing of medical images is to
make the data represented more comprehensible [34]. Medical image analysis must be
conducted precisely and quickly since any delay or incorrect diagnosis can be harmful to
a patient’s health [35]. Robotic deep learning is required to attain this high accuracy and
quickness. Finding out which parts of the body are impacted by the illness is the main
goal of medical image interpretation to help doctors understand how lesions grow. Four
steps—image preprocessing, segmentation, feature extraction, and pattern detection and
classification—make up most of the examination of a medical image [36–38]. Preprocessing



Mathematics 2023, 11, 4272 4 of 41

is used to fix undesired image defects or to enhance image data for later processing. The
method of segregating areas, such as tumors and organs, for additional research, is referred
to as segmentation. Feature extraction is a means of removing specific information from
regions of interest (ROIs) to help in their identification [39,40]. The categorization of the
ROI is aided by classification based on extracted characteristics.
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The deep learning concept has significantly advanced several AI disciplines, yet it is
still open to severe security risks. The adversarial attack has received the most focus from
the deep learning risk sector because it highlights several possible security issues for deep
learning applications. Due to the adversarial attacks’ optical similarity to its pure version,
adversarial attacks can circumvent human inspection in addition to interfering with DNNs’
interpretation process. Computer-aided diagnostic systems may significantly amplify this
pernicious privacy risk, which might lead to fatal misinterpretation and possibly a crisis
of societal credibility [13]. Taking into account a certain dataset (x, y) ∼ “D”, where “D”
depicts data distribution across pairs of provided samples X and their accompanying labels
Y. We represent the medical analysis deep learning model as f θ(·) with θ as the network
parameter. An undetectable noise δ is frequently added to clean instances X to produce
adversarial attacks X̂, which are technically described as follows:

X̂ := X + δ with fθ

(
X̂
)
6= Y and d

(
X, X̂

)
≤ ε (1)

where δ is the highest permitted perturbation range for subtlety and is the dimension metric
d(., .). By definition, adversarial samples X̂ must be near their true equivalents X using an
established measure, such as the lp distance. The adversarial perturbation is as lp norm
bound as ‖ δ ‖p≤ ε. The sub-infinity and adversarial l∞ norm threat model is represented
in Equation (2):

max
‖δ‖∞≤ε

L( fθ(X + δ), Y), (2)
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where the L largely depends on the actual task (segmentation, detection, or classification).
Equation (2) can be integrated using Newton-like approaches [14,41] or algorithms based
on gradient descent. Other white-box adversarial attack techniques include the Limited-
memory BFGS method [14], the Fast Gradient Sign Method (FGSM) [42], etc. There are also
additional threat models, such as the black-box attack, which in real-life situations presents
a bigger security risk to computer-aided diagnostic models [12,43].

Several adversarial defense mechanisms have been established to defend deep learning
models from adversarial attacks [38,39,44]. The most popular among them is adversarial
training [42,45], which can increase inherent network resilience by supplementing ad-
versarial cases as training data. At the inference step, the adversarial learned model is
anticipated to foresee both adversarial samples accurately. Based on Equation (2), the
conventional adversarial training [21] may be expanded to become the following min–max
optimization formation:

min
θ

E(x,y)∼D

[
max
‖δ‖∞≤ε

L
(

fθ(X+δ), y

)]
(3)

To interfere with the target network, internal optimization seeks out the most harmful
and threatening occurrences. Improving the realistic adversarial threat spanning network
parameters is the primary focus of external mitigation. In general, adversarial training im-
proves deep neural networks’ (DNNs’) intrinsic robustness without adding any extraneous
parts, while preserving its ability to make accurate inferences from valid data. Different
protection strategies focus on pre-processing data (both clean and hostile instances) without
influencing later computer-aided analysis networks, strengthening the intrinsic network
resistance against adversarial components [20,46]. In simple terms, the data pre-processing
aims to retain the original form of clean inputs while converting hostile samples into benign
equivalents for future inference. The resulting optimization problem allows us to create a
pre-processing-based protection.

min
ψ

E(X,Y)∼D [L( fθ(ψ(X + δ)), Y) + λ · L( fθ(ψ(X)), Y)] (4)

The pre-processing module ψ, which may include a modal or irregular operator
intended to mitigate the effects of adversarial perturbations, is indicated by the weight
coefficient λ. Nevertheless, distinguishable areas in medical imaging typically cover a
small number of pixels. Relative to their equivalents in environmental images, biased
characteristics still run a higher risk of being lost through pre-processing methods for
medical images. Many adversarial attack and defensive strategies have demonstrated
outstanding results with real-world images [47]. The tasks belonging to normal vision
alongside those relevant to medical imaging nevertheless vary fundamentally in several
ways, including data aspects, features, and task features. As a result, it is difficult to directly
transfer adversarial attack and defensive strategies from the realm of natural imagery to
the field of medicine. In addition, several research studies have shown that compared
to natural images, medical images may be much more vulnerable to serious adversarial
attacks [13,17,43]. The safety and reliability of computer-aided diagnostic models have to
be considered carefully consideration, considering the sizeable healthcare industry and the
significant effect of computer-aided diagnosis. This paper, therefore, provides a thorough
overview of current developments in adversarial attack and response strategies in the field
of medical image analysis.

Contemporary healthcare systems are built around pattern detection and classification
in medical image analysis. Using cutting-edge technology to glean priceless information
from medical imaging like X-rays, MRIs, CT scans, and ultrasounds is the central idea
behind this multidimensional approach. The detection, categorization, and management
of numerous medical diseases are made possible by these images, which are frequently
complicated and filled with minute details. They provide essential insights into the inner
workings of the human body. Fundamentally, pattern recognition is carefully examining
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these images to find abnormalities, irregularities, or certain traits that might point to a
condition, an injury, or other health-related issues. On the contrary, classification goes
beyond pattern detection by classifying the discovered patterns into distinct groups or
diagnoses. Artificial intelligence and machine learning algorithms are crucial in this
regard because they can analyze enormous volumes of picture data and spot patterns that
the human eye would miss [48,49]. Effective pattern recognition and classification have
significant effects on medical image analysis. They make it possible to identify diseases
early, arrange effective treatments, and track a patient’s development over time. They
also help to improve overall patient satisfaction and lower the margin of diagnosing error.
Researchers and healthcare professionals are constantly working to improve and grow
the methods and tools used for pattern detection and classification in this dynamic field,
pushing the limits of the analysis of medical images and redefining how diseases are
identified and treated. This overview just touches the surface of this important field, which
is at the vanguard of contemporary medicine and provides patients everywhere with hope
and innovation.

2.2. Adversarial Attack and Defense

Deep neural network (DNN) vulnerability has not been addressed or justified tech-
nically. DNN uses a substantial quantity of ambient input while training and derives
conclusions from its internal framework and algorithmic process via its outcome. Szegedy
et al. [9] first initiated the susceptibility of deep neural network models in image classifi-
cation. Human eyes cannot tell the difference between the adversarial samples produced
after applying a perturbation to the initial image, yet it was wrongly predicted by the
employed deep learning network. Given the possible risk, real-world adversarial attacks
on deep learning models raise serious concerns. In a noteworthy investigation, Eykholt
et al. [50] perturbed an actual traffic signal with black and white graphics, leading to
deliberate misclassification, to show the viability of strong physical-world attacks. These
attacks are especially dangerous because they may resist a wide range of physical cir-
cumstances, such as shifting perspectives, miles, and qualities. This demonstrates how
adversaries might potentially modify real-world items like traffic signs using deep learn-
ing algorithms, resulting in misunderstanding. Such attacks can trick machines that are
autonomous, like self-driving vehicles, and have disastrous effects on the road, which has
serious ramifications for security and privacy.

Real-world adversarial attacks on deep learning algorithms raise serious issues and
can even be fatal, especially in the medical industry. Attack-related medical image mis-
classification might result in improper or late therapy, which could put people’s lives
in peril. Recognizing the need to protect ML models in the medical field and creating
strong defensive measures to reduce the dangers brought on by adversarial attacks are
essential. Ma et al.’s [17] work concentrated on adversarial attacks on deep learning-based
algorithms for analyzing medical images. Due to the special properties of medical image
information and deep neural network models, their research on baseline medical imagery
databases demonstrated that malicious attacks on medical images are simpler to design.
They additionally showed how medical adversarial scenarios frequently target tissues
outside of diseased ones, leading to deeply distinctive and distinguishable traits. In the
same vein, Paul et al. [47] built an ensemble-based defense mechanism and examined
the effect of adversarial attacks on the precision of forecasting lung nodule cancer. To
increase resilience over adversarial attacks, they also looked into including hostile images
in the training sample. The accuracy of CNN prediction was considerably impacted by
adversarial attacks, notably the Fast Gradient Sign Method (FGSM) and one-pixel attacks.
They outline that training adversarial images and multi-initialization ensembles can boost
classification accuracy. Ozbulak et al. [51] combined the skin lesions and glaucoma op-
tic disc in a segmentation task while examining the effect of adversarial attacks on deep
learning models. Furthermore, they developed an Adaptive Mask Segmentation Attack, an
innovative algorithm that yields an adversarial attack with accurate prediction masks based
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on perturbations, which are largely invisible to the human eye yet cause misclassification.
This study shows the necessity for strong defenses to guarantee the dependability and
accuracy of segmentation models used in healthcare settings.

