
Citation: Wang, X.; Zhao, K.; Qin, B.

Optimization of Task-Scheduling

Strategy in Edge Kubernetes Clusters

Based on Deep Reinforcement

Learning. Mathematics 2023, 11, 4269.

https://doi.org/10.3390/

math11204269

Academic Editor: Shih-Wei Lin

Received: 1 September 2023

Revised: 30 September 2023

Accepted: 9 October 2023

Published: 13 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimization of Task-Scheduling Strategy in Edge Kubernetes
Clusters Based on Deep Reinforcement Learning
Xin Wang 1, Kai Zhao 2 and Bin Qin 1,*

1 School of Electrical & Information Engineering, Hunan University of Technology, Zhuzhou 412007, China;
xinwang@hut.edu.cn

2 College of Railway Transportation, Hunan University of Technology, Zhuzhou 412007, China;
m21081101003@stu.hut.edu.cn

* Correspondence: qinbin1@hut.edu.cn

Abstract: Kubernetes, known for its versatility in infrastructure management, rapid scalability,
and ease of deployment, makes it an excellent platform for edge computing. However, its native
scheduling algorithm struggles with load balancing, especially during peak task deployment in
edge environments characterized by resource limitations and low latency demands. To address
this issue, a proximal policy optimization with the least response time (PPO-LRT) algorithm was
proposed in this paper. This deep reinforcement learning approach learns the pod-scheduling process,
which can adaptively schedule edge tasks to the most suitable worker nodes with the shortest
response time according to the current cluster load and pod state. To evaluate the effectiveness of
the proposed algorithm, multiple virtual machines were created, and we built a heterogeneous node
cluster. Additionally, we deployed k3s, a Kubernetes distribution suited for edge environments,
on the cluster. The load balancing, high load resilience, and average response time during peak
task deployment were tested by initiating numerous tasks within a limited time frame. The results
validate that the PPO-LRT-based scheduler shows superior performance in cluster load balancing
compared to the Kube scheduler. After the deployment of 500 random tasks, several cluster nodes
become overwhelmed by using the Kube scheduler, whereas the PPO-LRT-based scheduler evenly
allocates the workload across the cluster, reducing the average response time by approximately 31%.

Keywords: Kubernetes; deep reinforcement learning; PPO; pod scheduling; edge computing

MSC: 68M20; 60K20

1. Introduction

Edge computing is a decentralized computing model that brings computation and
data processing closer to data sources and end-user devices. Its mission is to mitigate the
data-transmission latency, ease network bandwidth constraints, and enhance real-time
responsiveness and reliability. Servers, gateway devices, and intelligent terminals at the
network edge handle computational tasks, meeting the demands of voluminous data and
real-time applications. Task allocation in edge computing aims to optimally allocate tasks
across suitable edge nodes, enhancing system performance and resource utilization. Its
general workflow encompasses edge-node selection, a task-requirements analysis, a node
evaluation, and a task-scheduling strategy.

The advantages of Kubernetes over other general edge-computing architectures are
that it offers autoscaling capabilities and dynamically modifies the number of edge nodes
based on workload shifts, thereby guaranteeing optimal resource use and efficient task
execution. Kubernetes supports a variety of deployment modes, including a hybrid deploy-
ment of edge nodes and cloud data centers. This deployment and management flexibility
of containerized applications in edge environments allows for the selection of the appro-
priate deployment methods based on specific needs, and it can also help automate the

Mathematics 2023, 11, 4269. https://doi.org/10.3390/math11204269 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204269
https://doi.org/10.3390/math11204269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11204269
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204269?type=check_update&version=1


Mathematics 2023, 11, 4269 2 of 20

deployment, scaling, maintenance, and monitoring resources and applications in the edge-
computing environment. This helps to simplify management tasks and reduce operational
costs but introduces some challenges in the edge-computing architecture.

The Kube scheduler is a crucial Kubernetes component, responsible for schedul-
ing pods (container groups) to suitable nodes for execution. The optimization of pod-
scheduling algorithms in Kubernetes holds significant importance in improving cluster
performance, resource utilization, reliability, and efficiency. With more intelligent schedul-
ing algorithms, it becomes possible to better utilize the resources within the cluster, ensuring
the optimal resource allocation to pods on nodes. This, in turn, reduces resource waste
and enhances the overall cluster efficiency. By sensibly allocating pods across various
nodes within the cluster, the application availability can be enhanced. In the event of a
node failure, pods can be rescheduled onto other healthy nodes, ensuring the continuous
operation of applications. Optimized scheduling algorithms can also consider the perfor-
mance characteristics of nodes, scheduling pods onto the most suitable nodes to improve
the application performance. Furthermore, better support for automation and autoscaling
can be achieved by refining scheduling algorithms, enabling the cluster to automatically
adjust resource allocation based on load conditions.

The default scheduling algorithm it uses involves rule-based rules, primarily focusing
on factors like node resource availability, affinity, and anti-affinity rules for pod scheduling.
These rules and algorithms are predetermined and cannot dynamically adjust to real-time
environments and workload conditions. Traditional scheduling algorithms in the context
of edge-task scheduling present several challenges:

Static Rules: Traditional algorithms typically employ static rules for scheduling, which
cannot adapt flexibly to the swiftly changing requirements in edge environments. Frequent
changes in node resources and network conditions in the edge environment make it
challenging for traditional algorithms to optimize scheduling decisions based on real-
time conditions.

Communication Cost: In edge computing, edge nodes are often spread across regions
with weaker network connectivity, leading to higher communication costs compared to
centralized cloud data centers. Traditional algorithms tend to schedule tasks to the cloud
data center, resulting in underutilized edge node computational resources and increased
data-transmission latency and network load.

Node Resource Imbalance: Traditional algorithms tend to assign tasks to nodes with
ample resources, while edge nodes typically have limited resources. This could result in over-
loading some edge nodes while leaving others idle, leading to resource utilization imbalances.

Lack of Intelligent Decision Making: Traditional algorithms lack intelligent decision-
making capabilities, making them unable to cater to specific task characteristics and re-
quirements. Edge tasks may have varying real-time requirements, security needs, and
location constraints, which traditional algorithms cannot accommodate.

Kubernetes scheduling algorithms can be primarily categorized into three types:
rule-based optimization algorithms, metaheuristic algorithms, and intelligent predictive-
scheduling algorithms. The rule-based optimization algorithms rely on affinity and anti-
affinity scheduling, where Kubernetes facilitate defining relationships between pods and
nodes by using labels and affinity rules, striving for refined resource allocation and node
selection. Wöbker et al. [1] proposed a custom label system which was used by the sched-
ulers for pod-to-node allocation. Medel et al. [2] used four labels for applications: high
CPU utilization, low CPU utilization, high disk utilization, and low disk utilization. To
prevent resource contention, containers with applications labeled as high utilization are
not allocated to the same node. Lai et al. [3] concentrated on heuristic rule-based pod
scheduling to optimize network latency in edge Kubernetes clusters, considering heteroge-
neous environments’ performance. However, these algorithms have a relatively singular
optimization objective with limited adaptability, indicating potential for improvement in
load balancing and capacity handling.



Mathematics 2023, 11, 4269 3 of 20

Metaheuristic algorithms are essential optimization algorithms for scientific workflow-
scheduling problems, hybrid job-shop-scheduling problems, multiobjective decision-making
problems, and so on. Tirkolaee et al. [4] designed a parallel heuristic algorithm that utilizes
three prominent metaheuristic algorithms: a genetic algorithm (GA), particle swarm opti-
mization (PSO), and ant colony optimization (ACO) to optimize the parallel job-scheduling
problems, automated guided vehicles (AGVs), and transporters in a hybrid job-shop sys-
tem. They found that parallel computing can enable heuristic algorithms to achieve better
objective values. Goli et al. [5] discussed non permutation flow-shop-scheduling problems
and proposed a novel multiobjective metaheuristic algorithm, providing pareto-optimal
solutions in a shorter time. Kchaou [6] used interval type-2 fuzzy c-means (IT2FCM), a
fuzzy clustering method, and PSO to optimize task scheduling while considering data
placement. The concepts of multiobjective optimization and parallel computing in these
algorithms can provide valuable insights for research on task-scheduling optimization in
Kubernetes and edge computing.

The intelligent predictive-scheduling algorithms employ machine learning, reinforce-
ment learning, and similar methods to anticipate node resource utilization based on histori-
cal data and trends. The goal is to enhance resource utilization and system performance.
Park et al. [7] utilized a deep linear model (DLinear) to predict future resource usage
based on collected resource utilization data and applied scoring to an efficient resource
utilization (SERU) algorithm to allow it to select the best node. Ishak et al. [8] developed a
scheduler for Kubernetes environments that uses machine learning methods based on a
runtime prediction of applications, efficiently selecting the suitable device (CPU or GPU)
for various tasks in heterogeneous systems. Kubernetes’ container-scheduling strategy
(KCSS) [9] is a multicriteria decision-analysis algorithm that aggregates all the criteria into
a single ranking and then chooses the node with the top rank to execute newly submitted
containers. Deep reinforcement learning is a hot topic in edge architecture. Shi et al. [10]
designed a task-offloading strategy based on a deep reinforcement learning algorithm. This
strategy effectively enhances the long-term revenue for users when edge servers dynam-
ically change service prices as users move. Yamansavascilar et al. [11] developed a task
coordinator called DeepEdge based on deep reinforcement learning. It can learn offloading
strategies to meet different task requirements under highly stochastic network conditions
involving mobile users and applications without human intervention. Xiao et al. [12] pro-
posed a reinforcement-learning-based mobile task-loading scheme for edge computing
to counter interference attacks. This scheme employs secure reinforcement learning to
avoid risky offloading strategies that cannot meet task computation latency requirements.
Lim et al. [13] introduced a soft actor–critic (SAC) approach based on deep reinforcement
learning to compute offloading decisions and facilitate multiaccess edge-computing (MEC)
server decisions in a multiuser, multi-MEC server environment. Xu et al. [14] modeled
the task offloading subproblem as an exact potential game (EPG) and proposed a mul-
tiagent distributed deep deterministic policy gradient (MAD4PG) algorithm to achieve
Nash equilibrium.