3. Overview of Medical Image Adversarial Attack and Defense

This survey presents a comprehensive exploration into the realm of medical image
adversarial attack and defense. Within this section, a detailed dissection of medical ad-
versarial attacks is offered, alongside an in-depth investigation of defense strategies. This
discourse will delve into the intricacies of both attack and defense methodologies within
the context of medical image analysis. The accompanying Figure 3 provides a succinct
visual representation of the yearly publication trend about adversarial attack and defense
within the domain of medical image analysis.
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A. Medical Image Adversarial Attack and Defense Classification Task

The classification process simply explains the partition of medical images into discrete
groups, typically involving the identification of various conditions or ailments, as shown in
Figure 4. The objective of adversarial attacks targeting classification tasks is to strategically
modify input images to elicit inaccurate classification. The decision-making mechanism
of the model can be misled by perpetrators through the introduction of varying modifi-
cations that are difficult to detect. The consequences of effective classification attacks are
significant, as they can result in erroneous treatment approaches, postponed interventions,
and compromised well-being of patients. Paschalis et al. [12] have used an innovative
methodology to assess the resilience of deep learning networks in the context of medical
imaging. The researchers examine weaknesses in these state-of-the-art networks through
the utilization of adversarial instances. Different techniques were utilized for classification,
such as FGSM, Deep Fool (DF) [52], and saliency map attacks (SMA) [53]. On the other
hand, dense adversarial generation (DAG) [54] was applied for semantic segmentation,
with varying levels of perturbation and complexity. The results of the study indicate that
images affected by noise are categorized in a manner comparable to clean images during
classification tasks.
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However, adversarial instances exhibit a unique tendency to be classified into other
categories. The presence of Gaussian noise resulted in a decrease in the level of certainty
in classification, while the majority of adversarial attacks exhibited a high level of cer-
tainty in their misclassification. Therefore, it may be argued that adversarial instances are
better suitable for evaluating the resilience of models in comparison to test images that
contain noise. Finlayson et al. [55] conducted a comprehensive investigation aimed at
identifying vulnerabilities within deep neural network models used in the medical field.
Both Pretrained Gradient Descent (PGD) and a basic patch attack were employed on three
foundational models for the classification of medical disorders such as diabetic retinopathy,
pneumothorax, and melanoma. The findings suggest that both forms of attacks have a high
probability of success and are undetectable by human observers. Furthermore, these attacks
seem to be effective even against advanced medical classifiers, especially the ResNet-50
model. It is important to note that the attacker’s degree of network exposure does not
significantly impact the efficacy of these attacks.

Adversarial attacks such as the Fast Gradient Sign Method (FGSM), the Basic Iterative
Method (BIM) [56], and C&W attacks, were utilized in the identical medical setting as de-
scribed in [55], with a specific emphasis on fundoscopy, chest X-ray, and dermoscopy. The
aforementioned attacks were implemented on datasets that encompassed both two-class
and multi-class classifications. Taghanaki et al. [57] conducted a thorough investigation to
evaluate the susceptibilities of deep learning techniques in categorizing chest X-ray images
across different illness categories. The researchers thoroughly analyzed the performance of
two deep neural networks when subjected to 10 diverse adversarial attacks. In contrast to
previous methodologies that employed a singular gradient-based attack, the researchers
examined several gradient-based, score-based, and decision-based attack models. These
models were examined on Inception-ResNetv2 and NasNet-large architectures, with their
performance evaluated using chest X-ray images. To perform a more comprehensive exam-
ination of the vulnerabilities of convolutional neural networks (CNNs), Yilmaz et al. [58]
undertook a groundbreaking experiment to assess the sensitivity of a classifier designed
for mammographic images to adversarial attacks. The researchers analyzed the similarity
between benign and malicious images utilizing the structural similarity index technique
(SSIM), which is a perceptual model employed for assessing image similarity. Furthermore,
Fast Gradient Sign Method (FGSM) attacks were implemented on convolutional neural
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networks (CNNs) that have undergone training. In recent times, a category of sophisticated
attacks referred to as universal adversarial perturbations (UAP) has been presented [52].
These attacks encompass perturbations that are agnostic to visual content, hence providing
enhanced realism and effectiveness. The proposed approach utilizes an iterative algorithm
to apply slight perturbations to input images.

The use of chest X-ray images to gain an understanding of different ailments kinds has
generated significant attention among physicians and radiologists due to the potential for
automated assessment enabled by deep learning networks [59,60]. As a result, the issue of
safeguarding the integrity of these models has emerged as a matter of utmost importance.
Rao et al. [61] conducted a comprehensive investigation of various attack and defense
strategies employed in the classification of Thorax disorders by the analysis of chest X-rays.
The scholars conducted a comparison assessment whereby they examined five distinct
attack types, specifically DAA, DII-FGSM, MIFGSM, FGSM, and PG. Prior research has
demonstrated that deep learning networks utilized in the prediction of vulnerability to
COVID-19 are vulnerable to adversarial attacks. In their seminal work, Rahman et al. [62]
conducted a comprehensive analysis of the effects of adversarial perturbations on deep
learning networks, establishing themselves as pioneers in this field. The scope of their
analysis included six discrete deep-learning applications specifically designed to diagnose
COVID-19. Additionally, the researchers incorporated multi-modal adversarial instances
into several diagnostic algorithms for COVID-19. The decline in image quality observed in
these instances frequently arises from the presence of irregular illumination. In light of this
concern, Cheng et al. [63] addressed the matter by using an adversarial attack technique.
The researchers presented a new type of attack known as the “adversarial exposure attack”.
The methodology employed by the researchers entails the creation of hostile images by
the manipulation of image exposure to radiation, intending to mislead the deep neural
networks that underlie the image recognition system.

B. Medical Image Adversarial Attack and Defense Segmentation Task

Segmentation attacks can be summarized as attacks involving the deliberate division
or fragmentation of data or information to compromise its integrity, confidentiality, or avail-
ability, as shown in Figure 5. Segmentation plays a crucial function in delineating distinct
regions of interest within medical images, facilitating the detection and characterization
of abnormalities, organs, or malignancies. The focus of adversarial attacks in the context
of segmentation tasks revolves around the manipulation of pixel values or gradients to
disturb the accurate delineation of boundaries.
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The vulnerability of segmentation models to adversarial attacks highlights the ne-
cessity of implementing robust protections to guarantee the accurate representation of
anatomical structures. Therefore, it is crucial to develop various ways to create adversarial
cases that can specifically target segmentation models. To fulfill this aim, Chen et al. [64]
proposed a novel approach to attack segmentation convolutional neural networks (CNNs)
through the utilization of adversarial learning. The methodology employed by the re-
searchers entails integrating a variational auto-encoder (VAE) with Generative Adversarial
Networks (GAN) to produce images that demonstrate deviations and alterations in visual
characteristics. The purpose of these images is to subvert the effectiveness of medical
segmentation models. The quantification of the attack effect is determined by a significant
decrease in the Dice score [65], a commonly employed metric for evaluating the effective-
ness of segmentation in medical imaging, as matched with actual truth segmentation. To
prioritize the protection of medical neural networks for the benefit of patients, Cheng and
Ji [63] conducted a study to examine the effects of universal adversarial perturbations on
brain tumor segmentation models across four different modalities. The researchers utilized
the MICCAI BraTS dataset, which is recognized as the most extensive publicly available
compilation of MRI brain tumor images, and implemented them in a U-Net model. The
perturbations were created using a Gaussian distribution.

C. Medical Image Adversarial Attack and Defense Detection Task

Detection attacks refer to a type of cyber-attack where an adversary attempts to evade
detection of security systems or protocols. Detection tasks involve the process of identifying
particular objects or anomalies within medical images, such as accurately determining the
existence of cancers or lesions, as shown in Figure 6. The objective of adversarial attacks
in detection tasks is to intentionally alter or confuse the visual characteristics of specific
objects to circumvent the detection capabilities of the model. By making subtle alterations
to the characteristics of an anomaly, individuals with malicious intent can avoid being
detected, which may result in occurrences of false negatives. In line with the above, Ma
et al. [17] investigated this particular issue by using four detection approaches on medical
deep neural networks. These methods include Kernel density (KD) [66], Deep features
(DFeat), local intrinsic dimensionality (LID) [67], and quantized features (QFeat) [68]. Li
and Zhu [69] proposed an unsupervised learning method as a means to detect adversarial
attacks on medical imaging. The authors posited that their unique methodology has the
potential to operate as a self-contained component within any medical imaging system
based on deep learning, hence augmenting the system’s resilience. Li et al. [70] developed
a hybrid approach to create a robust artificial intelligence framework for medical imaging
in their research.

The architecture presented in this study is founded on the principles of semi-supervised
adversarial training, unsupervised adversarial detection, and the introduction of a novel
metric for evaluating the susceptibility of the system to adversarial risks (SSAT and UAD).
The technique proposed by the authors effectively tackles two primary obstacles encoun-
tered in the identification of adversarial samples. These challenges are the scarcity of labeled
images in medical applications and the ineffectiveness of current detection approaches
when faced with fresh and previously undetected attacks.

3.1. Medical Imaging Adversarial Attacks

In the field of medical image analysis, the integration of machine learning techniques,
particularly deep neural networks, has resulted in a significant improvement in both di-
agnostic accuracy and the development of therapeutic approaches [10,22]. However, this
progress has also brought about new challenges, evident in adversarial attacks. These
attacks involve deliberately injecting carefully engineered distortions into input data to
deceive the models. Within the field of medical image analysis, adversarial attacks pose
a significant threat to the reliability and integrity of tasks related to classification, seg-
mentation, and detection. These tasks are crucial for accurate diagnosis and effective
patient care.
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3.1.1. White Box Attacks

Within the domain of adversarial machine learning, a notable category of attacks
is sometimes referred to as “white box attacks”. The aforementioned attacks exhibit a
distinguishing feature wherein the perpetrator possesses an in-depth understanding of the
architecture, parameters, and training data of the specific machine learning model being
targeted. The thorough comprehension of the underlying workings of the model allows
adversaries to create intricate and tailored adversarial attacks with the specific goal of
exploiting weaknesses and inducing misclassification or erroneous outputs. White-box
attacks have the most potential to cause disruption. As a result, they are frequently used to
evaluate the effectiveness of associated defenses as well as the resilience of machine learning
and deep learning models. Zhang et al.’s key work [71] pioneered the proof that even the
smallest unnoticeable perturbations placed into an image might cause a DNN to misclassify
an image. The authors set out to solve the equation governing the smallest perturbation
required to cause a neural network misclassification. The C&W attack technique [72]
utilizes L0, L2, and L∞ norms to generate adversarial samples while adhering to specified
perturbation restrictions. This algorithm is supported by an improved version of the
L-BFGS optimization methodology (one of the strongest existing methods for targeted
attacks). The authors of reference [73] developed FGSM, a technique for quickly calculating
adversarial perturbations. An adjustment to the adversarial perturbation magnitude in
the FGSM aligns with the gradient of the loss function of the model. This method makes
it easier for untargeted attacks to produce misclassification by manipulating the gradient
of the model’s loss function with respect to the input. The I-FGSM method was improved
by [74] by focusing on the category with the lowest confidence level. This method of
targeting creates adversarial samples that trick the model into categorizing segments that
are vastly different from the correct one, increasing the attack’s potential for disruption.
Likewise, in [53], a technique was put out to limit the L0 norm perturbation by changing
only a small subset of the image pixels as opposed to the complete image. This method
uses a saliency map and is greedy, repeatedly changing one pixel at a time while computing
the derivative of the output bias for each input feature at the model’s final layer. With this
technique, a subtle and targeted perturbation strategy is introduced (Table 1).
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Table 1. Summary of adversarial attack works in the context of medical image analysis.

Ref./Year Adversarial Attack Type Task Image Modality

[12]/2018 FGSM, Deep pool, JSMA Classification/segmentation MRI, Dermoscopy
[75]/2018 FGSM Classification Fundoscopy
[13]/2018 PGD, AdvPatch Classification Fundoscopy, X-ray, Dermoscopy
[76]/2019 FGSM, I-FGSM, TI-FGSM Segmentation MRI
[77]/2019 Multi-task VAE Segmentation CT

[51]/2019 Adaptive segmentation mask
Attack Segmentation Fundoscopy, Dermoscopy

[78]/2019 PDG Classification X-ray, Histology

[61]/2020 FGSM, PGD, MI-FGSM, DAA,
DII-FGSM Classification X-Ray

[79]/2020 Adversarial exposure attack Classification Fundoscopy

[62]/2020 BIM, L-BFGS, PGD, JSMA Classification, Object
detection CT, X-ray

[80]/2020 Zoo Classification Ultrasound
[81]/2020 Adaptive targeted I-FGSM Landmark detection MRI, X-ray
[82]/2020 FGSM Classification Fundoscopy
[83]/2021 UAP Classification OCT, X-ray, Dermoscopy
[84]/2021 FGSM, BIM, PGD Classification CT, MRI, X-ray
[85]/2021 IND and OOD Attacks Segmentation MRI
[86]/2021 Stabilized medical image attack Classification, Segmentation CT, Endoscopy, Fundoscopy
[87]/2021 PGD Segmentation X-Ray
[88]/2021 CW Classification CT, X-ray, Microscopy
[89]/2021 FGSM Classification CT, X-ray
[90]/2021 Multi-scale attack Segmentation Fundoscopy, Dermoscopy

[91]/2022 AmdGAN Classification
CT, OCT, X-ray, Fundoscopy,

Dermoscopy, Ultrasound,
Microscopy

[92]/2022 UAP Classification X-ray, Fundoscopy, Dermoscopy
[93]/2022 Attention-based I-FGSM Classification CT

[94]/2022 Modified FGSM with
with tricks to break defenses Classification, Segmentation CT, MRI, X-ray,

Dermoscopy, Fundoscopy
[95]/2022 FGSM Segmentation Microscopy
[96]/2022 FGSM Classification X-ray
[97]/2022 Digital watermarking Classification CT, MRI, X-ray

[98]/2022 FGSM, BIM, PGD, No-sign
operation Classification X-Ray

[99]/2022 FGSM Classification Fundoscopy
[100]/2022 FGSM, PGD, CW Classification CT, Dermoscopy, Microscopy
[101]/2022 Improved adaptive square attack Segmentation X-Ray
[43]/2022 FGSM, BIM, PGD, MI-FGSM Classification CT, Fundoscopy

[102]/2022 Adversarial k-space noise,
Adversarial rotation Reconstruction MRI

[103]/2022 FGSM, L-BFGS Classification Fundoscopy

[15]/2022 Feature space-restricted attention
attack Classification X-ray, Fundoscopy, Dermoscopy

[104]/2023 FGSM, PGD Classification Classification
[105]/2023 FGSM Classification CT
[106]/2023 PGD, FGSM, BIM, GN Segmentation CT, MRI
[107]/2023 PGD, BIM, FGSM Classification, Detection CT, MRI
[108]/2023 PDG, CW, BIM Classification X-ray, Fundoscopy, Dermoscopy
[109]/2023 FGSM, MI-FGSM, PDG, CW Reconstruction X-ray, Fundoscopy
[110]/2023 L-BFGS, FGSM, PDG, CW Classification, Reconstruction MNIST
[111]/2023 FGSM, PGD, MIM, CW Classification, Segmentation X-Ray, CT, Ultrasound

3.1.2. Black-Box Attacks

Black-box attacks are instances in which the perpetrator of the attack has minimal
or no understanding of the internal operations of the specific machine learning model
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being targeted. As opposed to existing white-box adversarial attacks that primarily rely
on obtaining multiple backward gradients of target models, the attacker in this approach
considers the target DNN as the locally installed model for generating related adversarial
samples. When considering the merits of different scenarios, it might be argued that the
general black-box scenario offers a more appropriate environment for simulating practical
adversarial attacks. In essence, the attacker regards the model as an opaque entity, with
solely the input–output characteristics of the model being accessible. Their only knowledge
is the capacity to see the system’s outputs in response to particular inputs. However,
there are occasions when this capability is limited, frequently as a result of restrictions
placed on the number of requests to avoid raising suspicion, which makes their efforts
more difficult. The works of [14] show that, even if two models are trained on distinct
datasets, adversarial attacks designed to cause misclassification in one model may equally
fool another machine, which explains the transferability of adversarial attacks. Making use
of this idea, the authors of [112] launched black-box attacks against a DNN intending to
develop a replacement model that is trained on artificial inputs that the target DNN labeled.
This alternative model was used to provide adversarial instances that might damage the
intended DNN. Ref. [113] also provided three realistic threat models that were in line
with actual world circumstances within the scope of black-box scenarios. These consist of
label-only, incomplete information, and query-limited options. Query-efficient methods are
required by the query-limited model, which uses Natural Evolutionary Strategies to predict
gradients for implementing the PGD attack. The method alternates between merging the
original image and maximizing the probability of the intended target class in cases where
only the top-k label probabilities are given. Similar to this, the attack makes use of noise
robustness to create targeted attacks when the attacker only has access to the top-k predicted
labels. The Invariant Feature Transform is used in the FGBB approach [114], which makes
use of image-extracted features to direct the development of adversarial perturbations.
Higher probabilities are given by the algorithm to pixels that significantly affect how the
human visual system perceives objects. As a two-person game, the process of creating
an adversarial example is conceptualized, with one player limiting the distance to an
adversarial example and the other taking on different roles that produce the fewest possible
antagonistic examples. Square Attack [115] is a novel method that functions without
relying on local gradient information and is hence resistant to gradient masking. This attack
chooses localized square-shaped updates in arbitrary positions using an algorithmic search
mechanism. The perturbation strategically lines up with the decision boundaries as a result.
Figure 7 depicts the summary of adversarial attack taxonomy in medical imaging.
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3.2. Medical Adversarial Defense

In light of the potential risks, numerous defense approaches have been proposed
to counteract medical adversarial attacks. This research analyzed a range of tactics and
methodologies to reduce the adverse effects of adversarial attacks on the processing of
medical images. Specifically, we offer a comprehensive examination of each category of
adversarial defense technique, encompassing its prerequisites, limitations, and results.
The mitigation of adversarial attacks in medical image analysis necessitates adopting a
comprehensive strategy that integrates sophisticated methodologies derived from machine
learning and medical imaging. The prioritization of the creation and integration of effective
adversarial defenses is crucial within the healthcare industry as it increasingly adopts
AI-powered solutions. This is necessary to protect patient safety, to uphold the accuracy
of diagnoses, and to guarantee AI’s ethical and secure utilization in medical applications.
The advancement of the area of medical adversarial defense and the establishment of a
robust basis for AI-driven healthcare will heavily rely on the collaborative endeavors of
researchers, practitioners, and policymakers on Adversarial defenses. Figure 8 depicts the
summary of adversarial defense in medical imaging.
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3.2.1. Image Level Preprocessing

Images need to be processed before they can be utilized for model training and
inference. This encompasses but is not restricted to changes in color, size, and direction,
as shown in Figure 9. Pre-processing is carried out to improve the image’s quality so we
can analyze it with greater accuracy. Through preprocessing, we may eliminate undesired
deformities and enhance certain properties crucial for the application we are developing.
Those qualities might change based on the application.
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Typically, an adversarial image is composed of a pristine image and its matching
adversarial alteration. Meanwhile, deep neural networks (DNNs) have been shown to
attain impressive performance for clean images, but they are still vulnerable to adversarial
attacks [14,116]. Therefore, the process of reducing the perturbation component from the
adversarial example can enhance the subsequent network diagnosis. Moreover, there is no
necessity to undergo retraining or make alterations to medical models when implementing
image-level preprocessing techniques. This approach proves to be advantageous and secure
in the domain of biomedical image analysis. Most pre-processing-based defense approaches
primarily focus on medical classification tasks, as evidenced by the majority of existing
research [61,117]. Therefore, it is necessary to do image-level preprocessing to preserve the
identifiable components for further diagnostic purposes. The authors suggest the Medical
Retrain-less Diagnostic Framework (MedRDF) [20] as a method to enhance the robustness
of a pre-trained diagnosis model during the inference step. In the initial step, MedRDF
generates several replicas of the input images, each of which is subjected to isotropic
noise perturbations. The generation of these duplicates is anticipated by the utilization
of majority voting after the application of a bespoke denoising algorithm. Furthermore, a
comprehensive metric is proposed to determine the confidence level of MedRDF diagnosis,
aiding healthcare professionals in their clinical practice. Kansal et al. [46] expanded upon
the High-level representation Guided Denoiser (HGD) [118] to defend medical picture
applications against hostile examples in both white-box and black-box scenarios instead
of focusing just on pixel-level denoising. The incorporation of high-level information can
enhance the process of eliminating the adversarial effect at the image level, leading to a
more accurate final diagnosis without causing visual disruption.