Inspired by various deep reinforcement learning (DRL)-based edge-computing task-
offloading and resource-allocation strategies, some research focuses on Kubernetes container-
scheduling optimization in cloud environments by using reinforcement learning intelligent
algorithms [15,16]. Jiaming [17] developed an RLSK job scheduler by using the deep Q
learning network (DQN) algorithm, which adaptively schedules independent batch jobs
across multiple federated cloud computing clusters. Peng [18] proposed the DL2 algorithm,
a deep-learning-based scheduler for deep learning clusters, enhancing global training job
scheduling by dynamically adjusting resource allocation for jobs. It outperforms other
schedulers in terms of the average job-completion time.

After analyzing the current research on Kubernetes schedulers, we find that tradi-
tional scheduling strategies have difficulty adapting to the real-time and complex edge
tasks. One key requirement in edge computing is the ability to make optimal decisions
for future unknown tasks within an extremely short time frame. Conversely, existing



Mathematics 2023, 11, 4269 4 of 20

predictive-scheduling strategies based on intelligent algorithms like machine learning and
reinforcement learning effectively address adaptability and real-time issues. However, they
have not been specifically designed and optimized for edge-device resource constraints,
making them prone to device congestion during peak computing periods.

Deep reinforcement learning possesses features such as sample optimization, experi-
ence replay, function approximation, and model independence, making it highly suitable
for dynamic environments like edge clusters and real-time task scheduling. Furthermore,
the proximal policy optimization (PPO) algorithm, which uses a clipped function to re-
strict policy updates’ magnitude, speeds up the training’s convergence, reducing the
training process’s load on edge clusters and enhancing the training efficiency. Therefore,
a deep-reinforcement-learning-based proximal policy optimization with least response
time (PPO-LRT) algorithm for enhancing pod scheduling in edge Kubernetes clusters was
proposed in this paper. The PPO-LRT algorithm addresses cluster-load management in
the context of heterogeneous edge environments, ensuring a more balanced cluster load
during potential task peaks and reducing the maximum workload on worker nodes. To
meet edge computing’s low-latency requirements, the LRT algorithm is integrated into
the PPO’s reward function. This enables the model to make decisions with the shortest
response time, decreasing the average response time of task-scheduling execution.

Our research contribution primarily revolves around modeling the Kubernetes pod-
scheduling process as a Markov process, combining the PPO algorithm with the LRT
algorithm to design Kubernetes pod-scheduling algorithms that are more suitable for
edge environments. This achieves better load balancing and an increased load capacity.
We also designed a reward function that facilitates a shorter scheduling time, leading to
significant improvement in multiple objective optimizations. Furthermore, in terms of
practical engineering, the custom scheduler we developed around the algorithm exhibits
excellent maintainability and scalability.

The contributions are as follows:

1. A Markov process for pod scheduling in edge heterogeneous environments using
the k3s framework is modeled. A custom Kubernetes scheduler based on deep
reinforcement learning is designed and implemented.

2. The PPO-LRT algorithm is proposed by combining PPO with LRT. The reward func-
tion is designed to emphasize load balancing within the cluster and includes a mech-
anism to guard against excessively high workloads. Additionally, the algorithm
incorporates a response time calculation, leading to more balanced loads on different
nodes in the Kubernetes edge cluster and controlling resource utilization within a
more reasonable range. This adaptive optimization addresses the resource constraints
and low-latency requirements of the edge environment.

3. The proposed PPO-LRT algorithm is implemented as a custom Kubernetes scheduler
and interacts with the cluster. Different types and quantities of task sets are used to test
the algorithm’s load-balancing adjustment capabilities and high-load bearing capacity
in a heterogeneous and resource-limited cluster during task-scheduling peaks.

The remaining sections of this paper consist of the following: an overall architecture
of the scheduling system based on deep reinforcement learning is described in Section 2.
A Markov process modeling for Kubernetes task scheduling in edge environments is
described and the PPO-LRT-scheduling algorithm is presented in Section 3. The evaluation
experiments and analysis of the custom scheduler based on PPO-LRT are conducted in
Section 4. Conclusions are drawn in Section 5.

2. Scheduling System Design
2.1. Kubernetes Cluster Architecture

The edge environment is a mesh of interconnected edge devices forming a multinode
cluster environment. In such a setting, a distributed Kubernetes cluster architecture proves
to be an excellent fit. Presently, Kubernetes boasts multiple distribution versions tailored
for edge environments, such as k3s and KubeEdge. These distributions are Kubernetes



Mathematics 2023, 11, 4269 5 of 20

architecture-based, supporting collaborative edge-computing nodes, task orchestration,
and scheduling abilities on the edge-computing platform. Moreover, they are compatible
with the requisite technical interfaces of the Kubernetes framework, which enables the use
of identical interfaces for operations like gathering the node status or deploying pods.

As depicted in Figure 1, the node cluster within the Kubernetes framework includes
both a master node and multiple worker nodes. The worker nodes operate as the working
cells of the cluster where containers execute. The master node acts as the cluster control
plane, handling the management and oversight of the overall cluster states and scheduling.
Typically, it comprises several core components, including the API server, etcd, scheduler,
and controller manager. Among these, the scheduler is the critical component responsible
for task scheduling within the Kubernetes cluster. It allocates containerized applications
(pods) to execute on nodes based on user-defined requirements and cluster-resource avail-
ability. The scheduler’s primary objectives are to maximize cluster resource utilization
and ensure a high availability and application performance [19]. These are achieved by
monitoring the cluster states, tracking resource usage, and making decisions per the defined
scheduling policies. The scheduler is pluggable and can be customized or extended as per
user requirements. Kubernetes provides various ways to implement custom schedulers
such as modifying the Kube-scheduler source code, implementing extended schedulers, or
creating custom score plugins in the scheduling framework [20,21].

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 20 
 

 

2. Scheduling System Design 

2.1. Kubernetes Cluster Architecture 

The edge environment is a mesh of interconnected edge devices forming a multinode 

cluster environment. In such a setting, a distributed Kubernetes cluster architecture 

proves to be an excellent fit. Presently, Kubernetes boasts multiple distribution versions 

tailored for edge environments, such as k3s and KubeEdge. These distributions are Ku-

bernetes architecture-based, supporting collaborative edge-computing nodes, task orches-

tration, and scheduling abilities on the edge-computing platform. Moreover, they are 

compatible with the requisite technical interfaces of the Kubernetes framework, which 

enables the use of identical interfaces for operations like gathering the node status or de-

ploying pods. 

As depicted in Figure 1, the node cluster within the Kubernetes framework includes 

both a master node and multiple worker nodes. The worker nodes operate as the working 

cells of the cluster where containers execute. The master node acts as the cluster control 

plane, handling the management and oversight of the overall cluster states and schedul-

ing. Typically, it comprises several core components, including the API server, etcd, 

scheduler, and controller manager. Among these, the scheduler is the critical component 

responsible for task scheduling within the Kubernetes cluster. It allocates containerized 

applications (pods) to execute on nodes based on user-defined requirements and cluster-

resource availability. The scheduler’s primary objectives are to maximize cluster resource 

utilization and ensure a high availability and application performance [19]. These are 

achieved by monitoring the cluster states, tracking resource usage, and making decisions 

per the defined scheduling policies. The scheduler is pluggable and can be customized or 

extended as per user requirements. Kubernetes provides various ways to implement cus-

tom schedulers such as modifying the Kube-scheduler source code, implementing ex-

tended schedulers, or creating custom score plugins in the scheduling framework [20,21]. 

Considering the interaction between the deep reinforcement learning program and 

the cluster, and with an eye on future algorithm optimization iterations and custom sched-

uler maintenance and updates, a custom scheduler using the extended scheduler ap-

proach is implemented, using HTTP/S calls to the Kubernetes API to enable an interaction 

between the scheduler and the cluster during the training and scheduling processes. 

 

Figure 1. Kubernetes cluster architecture. 

2.2. Custom Scheduler Design Based on DRL 

A scheduling policy-optimization training program based on the PPO-LRT algorithm 

is set forth and a scheduler is developed subsequently in this study. The schematic of the 

Kubernetes scheduler based on the PPO-LRT algorithm is shown in Figure 2. When a user 

wishes to deploy a pod, a request with resource requirements for the CPU, memory, and 

Figure 1. Kubernetes cluster architecture.

Considering the interaction between the deep reinforcement learning program and the
cluster, and with an eye on future algorithm optimization iterations and custom scheduler
maintenance and updates, a custom scheduler using the extended scheduler approach is
implemented, using HTTP/S calls to the Kubernetes API to enable an interaction between
the scheduler and the cluster during the training and scheduling processes.