3.2.2. Feature Enhancement

Feature enhancement, a powerful strategy in the field of machine learning, holds
substantial potential when utilized as a method to mitigate adversarial risks. Adversarial
attacks, which are defined by their ability to introduce subtle modifications to input data,
present significant difficulties to the resilience of machine learning models. The utilization
of feature augmentation approaches within the context of adversarial defense involves
transforming and enhancing data representations to strengthen the model’s ability to resist
these attacks. By incorporating decision-influencing features, models are strengthened with
enhanced capacities to differentiate genuine patterns from adversary interference, hence
bolstering their effectiveness and reliability. Numerous approaches for enhancing features
have been developed to improve the resilience of medical classification models [119–121].
Pooling layers are frequently employed in neural network modeling as a means to decrease
the size of feature maps. In their study, Taghanaki et al. [21] made modifications to the
medical classification networks by substituting max-pooling layers with average-pooling
layers. One possible explanation for the observed improvement in resilience is that the
utilization of average-pooling allows for the acquisition of a more incredible amount of
contextual information at a global level, as opposed to the selection of only the largest value
in max-pooling. This increased contextual understanding presents a greater challenge for
adversarial attacks. Additionally, the Auto Encoder (AE) can be integrated into computer-
aided diagnosis models to perform feature-level denoising [122]. This denoising process is
separate from the image-level preprocessing technique. Meanwhile, the incorporation of
feature invariance guidance is employed to mitigate the model’s susceptibility to adversarial
attacks. In line with the findings of reference [123], Han et al. [120] also incorporated dual-
batch normalization into adversarial training. This modification resulted in a notable
enhancement in the resilience of diagnostic models without compromising their accuracy
under clean conditions.

In addition to the conventional medical classification problem, feature-enhanced
methods have been utilized in various medical imaging tasks, such as segmentation [124],
object identification [21], and low-level vision [125]. The Non-Local Context Encoder
(NLCE) [126] is a proposed module that aims to enhance the resilience of biomedical image
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segmentation models. It functions as a plug-and-play component. The NLCE module, as
noted by [21], is designed to capture spatial dependencies at a global level and enhance
features by including contextual information. This module may be seamlessly integrated
into different deep neural network (DNN) models for medical picture segmentation. In
their study, Stimpel et al. [125] employ the guided filter technique along with a guidance
map that is learned to enhance the resolution and reduce noise in medical images. The
guided filter demonstrates a robust capability in mitigating the impact of adversarial
attacks on the produced outputs. The exploration of feature improvement has emerged
as a promising approach within the field of adversarial defense. This approach aims
to tackle the significant issue of adversarial attacks by promoting the development of
models that are more robust and dependable. Through the utilization of enhanced data
representation, models can acquire improved abilities to navigate the complex domain of
adversarial perturbations, leading to increased levels of resilience, precision, and reliability.
The incorporation of feature enhancement approaches into adversarial defense tactics is
anticipated to have a significant impact on fostering machine learning systems against the
constantly emerging adversarial attacks as research and innovation advance.

3.2.3. Adversary Training

The fragility of modern AI systems has been brought to light by adversarial attacks,
which entail deliberate modification of input data to deceive machine learning algorithms.
Adversarial training, a proactive defense mechanism, has been recognized as an effective
technique for improving the resilience of these models against such attacks. Through the
integration of adversarial attacks during the training phase, adversarial training enhances
the capability of models to tolerate perturbations and to generate dependable predictions,
even when exposed to adversarial input. Notably, a significant number of research studies
have diversified upon existing adversarial training techniques that were developed initially
for conventional images and applied to the field of medical classification tasks [18,22,112–114].
The study conducted by [18,127] focused on investigating adversarial cases in medical
imaging. The researchers developed multiple strategies to mitigate the impact of these
adverse occurrences. During the adversarial training phase, integrating both FGSM [42]
and JSMA [53] approaches is employed to generate adversarial instances. To strengthen
the resilience of the system, the researchers incorporated Gaussian noise into the data used
for adversarial training. Additionally, they substituted the original Rectified Linear Units
(ReLU) activation function with the Bounded ReLU variant.

Xu et al. conducted a study where they not only evaluated the robustness of several
computer-aided diagnosis models but also implemented PGD-based adversarial train-
ing [45] and the Misclassification Aware adveRsarial Training (MART) approach [128,129]
to improve the resilience of these models. To enhance the evaluation of resilience to typ-
ical disturbances, the researchers also established a fresh medical dataset known as the
Robust-Benchmark. The aforementioned efforts primarily focus on improving the ability of
individual models to withstand hostile attacks. Moreover, there are various adversarial
defense methods specifically designed for medical image analysis, along with the transfer
of natural defense techniques to diagnostic models [130–132]. In their study, Liu et al. [130]
examined three distinct types of adversarial augmentation cases that might be incorporated
into the training dataset to enhance robustness. The authors employ Projected Gradient
Descent (PGD) [45,69] as an iterative method to search for the most challenging latent
code to generate adversarial nodules that the target diagnosis model cannot detect. The
concept of adversarial training is a significant development in the domain of adversarial
machine learning, as it offers a means to enhance models’ resilience against adversarial
perturbations. Adversary training enhances the robustness and reliability of AI systems by
endowing models with the capability to discern authentic inputs from hostile ones. The on-
going evolution of the adversarial landscape necessitates additional study and innovation
in adversarial training approaches. These advancements have the potential to establish a



Mathematics 2023, 11, 4272 17 of 41

more secure and reliable basis for the deployment of machine-learning models in many
applications (Table 2).

Table 2. Summary of adversarial defense works in the context of medical image analysis.

Ref./Year Evaluation Metrics Defense Model Task Image Modality

[57]/2018 FGSM, PGD, BIM,
L-BFGS, DeepFool Feature enhancement Classification X-ray

[133]/2018 FGSM, BIM Adversarial training Reconstruction CT
[134]/2019 FGSM Adversarial training Segmentation MRI
[135]/2019 FGSM, I-FGSM, CW Feature enhancement Classification X-ray, Dermoscopy

[21]/2019 FGSM, CW, PGD, BIM,
GN, SPSA, MI-FGSM Feature enhancement

Classification,
Segmentation,

Object Detection
X-ray, Dermoscopy

[18]/2019 GN Adversarial training Classification CT, MRI
[126]/2019 I-FGSM Feature enhancement Segmentation X-ray, Dermoscopy
[136]/2019 FGSM, I-FGSM Adversarial training Segmentation CT

FGSM Adversarial training Classification MRI
[125]/2019 Optimization-based attack Feature enhancement Low-level vision X-ray, MRI
[137]/2020 DAG Adversarial detection Segmentation MRI
[138]/2020 FGSM, I-FGSM Feature enhancement Regression MRI

[61]/2020 FGSM, PGD, DAA,
MI-FGSM, DII-FGSM

Adversarial Training,
Pre-processing Classification X-ray

[47]/2020 OPA, FGSM Adversarial training Classification CT
[139]/2020 PGD Adversarial training Classification Fundoscopy

[140]/2020 PGD, FGSM Adversarial training Classification,
Segmentation X-ray, MRI

[141]/2020 PGD, I-FGSM Adversarial training Classification,
Segmentation CT, MRI

[142]/2020 False-negative adversarial
feature Adversarial training Reconstruction MRI

[143]/2020 GAN-based attack Adversarial training Reconstruction CT, X-ray
[144]/2020 PGD, FGSM Adversarial training Classification Dermoscopy

[44]/2020 PGD, BIM, CW,
FGSM, DeepFool, Pre-processing Classification CT, X-ray

[130]/2020 PGD Adversarial training Classification CT
[64]/2020 Adversarial bias attack Adversarial training Segmentation MRI

[145]/2020 ASMA Pre-processing Segmentation Fundoscopy, Dermoscopy

[131]/2020 FGSM, Deep Fool,
Speckle noise attack

Adversarial training,
feature enhancement Classification X-ray, Fundoscopy

[17]/2021 FGSM, BIM, PGD, CW Adversarial detection Classification X-ray, Fundoscopy,
Dermoscopy

[146]/2021 PGD, CW Adversarial detection Classification X-ray
[124]/2021 PGD, FGSM Feature enhancement Segmentation CT, MRI
[83]/2021 UAP Adversarial training Classification OCT, X-ray, Dermoscopy

[70]/2021 FGSM, PGD, CW Adversarial training,
adversarial detection Classification OCT

[70]/2021 PGD, GAP Adversarial training Classification X-ray, Fundoscopy,
Dermoscopy

[131]/2021 FGSM, Deep fool,
Speckle noise attack

Adversarial training,
feature enhancement Classification X-ray, Fundoscopy

[147]/2021 FGSM Adversarial training Segmentation CT

[148]/2021 FGSM, BIM, CW, Deep
Fool Adversarial detection Classification Microscopy

[120]/2021 PGD Feature enhancement Classification CT, MRI, X-ray
[19]/2021 FGSM Adversarial training Object Detection CT, Microscopy
[76]/2021 FGSM, I-FGSM, TI-FGSM Distillation Segmentation MRI

[149]/2021 PGD, AA Feature enhancement,
adversarial training Segmentation CT, MRI

[150]/2022 FGSM Adversarial training Classification MRI
[46]/2022 FGSM, PGD Pre-processing Classification X-ray
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Table 2. Cont.

Ref./Year Evaluation Metrics Defense Model Task Image Modality

[151]/2022 Hop skip jump attack Adversarial detection Classification MRI, X-ray, Microscopy
[20]/2022 I-FGSM, PGD, CW Pre-processing Classification X-ray, Dermoscopy

[127]/2022 FGSM, PGD, BIM Adversarial training Classification CT, MRI, X-ray
[152]/2022 OPA Adversarial detection Classification Microscopy
[128]/2022 DDN Adversarial training Classification MRI
[153]/2022 FGSM, PGD Adversarial training Classification OCT, X-ray, Dermoscopy

[154]/2022 PGD, I-FGSM Adversarial training
Segmentation, Object

Detection,
Landmark Detection

MRI, X-ray, Microscopy

[155]/2022 FGSM, PGD, BIM Adversarial training Classification CT, MRI, X-ray

[156]/2022 FGSM, BIM, CW, PGD, AA,
DI-FGSM Pre-processing Classification Dermoscopy

[157]/2022 FGSM, PGD, FAB, Square
attack Feature enhancement Classification Microscopy

[158]/2022
FGSM, PGD, Square attack,
Moment-based adversarial

attack
Adversarial training Classification,

Segmentation X-ray, Microscopy

[132]/2022 FGSM, PGD, BIM, Auto
PGD

Adversarial detection,
feature enhancement Classification X-ray, Fundoscopy

[159]/2022 FGSM, PGD, CW Adversarial training,
feature enhancement Classification Ultrasound

[160]/2022 FGSM, PGD, SMA Feature enhancement Segmentation CT

[103]/2022 L-BFGS, FGSM Adversarial training,
distillation Classification Fundoscopy

[161]/2022 FGSM Adversarial training Classification Microscopy
[119]/2022 FGSM Feature enhancement Classification Fundoscopy
[162]/2022 DAG, I-FGSM Pre-processing Segmentation MRI, X-ray, Fundoscopy
[163]/2022 PGD Adversarial training Segmentation MRI
[164]/2022 FGSM, PGD Feature enhancement Classification X-ray, Fundoscopy
[104]/2023 FGSM, PGD Adversarial training Classification Dermoscopy
[105]/2023 FGSM Adversarial training Classification CT
[106]/2023 PDG, FGSM, BIM, GN Adversarial training Segmentation MRI

[107]/2023 PGD, BIM, FGSM Adversarial training Classification,
Detection CT, MRI

[108]/2023 PDG, CW, BIM Feature enhancement Classification X-ray, Fundoscopy,
Dermoscopy

[109]/2023 FGSM, MI-FGSM, PDG,
CW

Adversarial training,
feature distillation Reconstruction X-ray, Fundoscopy

[110]/2023 L-BFGS, FGSM, PDG, CW Adversarial training Classification,
Reconstruction MNIST

[111]/2023 FGSM, PGD, MIM, CW Adversarial training Classification,
Segmentation X-Ray, CT, Ultrasound

4. Experiment

This section illustrates the exhibition of the practical experimentation and evaluation
of medical image adversarial attack and defense especially in the area of segmentation
and classification. First, the employed datasets and the type of data preprocessing we
used are introduced, followed by the evaluation metrics and the proposed approach. The
qualitative and quantitative results are presented next, and we conclude the section with
the results discussion.

4.1. Implemented Attack and Defense Model

In this review article, we used the ResNet-18 [165] (Figure 10) and Auto Encoder-Block
Switching [166] (Figure 11) for medical image attack and defense classification while using
the U-Net [3] architecture (Figure 12) for medical image segmentation task. In this study,
we primarily focus on attacks under the “norm threat model,” which is the most typical
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case. We provide accurate results on both clean and adversarial instances, achieved using
five powerful adversarial attack techniques: FGSM [42], PGD [45] with 20 steps and a step
size of 1/255, CW [41], and Auto Attack (AA) [167]. The norm perturbation range includes
2/255, 4/255/ 6/255, and 8/255. On a PC running Windows and the Python environment,
we carried out our experiment. The machine had a 2.30 GHz Intel(R) Core(TM) i5-8300H
processor and a 4 GB NVIDIA GeForce GTX 1050 Ti graphics card. We used open-source
TensorFlow.Keras deep learning framework to build the network, which we found to be a
useful resource. We used distributed processing and relied on the CUDA 8.0 and CUDNN
5.1 requirements to increase the effectiveness of our training. Table 3 summarizes the
implementation hyperparameters of the models.
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Table 3. Implementation hyperparameters of the implemented models.

Resnet-18 Architecture

Input size 224 × 224
Weight decay 1 × 10−4

momentum 0.9
Mini batch 256
Optimizer Adams optimizer

Initial learning rate 0.1
Reduction in learning rate 10 per 30 epochs

Iterations—number of epoch 100
Loss function Categorical Cross-Entropy

Batch size 4

UNET Architecture for Segmentation

Input size 256 × 256 × 3
Filters per convolutional layer 64, 128, 256, 512, 1024

Optimizer Adams Optimizer
Training loss Binary cross entropy (BCE) and Dice loss

Cosine annealing learning rate
scheduler/learning rate 1 × 10−4

momentum 0.9
Epoch 400

Batch size 8
Adversarial attack perturbations 1, 2, 4, 6, 8

Auto Encoder-Block Switching Architecture

Input size 224 × 224 × 3
Weight decay 1 × 10−4

Optimizer Adams optimizer
learning rate 0.002

Number of epoch 150
Loss function Mean Square Error

Batch size 4
Input size 224 × 224

Adversarial attack perturbations 1, 2, 4, 6, 8
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4.2. Dataset and Data Preprocessing

The datasets we used include (1) Messidor dataset [168], which has four classes with s
total number of 1200 RGB samples of the eye fundus for classifying diabetic retinopathy
based on retinopathy grade; (2) the ISIC 2017 dataset [169], which has three classes with
2750 samples and is collected by the International Skin Imaging Collaboration for the
classification and segmentation of skin lesions; (3) the Chest-ray 14 dataset [170], which has
112,120 frontal view X-ray samples from 14 thorax disorders; and lastly (4) the COVID-19
database [171], which contains 21,165 chest X-ray samples with segmentation-ready lung
masks. Figure 13 shows the pictorial representation of the employed datasets.
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Noting that this experiment is based on classification and segmentation scenarios, we
carried out both binary and multiclassification cases for the classification task. For the
Messidor dataset, we used the original partition i.e., 960 fundus samples for training with
several data augmentation techniques, including random rotations and flips, and the rest for
testing. The preprocessing strategy that was carried out on the ISIC 2017 dataset includes
resizing and center-cropping. Due to the unbalanced nature of the Chest-ray 14 dataset, we
randomly selected 10,000 X-ray samples while using 8000 as training samples and 2000 as
testing samples while randomly flipping and normalizing them. For the segmentation task,
we used a total of 2750 X-ray images (2000 for the training set) as originally designed by
the ISIC 2017 dataset.

4.3. Evaluation Metrics

We used different metrics for the different tasks carried out in this manuscript. For
the classification task, we used the accuracy evaluation metrics since adversarial attacks
may mislead a target model into incorrect predictions, which is measured mathematically
as follows:

Accuracy =
(True positives + True Negatives)

True positives + True negatives + False positives + False negatives)
(5)

For the segmentation task, noting that adversarial attacks lead to incorrect segmen-
tation results, we employed the use of mean Intersection over Union (mIoU) and Dice
coefficient (F1_score) to measure the generated segmentation mask and target mask as
mathematically calculated as follows:

mIOU =
Area of Overlap
Area of Union

(6)

Dice =
2×Area of Overlap

Total Area
(7)
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The idea of adversarial defense tries to make neural network outputs comparable for
both adversarial and clean cases. This defensive tactic strengthens the network’s ability to
withstand hostile examples.

4.4. Results and Analysis

This subsection first introduces several examples of adversarial attacks on various
medical diagnostic classification tasks, as shown in Figure 14, illustrating varying levels of
attack potency. It is obvious that, even when subjected to small perturbations, AI models
are extremely vulnerable to hostile situations. The disruption of clinical evaluation is
exacerbated by the attacker’s ability to mislead the medical categorization models into
making confidently false diagnoses. Furthermore, the incorrect partitioning results brought
on by this attack may also result in incorrect treatment suggestions.
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4.4.1. Adversary Attack Experimental Results

Table 4 summarizes the level of accuracy of the employed deep learning model against
various attacks in both binary and multiclass classification situations in order to thoroughly
assess the effect of adversarial attacks on medical classification algorithms. It is vital to
remember that we create adversaries using the cross-entropy loss function. Based on the
results presented in Table 4 and Figure 14, the utilized deep learning model accuracy
noticeably decreases as the size of the attack perturbations grows. Notably, compared
to its binary classification, multiclass classification models suffer from a more dramatic
decline in accuracy. However, since the majority of medical adversarial defensive strategies
proposed by researchers recently focus on binary tasks, we argue that achieving adversarial
robustness for multiclass medical classification is a more difficult task, with ramifications
for many clinical contexts.

Furthermore, we assess the effectiveness of medical segmentation models against PGD-
based adversarial cases in addition to adversarial attacks against medical classification,
as shown in Table 5 and Figure 15. The Dice loss and Binary Cross-Entropy (BCE) loss
were used as the adversarial losses whilst creating the adversary attacks. Adversarial
instances produced by decreasing Dice loss might enhance attack effectiveness against
medical segmentation methods.
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Table 4. Adversarial (white-box) classification result (%) using the ResNet-18 (binary and multi-class
classification tasks) under various attack scenarios.

Adversarial
Attack Type ε

Dermoscopy Fundoscopy

Binary (%) Multi-Class (%) Binary (%) Multi-Class (%)

Clean Image 0 71.3 50.0 64.9 60.0

AA [167]

2/255 22.1 2.4 3.8 2.5
4/255 8.4 0.8 0.0 0.0
6/255 4.5 0.3 0.0 0.0
8/255 1.6 0.1 0.0 0.0

CW [41]

2/255 22.5 2.5 7.1 6.7
4/255 9.3 0.9 1.3 2.1
6/255 5.2 0.7 0.0 0.0
8/255 2.1 0.4 0.0 0.0

FGSM [42]

2/255 37.6 4.8 38.8 13.8
4/255 35.7 4.5 27.9 9.2
6/255 36.2 6.1 25.7 15.3
8/255 34.5 8.0 24.2 20.4

PGD [45]

2/255 22.8 2.6 8.8 4.6
4/255 12.5 0.8 1.7 0.4
6/255 11.9 0.6 0.2 0.0
8/255 12.8 0.4 0.0 0.0

Table 5. Adversarial segmentation result (white box)using the u-net model based on PGD adversar-
ial attack.