2.2. Custom Scheduler Design Based on DRL

A scheduling policy-optimization training program based on the PPO-LRT algorithm
is set forth and a scheduler is developed subsequently in this study. The schematic of the
Kubernetes scheduler based on the PPO-LRT algorithm is shown in Figure 2. When a user
wishes to deploy a pod, a request with resource requirements for the CPU, memory, and
other resources is forwarded to the API server component of the master. These data inform
the initial node selection by the scheduler. The custom scheduler operates as an external
scheduler, interacting with the master node via the HTTP protocol. This methodology
offers more flexibility and maintainability compared to direct modifications of the default
scheduler. It allows for cooperation with the default scheduler, or it can work independently



Mathematics 2023, 11, 4269 6 of 20

as a custom scheduler. The PPO agent, responsible for policy optimization, employs the
state monitor component to continuously track the cluster’s state and subsequently train
the actor–critic network for improved policy decision making. To ensure stable and efficient
policy updates within the PPO-LRT algorithm, the clip-loss function is employed to limit
drastic changes in the policy. Finally, the trained optimal policy is incorporated into
the custom scheduler, either as a replacement or supplement to the default Kubernetes
scheduler. The ultimate objective is to achieve a balanced cluster load and optimized
resource utilization.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 20 
 

 

other resources is forwarded to the API server component of the master. These data in-

form the initial node selection by the scheduler. The custom scheduler operates as an ex-

ternal scheduler, interacting with the master node via the HTTP protocol. This methodol-

ogy offers more flexibility and maintainability compared to direct modifications of the 

default scheduler. It allows for cooperation with the default scheduler, or it can work in-

dependently as a custom scheduler. The PPO agent, responsible for policy optimization, 

employs the state monitor component to continuously track the cluster’s state and subse-

quently train the actor–critic network for improved policy decision making. To ensure 

stable and efficient policy updates within the PPO-LRT algorithm, the clip-loss function 

is employed to limit drastic changes in the policy. Finally, the trained optimal policy is 

incorporated into the custom scheduler, either as a replacement or supplement to the de-

fault Kubernetes scheduler. The ultimate objective is to achieve a balanced cluster load 

and optimized resource utilization. 

In the scheduling architecture, the cluster consists of four nodes, including one mas-

ter node and four worker nodes. The master node also acts as a worker node. Each node 

has different CPU and memory capacities to simulate a heterogeneous edge environment. 

During the task-scheduling phase, the default scheduler is bypassed and the custom 

scheduler is employed for scheduling. The custom scheduler uses the PPO deep reinforce-

ment learning algorithm to train optimal scheduling policies to deploy pod applications 

based on user-defined resource requirements. Concurrently, it continually monitors the 

cluster’s states, making timely adjustments to overloaded nodes to ensure that the entire 

cluster and each node maintain reasonable resource utilization and load allocation. 

 

Figure 2. Schematic of Kubernetes scheduler based on PPO-LRT algorithm. 

The workload for testing comprises batch-created pods, and the pods’ configuration 

files define the required resource information, which is also part of the cluster’s state. To 

adapt to the deep reinforcement learning algorithm, the task-scheduling and workload-

management problem in the Kubernetes cluster is characterized as a Markov decision pro-

cess. Based on the PPO algorithm, the interaction and training process between the agent 

and the Kubernetes cluster are defined. This process is realized through the custom sched-

uler, integrating state monitoring, reinforcement learning training, and task deployment 

execution. The agent communicates with the cluster and performs pod control operations 

via the HTTP protocol and the Kubernetes API. The timing diagram illustrating the inter-

action between the custom scheduler based on PPO-LRT and other modules during the 

training process is shown in Figure 3. 

Figure 2. Schematic of Kubernetes scheduler based on PPO-LRT algorithm.

In the scheduling architecture, the cluster consists of four nodes, including one master
node and four worker nodes. The master node also acts as a worker node. Each node
has different CPU and memory capacities to simulate a heterogeneous edge environment.
During the task-scheduling phase, the default scheduler is bypassed and the custom sched-
uler is employed for scheduling. The custom scheduler uses the PPO deep reinforcement
learning algorithm to train optimal scheduling policies to deploy pod applications based
on user-defined resource requirements. Concurrently, it continually monitors the cluster’s
states, making timely adjustments to overloaded nodes to ensure that the entire cluster and
each node maintain reasonable resource utilization and load allocation.

The workload for testing comprises batch-created pods, and the pods’ configuration
files define the required resource information, which is also part of the cluster’s state. To
adapt to the deep reinforcement learning algorithm, the task-scheduling and workload-
management problem in the Kubernetes cluster is characterized as a Markov decision
process. Based on the PPO algorithm, the interaction and training process between the
agent and the Kubernetes cluster are defined. This process is realized through the cus-
tom scheduler, integrating state monitoring, reinforcement learning training, and task
deployment execution. The agent communicates with the cluster and performs pod control
operations via the HTTP protocol and the Kubernetes API. The timing diagram illustrating
the interaction between the custom scheduler based on PPO-LRT and other modules during
the training process is shown in Figure 3.



Mathematics 2023, 11, 4269 7 of 20Mathematics 2023, 11, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 3. Time-sequence diagram of PPO-LRT training. 

3. PPO-LRT Algorithm 

Whether in the traditional edge-computing architecture or edge-Kubernetes frame-

work, task offloading and scheduling are dynamic and highly uncertain processes. Faced 

with the unstable dynamic cluster load states, PPO’s clipping algorithm can offer a rela-

tively stable training process and faster convergence speed. Secondly, it demonstrates a 

higher training efficiency with fewer samples, which aligns well with resource-con-

strained edge environments. Additionally, in our scheduling problem, the action space is 

discrete, and when there are numerous nodes and extensive load parameters, the dimension-

ality of the collected state space also increases. For other algorithms suitable for discrete action 

spaces, the estimation of the value function typically becomes more complex. This might make 

it challenging to run the algorithm on edge devices since edge devices may not provide pow-

erful computational capabilities. Therefore, as a policy gradient-based algorithm with clipping 

properties, PPO is better suited for dynamic edge environments. 

3.1. PPO Algorithm 

In the realm of deep reinforcement learning, an intelligent agent utilizes a deep neu-

ral network as its policy function to learn decision-making strategies. The agent examines 

the state and employs the neural network to estimate the value or probability distribution 

of each possible action. Following the estimated value or probability distribution, the 

agent opts for an action and interacts with its environment. 

The deep neural network of the agent undergoes training and optimization by using 

the backpropagation algorithm. This process reduces the gap between the predicted value 

and actual reward (loss function), progressively refining the policy function. Conse-

quently, the agent becomes more capable of garnering higher cumulative rewards within 

the environment [22]. 

The PPO algorithm used in this study is an algorithm dedicated to policy optimiza-

tion for reinforcement learning. It aims to ensure stable policy improvement and maintain 

a high sample efficiency during the optimization process by restricting the magnitude of 

the policy updates and preventing drastic changes in the policy [23]. During the training 

process, the intelligent agent first interacts with the environment and collects a batch of 

trajectory data. It then uses the collected data to calculate the clipped surrogate objective 

and optimize the policy network and the value function network to improve the accuracy 

of the value function. 

The optimization objective of PPO can be expressed as follows [23]: 

Figure 3. Time-sequence diagram of PPO-LRT training.

3. PPO-LRT Algorithm

Whether in the traditional edge-computing architecture or edge-Kubernetes frame-
work, task offloading and scheduling are dynamic and highly uncertain processes. Faced
with the unstable dynamic cluster load states, PPO’s clipping algorithm can offer a relatively
stable training process and faster convergence speed. Secondly, it demonstrates a higher
training efficiency with fewer samples, which aligns well with resource-constrained edge
environments. Additionally, in our scheduling problem, the action space is discrete, and
when there are numerous nodes and extensive load parameters, the dimensionality of the
collected state space also increases. For other algorithms suitable for discrete action spaces,
the estimation of the value function typically becomes more complex. This might make
it challenging to run the algorithm on edge devices since edge devices may not provide
powerful computational capabilities. Therefore, as a policy gradient-based algorithm with
clipping properties, PPO is better suited for dynamic edge environments.

3.1. PPO Algorithm

In the realm of deep reinforcement learning, an intelligent agent utilizes a deep neural
network as its policy function to learn decision-making strategies. The agent examines the
state and employs the neural network to estimate the value or probability distribution of
each possible action. Following the estimated value or probability distribution, the agent
opts for an action and interacts with its environment.

The deep neural network of the agent undergoes training and optimization by us-
ing the backpropagation algorithm. This process reduces the gap between the predicted
value and actual reward (loss function), progressively refining the policy function. Conse-
quently, the agent becomes more capable of garnering higher cumulative rewards within
the environment [22].

The PPO algorithm used in this study is an algorithm dedicated to policy optimization
for reinforcement learning. It aims to ensure stable policy improvement and maintain a
high sample efficiency during the optimization process by restricting the magnitude of
the policy updates and preventing drastic changes in the policy [23]. During the training
process, the intelligent agent first interacts with the environment and collects a batch of
trajectory data. It then uses the collected data to calculate the clipped surrogate objective
and optimize the policy network and the value function network to improve the accuracy
of the value function.

The optimization objective of PPO can be expressed as follows [23]:

J(π) = Es0∼ρ0 [Vπ(s0)] (1)



Mathematics 2023, 11, 4269 8 of 20

where s0 represents the initial state, ρ0 represents the initial state distribution, and Vπ(s0)
represents the state-value function under policy π. During the learning process, the
relationship between the new policy πnew and the old policy πold after each policy update
can be represented as follows [24]:

J(πnew) = J(πold) +Es0,a0,s1,a1,...