Adversarial Loss ε
COVID-19 Dermoscopy

mIOU Dice mIOU Dice

None 0 0.976 0.982 0.801 0.875

BCE

2/255 0.559 0.690 0.405 0.517
4/255 0.355 0.492 0.248 0.354
6/255 0.200 0.412 0.198 0.301
8/255 0.230 0.350 0.167 0.255

Dice

2/255 0.473 0.610 0.340 0.450
4/255 0.265 0.391 0.158 0.243
6/255 0.213 0.332 0.102 0.198
8/255 0.152 0.246 0.082 0.140
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4.4.2. Adversary Defense Experimental Results

Modern adversarial training methods mostly focus on improving adversarial images
while training. This improves the model’s capacity for precise judgments in both routine
and adversarial cases. This work applies PGD-AT [45] adversarial training approaches
to the field of biomedical imaging to further these methodologies. In both binary and
multi-class contexts, the research illustrates the effectiveness of this strategy in obtain-
ing adversarial resilience for medical classification (see Table 6). The findings show that
adversarial-trained models preserve their resilience in the face of different attack configura-
tions. It is important to note that PGD-AT [45] differs from other medical classification models
in terms of robustness since it focuses on various methods for creating internal enemies.

Table 6. White-box accuracy (%) of adversarial trained (PGD-AT [45]) medical classification models
for binary and multi-class classification in various scenarios.

Adversarial
Attack Type ε

Dermoscopy Fundoscopy

Binary (%) Multi-Class (%) Binary(%) Multi-Class (%)

Clean Image 0 61.2 52 64.9 60

AA [167]

2/255 55.6 43.7 55.2 41.3
4/255 48.4 35.5 52.3 35
6/255 41.6 26 36.2 31.9
8/255 34.8 20.9 42.1 28.3

CW [41]

2/255 55.6 43.6 56.4 42.3
4/255 48.5 36.2 53.6 34.9
6/255 42.5 29.4 48 31.6
8/255 36.8 23.3 43.5 28.8

FGSM [42]

2/255 55.6 44.5 55.6 44.5
4/255 49.2 38.2 53.6 40
6/255 44.3 32.3 49.3 38.2
8/255 39.5 25.5 45.5 36.4

PGD [45]

2/255 57.9 48 56.4 41.6
4/255 48.2 36.2 53.2 36.4
6/255 42.4 29.7 48.2 33.8
8/255 35.1 22.4 43.6 31.2

We expand our method to adversarial training in the context of medical segmentation
problems in addition to demonstrating adversarial resilience for single-label classification
models. By analyzing how well these models function under various attack scenarios,
as shown in Table 7, we evaluate the efficacy of this adversarial training for medical
segmentation. To increase the natural robustness of medical segmentation models, we
use the widely used PGD-AT [45] adversarial training technique. Our findings show that
compared to their natively trained counterparts, adversarial-trained segmentation models
are more resilient to various types of adversarial attacks. Notably, our research shows that
attacking the Dice loss still has a greater success rate than attacking the BCE loss.
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Table 7. Results of white-box resilience against PGD attack in various attack configurations utilizing
u-net for biomedical segmentation.

Adversarial Loss ε
COVID-19 Dermoscopy

mIOU (%) Dice (%) mIOU (%) Dice (%)

None 0 0.976 0.982 0.801 0.875

BCE

2/255 0.931 0.962 0.773 0.842
4/255 0.890 0.940 0.733 0.810
6/255 0.854 0.912 0.684 0.705
8/255 0.812 0.887 0.601 0.700

Dice

2/255 0.923 0.958 0.767 0.838
4/255 0.880 0.932 0.723 0.803
6/255 0.832 0.894 0.669 0.750
8/255 0.774 0.860 0.594 0.694

5. Discussion

Adversarial phenomena have demonstrated substantial prospective applicability, even
within the context of cutting-edge deep neural networks (DNNs), irrespective of the extent
of access granted to the attacker in relation to the model, as well as their potential to remain
imperceptible to the human visual system. In comparison to various other sectors within
the field of computer vision, it has been established that medical-oriented DNNs exhibit
heightened vulnerability when subjected to adversarial attacks. Pertinent to this notion,
it has been shown that adversarial samples with limited disturbance can trick advanced
medical systems, which otherwise demonstrate excellent performance when handling clean
data. The aforementioned occurrence highlights the vulnerability of medical deep neural
networks (DNNs) when exposed to adversarial inputs.

A. Dataset and Labeling

The availability of labeled datasets for training models in medical imaging is signif-
icantly more limited compared to datasets for general computer vision tasks. Typically,
datasets for general computer vision encompass a wide range of several hundred thousand
to millions of annotated photographs [158]. This scarcity can be attributed to several factors,
including concerns over patient privacy and the absence of widely adopted procedures
for the exchange of medical data. Another issue is that the process of assigning labels to
medical images is a labor-intensive and time-consuming activity, and it is worth noting
that the true nature of images in medical databases sometimes presents ambiguity and con-
troversy, even among physicians and radiologists. Hence, this disparity in dataset size has
a direct impact on the performance of deep neural networks (DNNs) when used in medical
imaging analysis. In light of the scarcity of accessible annotated medical datasets, several
scholars have lately put forth several approaches aimed at addressing this issue employing
straightforward augmentation techniques. These phenomena have a substantial impact
on the generalizability of the network and render it susceptible to adversarial attacks. The
effective use of basic augmentation methods, including cropping, rotating, and flipping, has
shown to be successful in the creation of unique and unconventional imagery. To address
the challenges of vanishing gradient and overfitting, researchers have employed several
techniques such as improved activation functions, modified cost function architecture, and
drop-out methods [159]. The problem of high computational load has been effectively
mitigated by the utilization of highly parallel technology, such as graphics processing units
(GPUs), coupled with the implementation of batch normalization techniques.

On the other hand, a synergistic methodology involves the amalgamation of convo-
lutional neural networks (CNNs) with transfer learning approaches [160]. The essence
of this approach is in the use of parameters obtained by convolutional neural networks
(CNNs) in the context of the primary application to enable the training of the modal. The
incorporation of transfer learning into convolutional neural network (CNN) frameworks
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is a significant direction for future study. This approach shows promise in addressing the
challenge of limited labeled medical data. Additionally, a potential approach for increasing
the quantity of the dataset involves the utilization of a crowdsourcing technique [103].
The notion of crowdsourcing in the context of health concerns involves the distribution
of solutions, facilitated by skilled entities, from a specific research group to a wider pop-
ulation, comprising the general public. This channel offers a compelling direction for
future study, facilitating a shift from individual duties to collective endeavors, resulting in
societal benefits.

B. Computational Resources

Deep neural networks (DNNs) have become a fundamental component in the domain
of machine learning, significantly transforming several disciplines like computer vision,
natural language processing, and medical diagnostics. Nonetheless, this has not come
without challenges, the process of training DNNs requires a significant amount of computer
power, data processing skills, and memory resources. The significance of computational re-
sources lies in their ability to support the sophisticated architecture of deep neural networks
characterized by several layers and intricate connection patterns, which enable them to
learn hierarchical representations from raw input. However, the effectiveness of training is
inherently dependent on the presence of enough computational resources. These resources
facilitate the implementation of several rounds through the training dataset, wherein the
network adapts its internal parameters to reduce the disparity between anticipated outputs
and actual labels. To effectively train deep neural networks (DNNs), it is necessary to have
hardware components that possess significant computational capabilities, such as graphics
processing units (GPUs) or specialized hardware like tensor processing units (TPUs). These
devices have been specifically designed to maximize performance in the extensive parallel
calculations required for training neural networks.

AlexNet is widely recognized as one of the most prominent and influential deep
neural network (DNN) architectures in the field. The first implementation of AlexNet [172]
involved the utilization of dual-GPU training. However, further advancements in GPU
computation allowed for the transition to a single GPU configuration, which facilitated the
integration of eight deep layers into the network architecture. The AlexNet architecture
is widely regarded as the foundational model for many DNN topologies. VGGNet is a
convolutional neural network that has been enhanced and improved by Simonyan and
Zisserman [173]. The proposed approach employs a series of stacked convolutional layers
and a maximum pooling layer in a repetitive manner. The network employed in this study
is a commonly utilized architecture that utilizes a range of 16 to 19 convolutional neural
network (CNN) layers to extract picture data. The VGGNet’s breakthrough in extracting
visual features may be attributed to its utilization of a 3 × 3 convolution and 2 × 2 pooling
kernels. It is worth noting that memory constraints are also a challenge, which arises
from the presence of several layers, each containing learnable parameters. As a result, a
significant amount of memory is needed to record gradients, activations, and intermediate
findings during the training procedure. The limitation of memory might impede the
training process of big networks or require a decrease in batch sizes, thereby affecting the
pace at which convergence is achieved. The training time of deep convolutional neural
networks (CNNs) can be rather extensive, resulting in a significant time investment for
research and development efforts. Achieving faster training can be facilitated by the
utilization of distributed computing setups or by using cloud-based resources. Finally,
energy consumption associated with training DNNs is substantial due to the computing
requirements involved. The aforementioned element has significant importance within the
field of artificial intelligence, as it aligns with the overarching goals of enhancing energy
efficiency and promoting environmental sustainability.

C. Robustness against Target Attacks

Within the field of medical imaging, the convergence of artificial intelligence and
healthcare has significant potential. However, it is crucial to address the important frontier
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of achieving resilience against targeted assaults. This requires committed attention and
focus. Significant progress has been achieved in enhancing the security of medical imaging
systems against non-targeted or random assaults, as shown by the study conducted by
Bortsova et al. [174]. However, the emergence of adversarial threats in the form of focused
attacks poses a novel and severe obstacle. In the context of targeted assaults, malevolent en-
tities purposefully aim to influence the model to induce certain diagnostic mistakes, which
might pose a threat to the well-being of patients. The resolution of this dilemma necessitates
a fundamental adjustment in the approach to research and development, accompanied by
a significant need for tactics that possess the capability to not only identify but also success-
fully counteract these specific types of assaults. The study conducted by Han et al. [175]
highlights the need to address this research gap to maintain the reliability and credibility
of medical imaging systems. Nevertheless, the inherent features that made AI-powered
medical imaging systems very promising also expose them to potential vulnerabilities in
the form of adversarial assaults. Adversarial assaults include the deliberate manipulation
of input data to mislead the AI model into generating inaccurate or detrimental predictions.
In instances of non-targeted or random assaults, the primary objective of the attacker is
to impede the operational capabilities of the model without a predetermined objective
or intended recipient. These assaults may elicit worry, but they may not always result in
precise diagnostic mistakes.