[
∞

∑
t=0

γt Aπold(st, at)

]
(2)

where s0 ∼ ρ0, at ∼ πnew(·|st), st+1 ∼ P(st+1|st, at), P(st+1|st, at) represents the envi-
ronmental transition probability, γ is the discount factor, and Aπ(st, at) is the advantage
function. As derived from Equation (2),

J(πnew)− J(πold) ≥
1

1−γ E
s ∼ Dπold

a ∼ πold

[
πnew(a|s)
πold(a|s) Aπold(s, a)

]
− γε

(1−γ)2 E
s ∼ Dπold

a ∼ πold

[∣∣∣ πnew(a|s)
πold(a|s) − 1

∣∣∣] (3)

In (3), the right-hand side of the inequality represents the lower bound of policy
improvement, denoted as the policy improvement lower bound (PILB). The first term
is the surrogate objective (SO), and the second term is the penalty term (PT). A policy
improvement is made at each time as long as the lower bound of the policy improvement is
positive, i.e., PILB = SO − PT ≥ 0, which ensures that the new policy is better than the old
policy. To achieve this goal, it is necessary to enhance the SO while keeping the difference
between the new and old policies relatively small, i.e.,

maximize
πnew

E
s ∼ Dπold

a ∼ πold

[
πnew(a|s)
πold(a|s) Aπold(s, a)

]

s.t. E
s ∼ Dπold

a ∼ πold

[∣∣∣ πnew(a|s)
πold(a|s) − 1

∣∣∣] ≤ δ
(4)

Because the distribution Dπold in Equation (4) cannot be accurately computed, it is
approximated by using the trajectory πold generated by interacting with the environment.
Additionally, if the policy is parameterized as πθ , the optimization problem in Equation (4)
can be approximated by solving the optimization problem shown in Equation (5):

maximize
θ

E
(s,a)∼τold

[
πθ(a|s)

πθold
(a
∣∣∣s) Aπθold (s, a)

]

s.t. E
(s,a)∼τold

[∣∣∣∣∣ πθ(a|s)
πθold

(a
∣∣∣s) − 1

∣∣∣∣∣
]
≤ δ

(5)

The whole process is described in Figure 4. The algorithm quantifies the ratio of the
new and old policies, denoted as rt(θ), in the actor network and computes the advantage
value Ât by utilizing the value function in the critic network. These values are then
incorporated into the clipping function to evaluate the loss value LCLIP(θ), as shown in
Equations (6) and (7). It should be noted specifically that maximizing the objective function
in Equation (7) can be considered as a further solution to the optimization problem in
Equation (5), where Ât = Aπθold (s, a). The other abbreviations in Figure 4 are defined in
Table 1. The PPO algorithm is a policy-optimization mechanism for reinforcement learning
that curbs the degree of policy updates through approximate policy optimization and value-



Mathematics 2023, 11, 4269 9 of 20

function optimization. This results in a steady, efficient policy improvement accompanied
by a high sample efficiency and robust convergence performance:

rt(θ) =
πθ(at | st)

πθ old (at | st)
(6)

LCLIP(θ) = E
(s,a)∼τold

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(7)

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

curbs the degree of policy updates through approximate policy optimization and value-
function optimization. This results in a steady, efficient policy improvement accompanied 
by a high sample efficiency and robust convergence performance: 𝑟 (𝜃) = 𝜋 (𝑎 ∣ 𝑠 )𝜋  old (𝑎 ∣ 𝑠 ) (6)

𝐿 (𝜃) =
old( , )s a τ∼

 𝑚𝑖𝑛 𝑟 (𝜃)𝐴 , clip (𝑟 (𝜃),1 − 𝜀, 1 + 𝜀)𝐴  (7)

Table 1. Parameter description. 

Definition Description 𝑟 (𝜃) Ratio of the new and old policies 𝐿 (𝜃) Loss function based on clip function 𝜃 Policy network parameter 𝑎  The action at the moment t 𝑠  The state at the moment t 𝜀 Hyperparameter between 0 and 1 

( )sV Φ
 

A value function in state 𝑠  that estimates the expected return of following 
a strategy in that state, where φ is a parameter of the value function, usu-
ally a neural network or other learning model 𝜋 (𝑎 ∣ 𝑠 ) Probability of executing 𝑎  state 𝑠  

 
Figure 4. Flowchart of PPO algorithm. 

3.2. Least Response Time (LRT) 
The least response time (LRT) algorithm works by estimating each task’s response 

time based on its arrival and execution time. It then arranges the tasks by their response 
time [25]. The LRT algorithm follows these steps: 

Task Arrival: the system records the arrival time of each task. 
Compute Response Time: for each task, the response time is calculated as the sum of 

the task’s arrival time and its execution time. 
Sort Tasks: the system sorts all tasks based on their response time, putting the task 

with the shortest response time first. 
Execute Tasks: the tasks are executed according to the order set by the sorted re-

sponse time. 

Figure 4. Flowchart of PPO algorithm.

Table 1. Parameter description.

Definition Description

rt(θ) Ratio of the new and old policies
LCLIP(θ) Loss function based on clip function

θ Policy network parameter
at The action at the moment t
st The state at the moment t
ε Hyperparameter between 0 and 1

VΦ(s)
A value function in state st that estimates the expected return of following
a strategy in that state, where ϕ is a parameter of the value function,
usually a neural network or other learning model

πθ(at | st) Probability of executing at state st

3.2. Least Response Time (LRT)

The least response time (LRT) algorithm works by estimating each task’s response
time based on its arrival and execution time. It then arranges the tasks by their response
time [25]. The LRT algorithm follows these steps:

Task Arrival: the system records the arrival time of each task.
Compute Response Time: for each task, the response time is calculated as the sum of

the task’s arrival time and its execution time.
Sort Tasks: the system sorts all tasks based on their response time, putting the task

with the shortest response time first.
Execute Tasks: the tasks are executed according to the order set by the sorted re-

sponse time.
The key to the LRT algorithm lies in its response time calculation Ri = Ai + Ei, where

Ai is the time from task i‘s creation to its scheduled state, i.e., the time from ‘container
creating’ to the ‘pod scheduled’ state, and Ei is the execution time of task i. The response
time also reflects the cluster’s current load status, including network and disk loads.



Mathematics 2023, 11, 4269 10 of 20

LRT’s advantage is its ability to prioritize tasks with a shorter response time, thus
diminishing the task waiting time. For this study, the LRT algorithm’s idea is incorporated
into the reward function of PPO, creating the PPO-LRT algorithm. Although the LRT
algorithm might not be ideal for real-time dynamic task scheduling, it can enhance load
balancing and speed up the response time when combined with deep-reinforcement-
learning-based real-time dynamic task-scheduling algorithms.

3.3. Scheduling Problem Modeling and PPO-LRT Algorithm Flow

The test workload generator is cyclically created, and the pods are deployed to the
cluster based on the number of required training iterations and the effective operations.
Following the deployment of the corresponding pod, the agent gathers the cluster state
through a state-monitoring program, generating the state required for reinforcement learn-
ing training. The state considers factors such as the CPU load, memory utilization, and
resource requirements (including CPU and memory demands) as specified in the pod
configuration files. It also considers the response time of past pods. The state space is
defined as follows:

state(t) = [node1, node2, . . . noden, pod, r] (8)

where noden is the state information of the n-th node in the cluster. Each noden state consists
of four elements, where cn and mn represent the CPU load and memory utilization of the
n-th node, respectively. cpn and mpn represent the CPU and memory resource requirements
for a pod running on n nodes, respectively. Their definitions are provided in Equation (9).
The resource demands of pods are also a critical factor to be considered during scheduling,
so in the state space, the pod is defined as the resource requirements of the currently
deployed pod on the allocated node, which includes CPU and memory. Additionally, R
represents the response time of the previous pod, defined in Equation (10):

noden = [cn, mn] (9)

pod = [cpn, mpn] (10)

Considering the optimization goals for pod-task scheduling and cluster-load balancing,
the agent’s actions are designed into two categories: scheduling actions and load control
actions. Scheduling actions entail selecting the node where a pod should be allocated. The
output of the action decision is the node index (node). After acquiring the scheduling
action, load control actions are ascertained based on the current load balance and resource
utilization of each node. This involves deciding whether to deploy or remove some of the
load. Within the cluster, the number of nodes is n, so the action space dimension is 2n, as
shown in Equation (11):

action = [a1, a2 . . . an]

an = [n, mod(n, 2)] (11)

where n denotes the node index. In the an sequence, the first element indicates the node
index where the agent’s load control action decision will be executed, symbolized as noden.
The second element is obtained by using the modulo function, where n is divided by two
to yield a binary value representing the choice between scheduling and deploying pods or
clearing some pods.

The reward function is designed based on the optimization goals. It incentivizes
smaller load imbalances and shorter response time among clusters while ensuring that
resource utilization stays within a reasonable range. The reward function also penalizes
scenarios where resource utilization is excessively high. This is to achieve the objectives of



Mathematics 2023, 11, 4269 11 of 20

load balancing control and optimizing resource utilization. The reward function is defined
as follows:

reward = α× (
1
σc

+
1

σm
)− β× p− γRi (12)

where α, β, and γ are the weights; p is the penalty value; Ri denotes the task response time;
and σc is the dispersion of CPU loads across all nodes. The sequence [c1, c2 . . . cn] represents
the CPU load status values of n nodes, and σc is the standard deviation of this sequence
calculated according to Equation (13). The dispersion of the memory utilization sequence
for all nodes σm can be calculated similarly:

σc =

√
∑n

i=1(ci − µ)2

n
(13)

Let lc lm represent the upper limit values of the reasonable range for CPU and memory,
respectively. When the individual load status value surpasses the upper limit, the difference
between the load status value and the upper limit is calculated as the penalty value. The
penalty values for the CPU load pc are calculated according to Equation (14). The penalty
values for the memory load pm can be calculated similarly:

pc =
n

∑
i=1
{(ci − lc)|ci > lc} (14)

We set 300 episodes for training, and each episode contains 10 timesteps. Since a
single pod has a limited impact on the cluster state, deploying only one pod in each
training iteration may lead to small differences in the rewards between iterations, affecting
the training speed and effectiveness. To mitigate this, we cyclically deploy 10 pods in
each timestep, ensuring more substantial changes in the state with each deployment.
The response time and resource demands of the tasks within the pods are randomized
to simulate a more realistic and stochastic workload. The timespan of each iteration
is determined by the completion time of all tasks, which also introduces randomness.
After successfully scheduling all tasks to various nodes in the cluster, the agent interacts
with the Kubelet through the Kube-Prometheus interface to obtain the cluster status data
and gather response-time statistics. After a certain number of iterations, the training
trajectory sequence Dk is obtained, which includes the action (the scheduling result), the
post scheduling cluster state, the instantaneous reward, and the response time for each
iteration. The critic and actor networks are continuously updated by calculating the
advantage function and maximizing the surrogate objective function with clipped values.
At the end of each training iteration, the latest policy’s behavior decision is executed in
the cluster through the “setAction” module within the agent, using the Kubernetes API to
interact with the cluster. Algorithm 1 outlines the process of training the custom scheduler’s
scheduling strategy by using the PPO-LRT algorithm with the batched deployment of tasks.

Algorithm 1 Pod Scheduling Algorithm Based on PPO-LRT

Initialize the policy parameters θ.
Initialize the value function network parameters φ.
for i in range(t):

Perform the scheduling of a certain number of pods based on the current policy πθ and obtain trajectories Dk = {τi}.
Calculate the rewards-to-go R̂t using Equation (5).
Obtain the current state data of all nodes in the cluster, including CPU, memory, resource requirements of the previous pod, and

its response time. Then, use the current value function V∅k to estimate the advantage values Ât of the trajectory data.
Updating the policy by maximizing the clipped surrogate objective function:



Mathematics 2023, 11, 4269 12 of 20

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
where rt(θ) = πθ(a|s)/πθ_old(a|s) , ε is a hyperparameter.

The value function is updated by minimizing the mean squared error between the predicted values and the observed returns:

φk+1 = argmin
φ

1
|Dk |T ∑

τ∈Dk

T
∑

t=0

(
Vφ(st)− R̂t

)2.

Use the updated policy to repeat the process.

4. Evaluation

The effectiveness of the PPO-LRT algorithm in achieving load balancing and improving
the overall task response time was evaluated. The experimental environment and test
workloads were introduced at first. Since the default scheduler in the Kube scheduler
has already considered priority-based preemption and load-based scoring algorithms,
which are more comprehensive than traditional random and round-robin load-scheduling
algorithms, the Kube scheduler was used as a comparative benchmark to evaluate the
performance of the PPO-LRT algorithm in this paper.

4.1. Experimental Environment Setup

The experimental environment consists of four virtual machines, each simulating a
node with differing CPU performances, memory sizes, and operating systems. Some nodes
have constrained CPU and memory resources to mimic the conditions of heterogeneous and
resource-restricted devices commonly found in edge environments. The virtual machines
were interconnected, offering memory capacities between 3 GB and 8 GB. The master
node, which acts as both the management and worker node, was allocated the maximum
memory and CPU cores. Each of the other three worker nodes were assigned two CPU
cores. Together, a four-node k3s edge device cluster running k3s version 1.22.6 was formed.
The experimental environment is shown in Table 2.

Table 2. Experimental environment.

Node OS CPU Cores Memory

Master (Node1) Centos7 8 8 GB
Node2 Centos7 2 3 GB
Node3 Ubuntu 2 4 GB
Node4 Redhat 2 4 GB

For the experiment, we employed two types of load-testing modes: balanced and
random load testing. For the balanced load testing, we cyclically deployed Nginx as
a single load during reinforcement learning training. For the random load testing, we
used the PolybenchC benchmark suite to generate the random workload. PolybenchC, a
comprehensive computer-system-performance evaluation suite, is typically used to gauge
the effects of compiler optimization and parallel computing. It consists of a collection of
C-language kernels representing common numerical computation algorithms, including
matrix multiplication, matrix transpose, linear equation solving, and so on. We randomly
selected 10 representative test programs from various types of computations in PolybenchC
and packaged each program into a Docker image. These were then available to be pulled
as test task sets when generating the pods. The benchmarks in PolybenchC vary greatly
in resource requirements, such as CPU and memory, making it ideal for simulating the
optimization effects of the PPO-LRT algorithm on Kubernetes cluster load under different
task types. The specific test sets used, along with their computational types, are listed
in Table 3.



Mathematics 2023, 11, 4269 13 of 20

Table 3. Random load test programs (PolybenchC).

Name Type Description

Jacobi-2d Linear Algebra 2D Jacobi stencil computation
3 mm Linear Algebra Three matrix multiplications
2 mm Linear Algebra Two matrix multiplications
Gemm Linear algebra Matrix multiplication
Atax Linear Algebra Matrix transpose and vector multiplication

Cholesky Linear Algebra Cholesky decomposition
heat-3d Physics simulation Heat equation over 3D data domain
Fdtd-2d Physics simulation 2D finite-difference time-domain kernel

Covariance Data mining Covariance computation
Correlation Data mining Correlation computation

4.2. Training Performance

During the training process, we deployed 3000 pods over 300 training iterations. Each
iteration consisted of ten timesteps, meaning that we deployed ten pods consecutively on a
specific node during each step. This approach was implemented to amplify the impact of
the action execution on the state input. Each pod ran a nginx application with a randomly
assigned execution time to simulate different task execution effects. The lifecycle of the
pod was determined by the task-execution period, and the pod would be automatically
deleted upon task completion. We updated the policy every 30 steps during training and
set the clipping parameter in the PPO algorithm to 0.2. The decay factor gamma was set
to 0.99, and the learning rates for the actor and critic networks were set to 0.0003 and
0.001, respectively.

The average reward values during the training process are shown in Figure 5. The
light-colored reward value curve represents the raw data, displaying a more accurate
portrayal of the reward fluctuations, while the smoother reward value curve offers a
clearer view of the average reward value’s increasing trend. The red curve corresponds
to the reward values of the PPO-LRT algorithm, and the blue curve corresponds to the
reward values of the default scheduling algorithm used by the Kube scheduler for the same
scheduling training.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

PolybenchC and packaged each program into a Docker image. These were then available 
to be pulled as test task sets when generating the pods. The benchmarks in PolybenchC 
vary greatly in resource requirements, such as CPU and memory, making it ideal for sim-
ulating the optimization effects of the PPO-LRT algorithm on Kubernetes cluster load un-
der different task types. The specific test sets used, along with their computational types, 
are listed in Table 3. 

Table 3. Random load test programs (PolybenchC). 

Name Type Description 
Jacobi-2d Linear Algebra 2D Jacobi stencil computation 

3 mm Linear Algebra Three matrix multiplications 
2 mm Linear Algebra Two matrix multiplications 
Gemm Linear algebra Matrix multiplication 
Atax Linear Algebra Matrix transpose and vector multiplication 

Cholesky Linear Algebra Cholesky decomposition 
heat-3d Physics simulation Heat equation over 3D data domain 
Fdtd-2d Physics simulation 2D finite-difference time-domain kernel 

Covariance Data mining Covariance computation 
Correlation Data mining Correlation computation 

4.2. Training Performance 
During the training process, we deployed 3000 pods over 300 training iterations. Each 

iteration consisted of ten timesteps, meaning that we deployed ten pods consecutively on 
a specific node during each step. This approach was implemented to amplify the impact 
of the action execution on the state input. Each pod ran a nginx application with a ran-
domly assigned execution time to simulate different task execution effects. The lifecycle 
of the pod was determined by the task-execution period, and the pod would be automat-
ically deleted upon task completion. We updated the policy every 30 steps during training 
and set the clipping parameter in the PPO algorithm to 0.2. The decay factor gamma was 
set to 0.99, and the learning rates for the actor and critic networks were set to 0.0003 and 
0.001, respectively. 

The average reward values during the training process are shown in Figure 5. The 
light-colored reward value curve represents the raw data, displaying a more accurate por-
trayal of the reward fluctuations, while the smoother reward value curve offers a clearer 
view of the average reward value’s increasing trend. The red curve corresponds to the 
reward values of the PPO-LRT algorithm, and the blue curve corresponds to the reward 
values of the default scheduling algorithm used by the Kube scheduler for the same sched-
uling training. 

 

Figure 5. The average reward values during the training process.

The average reward of the PPO-LRT algorithm rises rapidly within the first 0–50 steps,
then increases at a slower pace within 50–200 steps, and finally approaches convergence
after 300 training iterations. This demonstrates the advantage of the PPO algorithm in
terms of the training convergence speed and stability. In contrast, the default scheduling
algorithm exhibits significantly lower average rewards than the PPO-LRT and also displays



Mathematics 2023, 11, 4269 14 of 20

a declining trend in the later stages. This phenomenon might be due to the Kube scheduler’s
limitations in balancing the loads among different tasks and adapting swiftly to changes.

The clip parameter is an important hyperparameter used to limit the magnitude of
policy updates. It plays a crucial role in maintaining the stability of policy updates while
continually improving the policy in PPO. If the clipping parameter is set too small, policy
updates may be overly constrained, resulting in slower convergence and requiring more
training time to achieve the desired performance. Conversely, if the clipping parameter is
set too large, policy updates may be too aggressive, leading to instability and divergence
during training. This can result in excessive policy changes that prevent the effective
learning of high-quality policies. Selecting an appropriate clipping parameter often requires
experiments and hyperparameter tuning. Typically, an appropriate clipping parameter can
be found to achieve fast, stable, and effective training. The reward curves trained with
different clip parameters are shown in Figure 6. It can be observed that the clip parameter
0.2 results in more stable training and higher average reward values.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

Figure 5. The average reward values during the training process. 