In contrast, targeted assaults are purposefully planned with the explicit intention
of causing the AI model to produce predetermined diagnostic mistakes. Within the do-
main of medical imaging, this may include inducing the model to erroneously classify a
medically fit individual as suffering from a grave pathological illness or to disregard a
crucial sickness. The ramifications of these specific assaults in the healthcare sector are
significant, possibly leading to the postponement or inaccuracy of medical interventions,
superfluous medical procedures, or even endangerment of people. The current framework
of defensive mechanisms in medical imaging mostly focuses on enhancing the system’s
ability to withstand non-targeted or stochastic assaults. The purpose of these defensive
mechanisms is to enhance the resilience of the AI model against little perturbations in
input data, hence preventing the generation of inaccurate outcomes caused by modest
changes in picture quality or structure. Although the aforementioned defenses provide
unquestionable value, their efficacy in countering targeted assaults may be limited due
to their potential inadequacy in addressing the complexity and purposefulness of such
attacks. The study conducted by Bortsova et al. [174] serves as a pertinent reminder of the
current emphasis on non-targeted assaults in the field of medical imaging. The research
highlights the need to enhance the overall resilience of AI models to protect against typical
hostile perturbations that may arise during regular functioning.

To bolster the resilience of medical imaging systems against deliberate assaults, future
research endeavors must investigate novel methodologies and approaches. One potential
avenue of research is the exploration and refinement of adversarial training approaches that
are expressly designed to address the weaknesses that are exploited by targeted assaults.
The process of adversarial training entails the incorporation of adversarial instances into
the training dataset, which allows the model to acquire the ability to identify and withstand
manipulations that are often found in real-world scenarios. It is crucial to note that the
advancement of countermeasures against targeted assaults should not only prioritize
detection but should also emphasize active mitigation. This entails enhancing medical
imaging systems with the capacity to promptly detect and address any dubious input
data. If a targeted attack is identified or presumed, the system needs to possess established
processes that can promptly identify and notify healthcare professionals of the problem.
Furthermore, the system should be equipped to possibly implement countermeasures to
avert or mitigate the adverse effects of the assault on patient care. The research conducted
by Han et al. [175] highlights the urgent need to tackle the issue of targeted assaults within
the field of medical imaging. The research community must acknowledge the significance
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of this research gap and give precedence to the creation of strong defenses specifically
designed for the intricacies of healthcare applications.

D. Evaluation of Transferability and Adaptability

The concepts of applicability have become crucial factors that contribute to the in-
creased effectiveness of attacks, resulting in a higher vulnerability of deep neural networks
(DNNs) to misclassification. Previous research has mostly focused on examining the vul-
nerability of the network to basic, non-targeted attacks. Nevertheless, these basic attacks
have limited effectiveness in some deep neural network (DNN) models and may be easily
detected using newly developed security techniques. Similarly, there has been a significant
effort to create adversarial attacks that surpass the limitations imposed by certain models
and images. This has emerged as a crucial obstacle in current research in the field of
computer vision. These sophisticated attacks, which are not limited by specific models
or images, have the potential to be applied in many medical learning tasks. there is a
lack of well-developed security mechanisms and detection systems specifically designed
to mitigate universal attacks. The lack of effective defenses in the field is further empha-
sized by the increased vulnerability of deep neural networks (DNNs) to universal attacks,
which may fool with greater ease and use fewer resources. The metric of adaptability is
a significant measure that arises within the contextual framework of previous research
efforts. The relevance of this phenomenon is in its ability to measure the degree to which
an attack might spread its effects across several models, especially when these models
are limited to a black-box state. According to [63], it has been hypothesized that attacks
with high adaptability would need a sacrifice in the quality of the adversarial image while
maintaining a high success rate (100%) of the attack. The application of unsupervised
learning has gained popularity as a means to enhance adaptability. It functions as a feasible
approach to improve the ability of networks to effectively respond to the transmission of
adversarial perturbations. Hence, the primary issues and obstacles that are prevalent in the
current study domain focus on the fundamental concepts of transferability and universality
within the framework of adversarial attacks on deep neural networks (DNNs).

E. Interpretability and Explainability

The notions of interpretability and explainability have become fundamental principles
in the domain of artificial intelligence and machine learning, especially in the context of
healthcare applications. The confidence that doctors and healthcare practitioners have in
defensive AI systems is significantly influenced by these two interrelated characteristics.
This subject has been extensively investigated in the research conducted by Saeed et ai. [176].
The trust gap has far-reaching ramifications within the healthcare sector, particularly
with the decision-making process of physicians, which directly affects the well-being of
patients. Busnatu et al. [177] argue convincingly for the need to emphasize interpretability
and provide clear explanations for the decision-making processes of future defenses to
address these problems. The use of interpretability in AI for healthcare not only improves
its overall efficacy but also fosters increased acceptability among clinical professionals.
To comprehensively examine the importance of interpretability and explainability, it is
necessary to first acknowledge their inherent interrelation. The concept of interpretability
pertains to the capacity of an artificial intelligence (AI) model to be grasped and understood
by individuals, specifically those who possess expertise in the relevant field. On the other
hand, explainability focuses on the capability of these models to provide explicit and logical
arguments for the judgments they make. Collectively, these characteristics provide a level
of transparency into the internal mechanisms of artificial intelligence (AI) systems, a trait
that is progressively essential within the healthcare domain.

The absence of interpretability inside artificial intelligence (AI) systems has significant
implications. When artificial intelligence (AI) models function as opaque entities sometimes
referred to as “black boxes” (a phrase used by Saeed et al. [176]) healthcare professionals
face a basic quandary. Patients are required to rely on these systems for crucial healthcare
decisions, sometimes without possessing a comprehensive understanding of the specific
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processes or rationales behind a given suggestion or diagnosis. The lack of transparency
undermines the confidence that healthcare professionals have in AI-driven solutions,
leading to hesitancy and doubt. To tackle this difficulty, it is crucial to establish artificial
intelligence (AI) defenses that possess both efficacy and interpretability. An interpretable AI
system offers doctors a transparent comprehension of its decision-making process, enabling
them to place more faith in and seamlessly incorporate AI suggestions into their workflow.
The concept of interpretability may be seen in several forms. For instance, an artificial
intelligence (AI) system can provide a comprehensive analysis of the aspects it took into
account throughout the process of generating a suggestion. This includes emphasizing
the most significant variables and their corresponding weights. In addition, it has the
potential to provide doctors with visual representations or explanations in natural language,
enhancing transparency and facilitating accessibility in the decision-making process.

Furthermore, the need for interpretability goes beyond singular suggestions. Artifi-
cial intelligence (AI) systems must include the capability to provide explanations for the
rejection or disregard of certain inputs. In the field of healthcare, where each data point
can influence a patient’s diagnosis or treatment plan, it is essential to comprehend the
reasons behind the exclusion of a certain piece of information. These data equip healthcare
professionals with the necessary knowledge to make well-informed judgments and guar-
antee that crucial particulars are not unintentionally disregarded. The study conducted
by Busnatu et al. [177] highlights the importance of this particular technique. Their re-
search connects with the wider industry trend towards transparent and trustworthy AI in
healthcare by stressing the significance of interpretable AI defenses that provide a clear
justification for their judgments. The advantages of interpretable artificial intelligence
(AI) extend beyond enhancing trust and acceptability in healthcare settings. Additionally,
they assist in continuous endeavors aimed at tackling concerns related to bias, justice, and
accountability within artificial intelligence (AI) systems. The identification and rectification
of biases or mistakes in data or algorithms is facilitated when AI judgments are clear and
intelligible. This enhances the ability of AI systems to provide equitable and dependable
assistance to physicians serving different patient groups. In their 2023 research, Saeed
et al. [176] appropriately highlighted the understandable hesitance of practitioners to use
“black box” artificial intelligence (AI) solutions. To address this hesitancy and effectively
use artificial intelligence (AI) in the field of healthcare, it is imperative to prioritize the
development of interpretable AI defensive mechanisms. The aforementioned defenses
must not alone give precise suggestions but also provide physicians with lucid insights
into the process of decision-making. By using this approach, it is possible to establish a
connection between parties, enhance the capabilities of healthcare professionals to make
well-informed choices and to guarantee that artificial intelligence (AI) becomes a beneficial
partner in the endeavor to achieve improved healthcare results. The proposition made
by Saeed et al. [176] for the implementation of interpretable AI defenses has significant
importance in shaping the future of healthcare.

F. Real-time Detection and Response

Within the dynamic realm of healthcare, characterized by continuous change, the use
of data-driven technologies has assumed a progressively significant position. Consequently,
the notion of real-time detection and reaction has arisen as a crucial focal point. The
aforementioned change in paradigm calls for a comprehensive reassessment of current
defensive mechanisms since a significant portion of them lack the necessary capabilities
to function optimally in real-time situations. This inadequacy has been highlighted by
Paul et al. [178] in their recent research. The presence of this insufficiency not only reveals
susceptibilities but also prompts substantial inquiries about the safety of patients, the
security of data, and the general effectiveness of healthcare systems. The significance of
real-time capabilities within the healthcare domain cannot be emphasized. In contrast to
several other fields where the ramifications of delayed reaction may be comparatively less
significant, the healthcare sector is distinguished by a continual stream of data, contact with
patients, and sometimes life-threatening occurrences. Hence, the incapacity of traditional
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defensive mechanisms to function in real-time presents a direct peril to the welfare of
patients, healthcare practitioners, and the overall integrity of the healthcare system. Real-
time detection and reaction play a crucial role in maintaining patient safety, protecting
confidential medical data, and upholding the reliability of medical equipment within a
healthcare environment. Nevertheless, achieving this ambition is a considerable challenge.
The implementation necessitates a comprehensive strategy that encompasses advanced
technology while also accounting for ethical, legal, and practical factors. Future endeavors
in research and development should prioritize the pursuit of real-time detection and
reaction to hostile inputs inside healthcare systems. This objective was well conveyed
by Wang et al. [179] in their scholarly work published in 2023. One of the foremost
obstacles in facilitating instantaneous identification and reaction is the ever-changing
and uncertain characteristics of healthcare settings. In contrast to controlled laboratory
conditions or typical computer systems, healthcare systems exhibit a state of continual
change. Patients are admitted and discharged from the system, their medical conditions
undergo modifications, and a constant influx of fresh data is received. The current dynamic
environment necessitates a degree of agility and response that is lacking in most present
protection mechanisms.