The average reward of the PPO-LRT algorithm rises rapidly within the first 0–50 
steps, then increases at a slower pace within 50–200 steps, and finally approaches conver-
gence after 300 training iterations. This demonstrates the advantage of the PPO algorithm in 
terms of the training convergence speed and stability. In contrast, the default scheduling algo-
rithm exhibits significantly lower average rewards than the PPO-LRT and also displays a de-
clining trend in the later stages. This phenomenon might be due to the Kube scheduler’s lim-
itations in balancing the loads among different tasks and adapting swiftly to changes. 

The clip parameter is an important hyperparameter used to limit the magnitude of 
policy updates. It plays a crucial role in maintaining the stability of policy updates while 
continually improving the policy in PPO. If the clipping parameter is set too small, policy 
updates may be overly constrained, resulting in slower convergence and requiring more 
training time to achieve the desired performance. Conversely, if the clipping parameter is 
set too large, policy updates may be too aggressive, leading to instability and divergence 
during training. This can result in excessive policy changes that prevent the effective 
learning of high-quality policies. Selecting an appropriate clipping parameter often re-
quires experiments and hyperparameter tuning. Typically, an appropriate clipping pa-
rameter can be found to achieve fast, stable, and effective training. The reward curves 
trained with different clip parameters are shown in Figure 6. It can be observed that the 
clip parameter 0.2 results in more stable training and higher average reward values. 

 
Figure 6. Training results for different clip parameters. 

4.3. Load Balancing Test 
In edge clusters, workloads fluctuate unpredictably. A significant challenge for real-

time task-scheduling optimization within the cluster is the ability to efficiently allocate 
and schedule a massive influx of tasks during peak workload periods. The aim is to pre-
vent certain nodes from becoming overloaded, thereby averting blockage and a delayed 
task-response time. In this study, we employed both random and balanced workload test 
sets to determine if our PPO-LRT algorithm for edge Kubernetes clusters exhibits robust 
resilience under pressure and load-balancing optimization capabilities during peak work-
load scenarios. We compared its performance against the default Kube scheduler, and we 
also examined variations in the CPU and memory trends between the two schedulers 
throughout the test. 

To recreate a peak workload environment, we deployed 100 Nginx applications for 
a uniform load test. Figure 7 illustrates the CPU and memory utilization patterns of the 
four nodes under this scenario. The closer the nodes’ curves align, the higher the level of 

-200

0

200

400

600

800

1000

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

re
w

ar
d

timestep

reward(clip=0.2) reward(clip=0.3)

reward(clip=0.1)

Figure 6. Training results for different clip parameters.

4.3. Load Balancing Test

In edge clusters, workloads fluctuate unpredictably. A significant challenge for real-
time task-scheduling optimization within the cluster is the ability to efficiently allocate
and schedule a massive influx of tasks during peak workload periods. The aim is to
prevent certain nodes from becoming overloaded, thereby averting blockage and a delayed
task-response time. In this study, we employed both random and balanced workload
test sets to determine if our PPO-LRT algorithm for edge Kubernetes clusters exhibits
robust resilience under pressure and load-balancing optimization capabilities during peak
workload scenarios. We compared its performance against the default Kube scheduler, and
we also examined variations in the CPU and memory trends between the two schedulers
throughout the test.

To recreate a peak workload environment, we deployed 100 Nginx applications for
a uniform load test. Figure 7 illustrates the CPU and memory utilization patterns of the
four nodes under this scenario. The closer the nodes’ curves align, the higher the level
of load balancing within the cluster. As shown in Figure 7a, the PPO-LRT-scheduling
results demonstrate effective load balancing under the circumstances of many applications
being deployed quickly. The scheduler tends to allocate tasks to nodes with lower and
more available resource utilization. Conversely, the default Kube scheduler tends to evenly
allocate tasks among the four nodes, which may not be ideal. Node1′s memory load is
already quite high before the test tasks arrive, but the Kube scheduler still assigns more
tasks to it. Node1′s memory utilization is about 59% before the test tasks arrive. After



Mathematics 2023, 11, 4269 15 of 20

deploying the test tasks, its memory utilization increases to about 69%. Node1 has the
highest initial load, and its resource utilization increase is the highest among the four nodes,
which can potentially lead to blocking. In Figure 7b, it is even more evident in the CPU
load of each node in this situation. The number of tasks assigned to each node may not be
evenly allocated with the PPO-LRT algorithm, but their overall loads are more balanced.
In contrast, one node is overloaded with the Kube scheduler, which is a disadvantageous
decision for the cluster.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 20 
 

 

load balancing within the cluster. As shown in Figure 7a, the PPO-LRT-scheduling results 
demonstrate effective load balancing under the circumstances of many applications being 
deployed quickly. The scheduler tends to allocate tasks to nodes with lower and more 
available resource utilization. Conversely, the default Kube scheduler tends to evenly al-
locate tasks among the four nodes, which may not be ideal. Node1′s memory load is al-
ready quite high before the test tasks arrive, but the Kube scheduler still assigns more 
tasks to it. Node1′s memory utilization is about 59% before the test tasks arrive. After 
deploying the test tasks, its memory utilization increases to about 69%. Node1 has the 
highest initial load, and its resource utilization increase is the highest among the four 
nodes, which can potentially lead to blocking. In Figure 7b, it is even more evident in the 
CPU load of each node in this situation. The number of tasks assigned to each node may 
not be evenly allocated with the PPO-LRT algorithm, but their overall loads are more bal-
anced. In contrast, one node is overloaded with the Kube scheduler, which is a disadvan-
tageous decision for the cluster. 

 
PPO-LRT                                 Kube scheduler 

(a) 

 
PPO-LRT                                 Kube scheduler 

(b) 

Figure 7. Uniform load testing. (a) Memory comparisons with uniform load; (b) CPU comparisons 
with uniform load. 

Additionally, similar results are obtained in the random load test. We deployed 100 
benchmarks at once, and each deployment randomly selected one program from the 
above 10 PolybenchC benchmarks. Random load testing is shown in Figure 8. It indicates 
that the scheduler with the PPO-LRT algorithm displays better load balancing, and CPU 
utilization is maintained at a relatively low level. 

Figure 7. Uniform load testing. (a) Memory comparisons with uniform load; (b) CPU comparisons
with uniform load.

Additionally, similar results are obtained in the random load test. We deployed 100
benchmarks at once, and each deployment randomly selected one program from the above
10 PolybenchC benchmarks. Random load testing is shown in Figure 8. It indicates that the
scheduler with the PPO-LRT algorithm displays better load balancing, and CPU utilization
is maintained at a relatively low level.

To demonstrate the advantages of the PPO-LRT algorithm more directly in terms of
load balancing, we used Equation (8) as a measure of the load balance. Taking the CPU load
as an example, during the testing period, we collected sample values at ten time points. We
calculated the average load balance, denoted as average = ∑10

t=1 σt
c/10, which essentially

represents the average standard deviation. Lower values indicate lower dispersion and
a higher load balance. The same approach was applied to calculate the average memory
load. We conducted tests by using two types of task sets: random and uniform. The four
comparison scenarios are shown in Figure 9. In each scenario, we compared the load
balance of the CPU and memory between cluster nodes when using the PPO-LRT and Kube
scheduler for different types of tasks, respectively.



Mathematics 2023, 11, 4269 16 of 20Mathematics 2023, 11, x FOR PEER REVIEW 16 of 20 
 

 

 
 

PPO-LRT                                 Kube scheduler 
(a) 

 
PPO-LRT                                 Kube scheduler 

(b) 

Figure 8. Random load testing. (a) Memory comparisons with random load; (b) CPU comparisons 
with random load. 

To demonstrate the advantages of the PPO-LRT algorithm more directly in terms of 
load balancing, we used Equation (8) as a measure of the load balance. Taking the CPU 
load as an example, during the testing period, we collected sample values at ten time 
points. We calculated the average load balance, denoted as average = ∑ 𝜎 10⁄ , which 
essentially represents the average standard deviation. Lower values indicate lower dis-
persion and a higher load balance. The same approach was applied to calculate the aver-
age memory load. We conducted tests by using two types of task sets: random and uni-
form. The four comparison scenarios are shown in Figure 9. In each scenario, we com-
pared the load balance of the CPU and memory between cluster nodes when using the 
PPO-LRT and Kube scheduler for different types of tasks, respectively. 

 
Figure 9. Average load balancing comparisons. 

0 5 10 15

Memory(uniform)

Memory(random)

Average Load Balancing Degree

Kube-Scheduler PPO-LRT

Figure 8. Random load testing. (a) Memory comparisons with random load; (b) CPU comparisons
with random load.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 20 
 

 

 
 

PPO-LRT                                 Kube scheduler 
(a) 

 
PPO-LRT                                 Kube scheduler 

(b) 

Figure 8. Random load testing. (a) Memory comparisons with random load; (b) CPU comparisons 
with random load. 

To demonstrate the advantages of the PPO-LRT algorithm more directly in terms of 
load balancing, we used Equation (8) as a measure of the load balance. Taking the CPU 
load as an example, during the testing period, we collected sample values at ten time 
points. We calculated the average load balance, denoted as average = ∑ 𝜎 10⁄ , which 
essentially represents the average standard deviation. Lower values indicate lower dis-
persion and a higher load balance. The same approach was applied to calculate the aver-
age memory load. We conducted tests by using two types of task sets: random and uni-
form. The four comparison scenarios are shown in Figure 9. In each scenario, we com-
pared the load balance of the CPU and memory between cluster nodes when using the 
PPO-LRT and Kube scheduler for different types of tasks, respectively. 

 
Figure 9. Average load balancing comparisons. 

0 5 10 15

Memory(uniform)

Memory(random)

Average Load Balancing Degree

Kube-Scheduler PPO-LRT

Figure 9. Average load balancing comparisons.

Further, we subjected the cluster to extreme task loads by deploying 500 pods with
random tasks from PolybenchC during a brief period and recorded the CPU and memory
trends of each node during the 10 min deployment. As shown in Figure 10, a normal cluster
operation with relatively low load disparity among nodes was maintained by the PPO-
LRT algorithm even under this high-pressure scenario, indicating sound-load balancing.
However, memory loads of node3 and node4 exceed 80%, and CPU loads are around
50% when using the default scheduling algorithm of the Kube scheduler, which leads to
interruptions in the status data, indicating that these nodes are blocked due to the high load.



Mathematics 2023, 11, 4269 17 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 20 
 

 

Further, we subjected the cluster to extreme task loads by deploying 500 pods with 
random tasks from PolybenchC during a brief period and recorded the CPU and memory 
trends of each node during the 10 min deployment. As shown in Figure 10, a normal clus-
ter operation with relatively low load disparity among nodes was maintained by the PPO-
LRT algorithm even under this high-pressure scenario, indicating sound-load balancing. 
However, memory loads of node3 and node4 exceed 80%, and CPU loads are around 50% 
when using the default scheduling algorithm of the Kube scheduler, which leads to inter-
ruptions in the status data, indicating that these nodes are blocked due to the high load. 

 
PPO-LRT                                 Kube scheduler 

(a) 

 
PPO-LRT                                 Kube scheduler 

(b) 

Figure 10. High load testing. (a) Memory comparisons with high load; (b) CPU comparisons with 
high load. 

4.4. Response Time 
Response time is an important metric in real-time task scheduling in distributed clus-

ters. It represents the total time taken for a task to be submitted to the cluster, executed, 
and the execution result returned to the user. A lower response time indicates that tasks 
can be executed faster, thereby improving the real-time performance of the system. Sched-
uling algorithms can prioritize nodes with shorter response times to execute tasks. It is to 
some extent a comprehensive reflection of the current cluster and node load status, as well 
as the network conditions. The goal of PPO-LRT is to balance the cluster load while taking 
into account the overall task-scheduling response time, maintaining the edge cluster in a 
good state for a longer period under resource-constrained and complex conditions, while 
providing faster and better services to clients. 

To test the optimization effect of PPO-LRT on the response time, 10 selected Polyben-
chC benchmark programs from Table 3 were used. Each program was deployed 10 times 
by using both PPO-LRT and the default scheduler. After all the tasks were completed, the 
overall response time was recorded. Response time comparisons for real-time tasks with 

Figure 10. High load testing. (a) Memory comparisons with high load; (b) CPU comparisons with
high load.

4.4. Response Time

Response time is an important metric in real-time task scheduling in distributed
clusters. It represents the total time taken for a task to be submitted to the cluster, executed,
and the execution result returned to the user. A lower response time indicates that tasks can
be executed faster, thereby improving the real-time performance of the system. Scheduling
algorithms can prioritize nodes with shorter response times to execute tasks. It is to some
extent a comprehensive reflection of the current cluster and node load status, as well as
the network conditions. The goal of PPO-LRT is to balance the cluster load while taking
into account the overall task-scheduling response time, maintaining the edge cluster in a
good state for a longer period under resource-constrained and complex conditions, while
providing faster and better services to clients.

To test the optimization effect of PPO-LRT on the response time, 10 selected Poly-
benchC benchmark programs from Table 3 were used. Each program was deployed 10
times by using both PPO-LRT and the default scheduler. After all the tasks were completed,
the overall response time was recorded. Response time comparisons for real-time tasks with
different algorithms are shown in Figure 11. PPO-LRT has a significant advantage in terms
of response time compared to the Kube scheduler. According to the statistics, the average
response time of all the tasks with PPO-LRT is 104.05 s, while the Kube scheduler had an
average response time of 150.47 s. Overall, the PPO-LRT algorithm reduced the response
time by approximately 31% compared to the Kube scheduler. However, when compared to
the load-balancing round-robin scheduling algorithm with an average response time of
106.47 s, PPO-LRT’s response time is slightly improved by about 2.3%. The main reason is
that the round-robin algorithm uses fixed round-robin scheduling, which evenly allocates
tasks to the cluster in terms of quantity. However, this approach does not consider the



Mathematics 2023, 11, 4269 18 of 20

initial load differences in the cluster. When the number of tasks is small, it can quickly
allocate and execute them. When numerous tasks arrive in a short time and there are nodes
with high loads in the cluster, this fixed strategy cannot adapt well to the situation and can
easily lead to blockages in high-load nodes.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 20 
 

 

different algorithms are shown in Figure 11. PPO-LRT has a significant advantage in terms 
of response time compared to the Kube scheduler. According to the statistics, the average 
response time of all the tasks with PPO-LRT is 104.05 s, while the Kube scheduler had an 
average response time of 150.47 s. Overall, the PPO-LRT algorithm reduced the response 
time by approximately 31% compared to the Kube scheduler. However, when compared 
to the load-balancing round-robin scheduling algorithm with an average response time of 
106.47 s, PPO-LRT’s response time is slightly improved by about 2.3%. The main reason 
is that the round-robin algorithm uses fixed round-robin scheduling, which evenly allo-
cates tasks to the cluster in terms of quantity. However, this approach does not consider 
the initial load differences in the cluster. When the number of tasks is small, it can quickly 
allocate and execute them. When numerous tasks arrive in a short time and there are 
nodes with high loads in the cluster, this fixed strategy cannot adapt well to the situation 
and can easily lead to blockages in high-load nodes. 

 
Figure 11. Response time comparisons for real-time tasks with different algorithms. 

4.5. Results and Discussion 
It is evident that the load difference among the nodes in the cluster using the PPO-

LRT scheduler is significantly smaller than that of the Kube scheduler whether in a uni-
form load test or a random load test. This is because when designing the scheduling algo-
rithm based on the PPO algorithm, we consider the standard deviation of the load values 
on each node as the most important measure in our reward function. If a node exceeds a 
reasonable load threshold, it incurs a penalty based on the actions from the previous 
scheduling round. Through this process, the scheduling strategy is trained to not only 
maintain load balance across the cluster but also to quantitatively measure load balance. 
The results indicate that PPO-LRT achieved the expected outcome. Furthermore, the LRT 
algorithm is employed to allocate different scores to each scheduling action based on its 
response time. The higher the score, the higher the reward during training, aiming to train 
strategies to respond faster. In summary, the above results demonstrate that PPO-LRT can 
bring superior load management and a faster response time to edge nodes. 

The results also have a positive impact on three main areas: the edge environment 
efficiency, handling varying workloads, and providing a new optimization path for edge-
task offloading. The proposed algorithm can improve the resource utilization to deal with 
limited and dynamically changing resources in edge-computing environments. As workloads 
continue to change with the increasing adoption of edge applications, it can adapt to the actual 
workload conditions, ensuring an effective cluster operation during a high-demand period. 

0

50

100

150

200

250

Reponse Time

PPO-LRT Round Robin Kube-Scheduler

Figure 11. Response time comparisons for real-time tasks with different algorithms.

4.5. Results and Discussion

It is evident that the load difference among the nodes in the cluster using the PPO-LRT
scheduler is significantly smaller than that of the Kube scheduler whether in a uniform
load test or a random load test. This is because when designing the scheduling algorithm
based on the PPO algorithm, we consider the standard deviation of the load values on each
node as the most important measure in our reward function. If a node exceeds a reasonable
load threshold, it incurs a penalty based on the actions from the previous scheduling round.
Through this process, the scheduling strategy is trained to not only maintain load balance
across the cluster but also to quantitatively measure load balance. The results indicate that
PPO-LRT achieved the expected outcome. Furthermore, the LRT algorithm is employed to
allocate different scores to each scheduling action based on its response time. The higher
the score, the higher the reward during training, aiming to train strategies to respond
faster. In summary, the above results demonstrate that PPO-LRT can bring superior load
management and a faster response time to edge nodes.

The results also have a positive impact on three main areas: the edge environment
efficiency, handling varying workloads, and providing a new optimization path for edge-
task offloading. The proposed algorithm can improve the resource utilization to deal
with limited and dynamically changing resources in edge-computing environments. As
workloads continue to change with the increasing adoption of edge applications, it can
adapt to the actual workload conditions, ensuring an effective cluster operation during
a high-demand period. Finally, our research provides an effective way to manage and
optimize Kubernetes clusters in edge environments and make task scheduling more scalable
and maintainable.

5. Conclusions and Future Work

In edge environments, worker nodes lack the high computing power and capacity
of cloud centers. Instead, they aim to provide faster and more secure computing services
closer to the users. The nodes in an edge-computing cluster are often more dispersed and
have limited computing resources. However, the unpredictable nature of tasks from IoT



Mathematics 2023, 11, 4269 19 of 20

or vehicular networks, typical in edge-computing applications, challenges the cluster’s
capacity. The solution lies in optimizing the task-scheduling algorithms, which must be in
real time and dynamic for edge tasks. We tackled this problem by using deep reinforcement
learning to enhance the Kubernetes pod-scheduling algorithm. First, the scheduling process
is modeled by using Markov decision processes. Then, the PPO-LRT algorithm is designed.
During batch-pod scheduling, the resource requirements, execution state, and cluster state
changes are collected. The LRT algorithm is introduced into the reward function and the
optimal scheduling policy network is obtained through actor–critic training. Finally, the
scheduler based on PPO-LRT is tested by using the k3s framework. The results validate
the superiority of our PPO-LRT-scheduling algorithm over the Kube scheduler in terms of
the capacity during peak task-deployment periods, significantly improving load balancing
across nodes in the cluster and reducing the likelihood of node blocking or crashes due to
the workload. Furthermore, it improves the average execution speed by 31%.