In addition, the emergence of telemedicine and remote patient monitoring has brought
out a completely novel aspect of the field of healthcare. The advent of remote healthcare
services has enabled patients to obtain medical care inside the confines of their residences;
nevertheless, this development also introduces novel susceptibilities. The implementation
of real-time detection and reaction has become crucial in safeguarding the confidentiality
and privacy of patients’ data, as well as assuring the dependability of remote medical
equipment. In addition to the aforementioned immediate challenges, the use of real-time
capabilities in healthcare procedures has significant potential for enhancing efficiency and
precision. In the field of diagnostic imaging, the integration of AI algorithms to aid radiolo-
gists in anomaly detection has been seen. The provision of real-time feedback has shown
the potential to enhance and expedite the diagnostic process. By promptly notifying users
of potentially vital discoveries, the technology may guarantee that no significant time is
wasted in commencing suitable interventions. The integration of real-time capabilities in the
healthcare sector necessitates a thorough analysis of hostile inputs’ characteristics. Within
this particular context, hostile inputs comprise a broader range of occurrences, including
intentional assaults as well as unintentional mistakes, system failures, and unanticipated
oddities. To effectively identify and respond to events in real-time, it is essential to adopt
a comprehensive strategy that considers a broad range of possible risks and anomalies,
regardless of whether they are deliberate or accidental. Machine learning and artificial
intelligence technologies are crucial in attaining this objective. These technologies can un-
dergo training to identify patterns that are suggestive of hostile inputs. These inputs may
range from deliberate efforts to breach a system to abnormalities that have the potential to
harm medical care. Machine learning models provide the capability to perform ongoing
analysis of data streams, detect deviations from expected patterns, and initiate appropriate
actions promptly, therefore operating in real-time. Furthermore, the successful deployment
of real-time detection and response systems requires the establishment of a complete frame-
work that encompasses factors beyond technical aspects. The involvement of ethical and
legal considerations arises, namely with patient permission, data protection, and liability.
Achieving a harmonious equilibrium between the need for real-time patient monitoring to
ensure safety and the imperative of upholding individual rights and adhering to regulatory
frameworks is a nuanced and dynamic problem.

G. Adversarial Attacks in Multi-modal Fusion

The emergence of multi-modal fusion models has initiated a paradigm shift in the
field of artificial intelligence, enabling the development of systems that possess the ability
to analyze and incorporate data from diverse sources, including text, pictures, and audio.
This advancement empowers these systems to make judgments that are more thorough
and well-informed. Nevertheless, the advancement in this field has encountered obstacles,
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and a significant issue that has arisen is the advent of adversarial assaults that have the
potential to undermine the reliability of these multi-modal systems. The study conducted
by Ding et al. [180] emphasizes the presence of distinct vulnerabilities in multi-modal
fusion models, which may be exploited by hostile entities to affect the process of combining
and interpreting input from various modalities. To ensure the dependability and credi-
bility of multi-modal fusion methodologies, it is crucial to allocate resources towards the
enhancement of resilient protective measures, as recommended by Cao et al. [181]. The
notion of multi-modal fusion exemplifies the increasing intricacy and refinement of artificial
intelligence. In contrast to models that function within a single modality, multi-modal
models include input from several sources to get a comprehensive understanding of the
data. In the domain of natural language processing, a multi-modal model can integrate
many modalities such as text, pictures, and audio to enhance its understanding of the
context and semantics of a certain topic. This methodology has facilitated the exploration
of several prospects across diverse fields, including healthcare, driverless cars, and content
recommendation systems. In the field of healthcare, the use of multi-modal fusion tech-
niques facilitates enhanced diagnostic precision by the incorporation of diverse patient data
originating from many sources, including but not limited to medical pictures, electronic
health records, and patient interviews. Autonomous cars boost safety by enabling the
vehicle to sense its surroundings via the use of a diverse array of sensors, cameras, and
radar systems. Content recommendation systems provide personalized recommendations
by monitoring a user’s interactions with text, images, and videos.

Nevertheless, as the complexity and capabilities of multi-modal fusion models con-
tinue to advance, there is a concomitant rise in susceptibility. The phenomenon of adversar-
ial assaults, which entails the manipulation of input data to deceive artificial intelligence
(AI) systems, is not a recent development. However, its implications on multi-modal fusion
systems pose distinct and specific issues. The aforementioned attacks can use the interplay
between several modalities, such as text and picture, to make discreet but harmful modifica-
tions that may not be recognized by defenses particular to each modality. To exemplify the
possible ramifications, let us contemplate a hypothetical situation whereby a multi-modal
model is used within a healthcare environment to aid in the diagnostic process of patients
by leveraging a fusion of medical imagery and textual patient information. The potential
for an adversary to influence the textual patient data by making subtle alterations to symp-
toms or medical history exists, aiming to induce a mistake in the AI model. The intrinsic
complexity of multi-modal fusion poses significant challenges in the detection of hostile
operations. The study conducted by Ding et al. [180] underscores the imperative nature of
addressing these vulnerabilities and devising targeted defenses for the protection of multi-
modal fusion models. The research conducted by the authors sheds insight into the many
methods via which adversarial assaults might manipulate the complex interconnections
across modalities. This underscores the need to implement complete preventive measures.
The development of defenses to ensure the security of multi-modal fusion techniques and
the preservation of information integrity is a relevant and critical concern, as emphasized
by Song et al. The implementation of defensive measures should include a comprehensive
approach that takes into account the distinct characteristics of multi-modal fusion models.

The development of strong detection techniques is a crucial factor in effectively coun-
tering adversarial assaults in the context of multi-modal fusion. The used techniques should
possess the ability to detect inconsistencies or irregularities within the data across several
modalities. For example, when there is a lack of consistency between the information docu-
mented in a patient’s medical record and the observations made in corresponding medical
imaging, it should prompt a heightened level of attention for closer examination. These
detectors must be calibrated to account for the complexities of intermodal interactions and
should be engineered to resist advanced hostile manipulations. In addition, it is essential
for the advancement of defensive measures to prioritize the reduction in adverse effects
resulting from hostile assaults. This encompasses the exploration of methods for the restora-
tion and rectification of modality-specific impairments. In the healthcare scenario, in the
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event of an assault that alters textual patient records, the system needs to include processes
that can detect and correct false information. This may be achieved by cross-referencing
the manipulated data with other trustworthy sources or by executing supplementary di-
agnostic tests. The proposition made by Song et al. to establish defensive measures is
a crucial undertaking to protect the dependability and credibility of multi-modal fusion
methodologies. The advancement of AI systems necessitates the prioritization of protecting
their multi-modal fusion capabilities. This is not just a technical obstacle but also a crucial
need to guarantee the reliability and safety of applications in many fields. The whole
potential of multi-modal fusion models in boosting our lives depends on our capacity to
comprehend, adjust, and safeguard against hostile onslaught.

H. Future Work

Adversarial attacks have demonstrated significant importance in assessing the vul-
nerability of deep learning networks. Consequently, enhancing those attacks might assist
researchers in addressing the limitations and devising strategies for more effective and
secure medical educational systems. The primary hurdles soon are the transferability
of attack techniques and the visibility of perturbations, both of which have a significant
impact on the network’s predictions. These challenges have been seen as a recent trend.
Furthermore, additional attack tactics targeting models and undermining their resistance
will be taken into account. To enhance the dependability of medical learning systems, it
is vital to establish various methods for generating medical labeled images and expand-
ing datasets in a more streamlined manner. Another approach to mitigate the network’s
susceptibility involved modifying the neural network’s design, an area that has yet to be
thoroughly investigated.

The utilization of pre-trained models, which involve training sophisticated neural
networks using large-scale labeled imagery from a particular source, is anticipated to play
a significant role in the future of deep neural networks (DNNs) when the availability
of annotated images is limited to a small number. Reducing the number of learning
parameters in deep neural networks (DNNs) by freezing certain network layers at constant
parameter values can be of great value. These parameter values can be learned directly
from other networks that have been trained on comparable tasks. The remaining portion
of the network, which has been reduced in terms of parameters, can afterward undergo
standard training for the intended purpose [163]. The topic of multimodal deep machine
learning is anticipated to experience significant growth and interdisciplinary collaboration
in the coming decade. This approach holds great potential as it enables the integration of
diverse image sources to inform decision-making processes

6. Conclusions

The domain of adversarial attacks and defense is rapidly evolving within AI and
machine learning. Addressing existing challenges and delving into future directions is
imperative to constructing resilient, reliable, and secure AI systems capable of withstanding
the intricacies of adversarial manipulation. The article provides an in-depth analysis of
the current techniques employed for producing adversarial attacks to attack deep learning
networks utilized in medical imaging and examines the many defense strategies that
have been developed to identify and alleviate these perturbations. The examination of
attacks and defenses on classification and segmentation models has been undertaken, with a
particular focus on investigating the impact of neural network parameters on resistance and
vulnerabilities. Collaborative efforts among researchers, practitioners, and policymakers
will play a pivotal role in shaping the trajectory of adversarial attacks and defense, ensuring
AI technologies’ ethical and responsible deployment.
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