However, there are still some limitations in our research. The single-agent algorithm
used in our framework might not fully capture distributed decision-making capabilities.
Kubernetes operates typically in a distributed environment with multiple nodes and
clusters. Scheduling algorithms designed with a single intelligent agent may struggle to
fully harness distributed decision-making capabilities and fail to consider communication
and collaboration among nodes. It can be prone to local optima, especially in highly
complex problems. Moreover, we designed our custom scheduler to be external, targeting
improvements in maintainability and scalability. This design may introduce some network
latency. Although the execution time of our algorithm is considered, providing some
advantages over the default Kube scheduler, there is still room for optimization in terms
of the network latency. These limitations suggest avenues for future research, such as
exploring distributed reinforcement learning algorithms for Kubernetes scheduling in edge
environments and further optimizing the network latency in custom schedulers.

We will continue to focus on task offloading and scheduling in a future study, aiming
to design intelligent algorithms suitable for multinode coordinated scheduling, such as
integrating multiagent reinforcement learning with edge multinode environments. Addi-
tionally, we will focus on improving the Kubernetes scheduling architecture, distributing
decision-making authority to individual nodes to further boost cooperation and distributed
processing capabilities during the task-scheduling decision-making process.

Author Contributions: X.W.: designing the entire system solution, providing ideas and methods,
and obtaining research funding. K.Z.: software design, modeling and testing, writing the initial
draft of the experimental results, and visualization. B.Q.: reviewing and modifying the initial draft,
supervising and guiding the experiments, and obtaining research funding. All authors have read and
agreed to the published version of the manuscript.

Funding: Financial support was provided in part by the National Natural Science Foundation of
China (grant number 62373142, 62033014, and 61903136), the Natural Science Foundation of Hunan
Province (grant number 2021JJ50006 and 2022JJ50074), and the Hunan Engineering Research Center
of Electric Drive and Regenerative Energy Storage and Utilization.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wöbker, C.; Seitz, A.; Mueller, H.; Bruegge, B. Fogernetes: Deployment and management of fog computing applications.

In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan,
23–27 April 2018; pp. 1–7.

2. Medel, V.; Tolón, C.; Arronategui, U.; Tolosana-Calasanz, R.; Bañares, J.Á.; Rana, O.F. Client-side scheduling based on application
characterization on Kubernetes. In Proceedings of the Economics of Grids, Clouds, Systems, and Services: 14th Interna-
tional Conference, GECON 2017, Biarritz, France, 19–21 September 2017; Proceedings 14. Springer International Publishing:
Berlin/Heidelberg, Germany, 2017; pp. 162–176.



Mathematics 2023, 11, 4269 20 of 20

3. Lai, W.K.; Wang, Y.C.; Wei, S.C. Delay-Aware Container Scheduling in Kubernetes. IEEE Internet Things J. 2023, 10, 11813–11824.
[CrossRef]

4. Amirteimoori, A.; Tirkolaee, E.B.; Simic, V.; Weber, G.W. A parallel heuristic for hybrid job shop scheduling problem considering
conflict-free AGV routing. Swarm Evol. Comput. 2023, 79, 101312. [CrossRef]

5. Goli, A.; Ala, A.; Hajiaghaei-Keshteli, M. Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation
flow-shop scheduling problem. Expert Syst. Appl. 2023, 213, 119077. [CrossRef]

6. Kchaou, H.; Kechaou, Z.; Alimi, A.M. A PSO task scheduling and IT2FCM fuzzy data placement strategy for scientific cloud
workflows. J. Comput. Sci. 2022, 64, 101840. [CrossRef]

7. Park, S.; Jeon, J.; Jeong, B.; Park, K.; Baek, S.; Jeong, Y.S. Actual Resource Usage-Based Container Scheduler for High Resource
Utilization. In Proceedings of the International Conference on Computer Science and Its Applications and the International
Conference on Ubiquitous Information Technologies and Applications, Vientiane, Laos, 19–21 December 2022; Springer Nature
Singapore: Singapore, 2022; pp. 611–614.

8. Harichane, I.; Makhlouf, S.A.; Belalem, G. KubeSC-RTP: Smart scheduler for Kubernetes platform on CPU-GPU heterogeneous
systems. Concurr. Comput. Pract. Exp. 2022, 34, e7108. [CrossRef]

9. Menouer, T. KCSS: Kubernetes container scheduling strategy. J. Supercomput. 2021, 77, 4267–4293. [CrossRef]
10. Shi, B.; Chen, F.; Tang, X. Deep Reinforcement Learning Based Task Offloading Strategy Under Dynamic Pricing in Edge

Computing. In Proceedings of the International Conference on Service-Oriented Computing, Online. 22–25 November 2021;
Springer International Publishing: Cham, Switzerland, 2021; pp. 578–594.

11. Yamansavascilar, B.; Baktir, A.C.; Sonmez, C.; Ozgovde, A.; Ersoy, C. Deepedge: A deep reinforcement learning based task
orchestrator for edge computing. IEEE Trans. Netw. Sci. Eng. 2022, 10, 538–552. [CrossRef]

12. Xiao, L.; Lu, X.; Xu, T.; Wan, X.; Ji, W.; Zhang, Y. Reinforcement learning-based mobile offloading for edge computing against
jamming and interference. IEEE Trans. Commun. 2020, 68, 6114–6126. [CrossRef]

13. Lim, D.; Joe, I. A DRL-Based Task Offloading Scheme for Server Decision-Making in Multi-Access Edge Computing. Electronics
2023, 12, 3882. [CrossRef]

14. Xu, X.; Liu, K.; Dai, P.; Jin, F.; Ren, H.; Zhan, C.; Guo, S. Joint task offloading and resource optimization in noma-based vehicular
edge computing: A game-theoretic drl approach. J. Syst. Archit. 2023, 134, 102780. [CrossRef]

15. Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.C.; Niyato, D. Multi-agent deep reinforcement learning for task offloading in UAV-assisted
mobile edge computing. IEEE Trans. Wirel. Commun. 2022, 21, 6949–6960. [CrossRef]

16. Agarwal, S.; Rodriguez, M.A.; Buyya, R. A reinforcement learning approach to reduce serverless function cold start frequency.
In Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid),
Melbourne, Australia, 10–13 May 2021; pp. 797–803.

17. Huang, J.; Xiao, C.; Wu, W. Rlsk: A job scheduler for federated kubernetes clusters based on reinforcement learning. In
Proceedings of the 2020 IEEE International Conference on Cloud Engineering (IC2E), Sydney, Australia, 21–24 April 2020;
pp. 116–123.

18. Peng, Y.; Bao, Y.; Chen, Y.; Wu, C.; Meng, C.; Lin, W. Dl2: A deep learning-driven scheduler for deep learning clusters. IEEE Trans.
Parallel Distrib. Syst. 2021, 32, 1947–1960. [CrossRef]

19. Burns, B.; Beda, J.; Hightower, K.; Evenson, L. Kubernetes: Up and Running; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
20. Carrión, C. Kubernetes scheduling: Taxonomy, ongoing issues and challenges. ACM Comput. Surv. 2022, 55, 1–37. [CrossRef]
21. Rejiba, Z.; Chamanara, J. Custom scheduling in Kubernetes: A survey on common problems and solution approaches. ACM Comput.

Surv. 2022, 55, 1–37. [CrossRef]
22. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process.

Mag. 2017, 34, 26–38. [CrossRef]
23. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
24. Kakade, S.; Langford, J. Approximately optimal approximate reinforcement learning. In Proceedings of the 19th International

Conference on Machine Learning, Sydney, Australia, 8–12 July 2002.
25. Arshad, A. What Is the Least Response Time Load Balancing Technique. Available online: https://www.educative.io/answers/

what-is-the-least-response-time-load-balancing-technique (accessed on 30 December 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2023.3244545
https://doi.org/10.1016/j.swevo.2023.101312
https://doi.org/10.1016/j.eswa.2022.119077
https://doi.org/10.1016/j.jocs.2022.101840
https://doi.org/10.1002/cpe.7108
https://doi.org/10.1007/s11227-020-03427-3
https://doi.org/10.1109/TNSE.2022.3217311
https://doi.org/10.1109/TCOMM.2020.3007742
https://doi.org/10.3390/electronics12183882
https://doi.org/10.1016/j.sysarc.2022.102780
https://doi.org/10.1109/TWC.2022.3153316
https://doi.org/10.1109/TPDS.2021.3052895
https://doi.org/10.1145/3539606
https://doi.org/10.1145/3544788
https://doi.org/10.1109/MSP.2017.2743240
https://www.educative.io/answers/what-is-the-least-response-time-load-balancing-technique
https://www.educative.io/answers/what-is-the-least-response-time-load-balancing-technique

	Introduction 
	Scheduling System Design 
	Kubernetes Cluster Architecture 
	Custom Scheduler Design Based on DRL 

	PPO-LRT Algorithm 
	PPO Algorithm 
	Least Response Time (LRT) 
	Scheduling Problem Modeling and PPO-LRT Algorithm Flow 

	Evaluation 
	Experimental Environment Setup 
	Training Performance 
	Load Balancing Test 
	Response Time 
	Results and Discussion 

	Conclusions and Future Work 
	References

