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Abstract: In the realm of transportation system optimization, enhancing overall performance through
the proactive coordination of traffic guidance and signal control in a divergent network can tackle the
challenges posed by traffic congestion and inefficiency. Thus, we propose an innovative approach to
first allow the information on variable message signs (VMS) that deviates from estimated travel times.
This proactive approach guides drivers towards optimal routes from a system-wide perspective, such
as minimizing vehicle hours traveled. The deviation is constrained both by the lower bound of drivers’
long-term compliance rate and the upper bound of the favored traffic signal operation. The proposed
approach coordinates the traffic guidance system with the signal control system. The traffic signal
control system sets the upper limit for information deviation in the traffic guidance system, while the
traffic guidance system provides demand predictions for the traffic signal control system. Overall, the
objective function of the approach is the network-level performance of all users. We gauge traveler
satisfaction as a measure of system credibility, using both a route choice module and a satisfaction
degree module established through stated preference surveys. Numerical results demonstrate that
proactive-coordinated (PC) strategies outperform reactive-coordinated (RC), proactive-independent
(PI), and reactive-independent (RI) strategies by improving the system performance, meanwhile
keeping the system trustworthy. Under the normal traffic scenario, the PC strategy reduces total
travel time by approximately 10%. Driver satisfaction with the PC strategy increases from a baseline
of 76% to 95%. Moreover, in scenarios with sudden changes in either traffic demand or supply, e.g.,
accidents or large events, the proactive guidance strategy is more flexible and can potentially improve
more from the system perspective.

Keywords: behavior-consistent; diversion rate; compliance rate; traffic optimization; traffic guidance;
signal control

MSC: 68T05

1. Introduction

Traffic congestion is one of the major issues that most metropolises worldwide face.
One main reason for this issue is the unmatched growth of road infrastructure and travel
demand [1]. Therefore, an interconnected urban transportation service and management
network is important to improve the system’s efficiency [2]. Presently, an important network
service is the traffic flow guidance based on roadside equipment, vehicle terminals, or
mobile devices. Many studies have been focused on traffic flow guidance by providing
drivers with real-time information [3], such as Dynamic traffic assignment (DTA). DTA
can be traced back to the work of Wardrop’s user-equilibrium and system optimum. The
assignment was based on optimization to assign each origin-destination (OD) flow onto
various alternate paths from that specific origin to the destination node [4]. In recent years,
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the surrogate-based optimization (SBO) method has been applied to some transportation
research [5–7]. Different from the equilibration process of simulation-based DTA, SBO does
not need to carry out simulations iteratively till the user-equilibrium condition is obtained
within some tolerance limit.

To realize effective traffic guidance, accurate prediction of traffic conditions is a pre-
requisite and important [8]. Here, travel behavior consists of a driver’s response to the
guidance information and his/her compliance behavior [9]. Most previous research fo-
cused on consistency between the prediction of traffic conditions for traffic guidance and
traffic conditions under-realized traffic guidance strategies. A series of approaches were
proposed to keep consistency, e.g., the singular value decomposition approach for consis-
tency [10], and the integration of demand consistency with network state consistency [11].
In this context, a day-to-day traffic assignment model is proposed to capture traveler
path-switching behaviors under advanced information [12]. Information-based network
control strategies were further proposed to both estimate and manage queue lengths at
individual intersections, while also addressing the overall network congestion. [13]. A
fuzzy control approach was developed to determine the best routes for all drivers based on
the estimation of drivers’ response behavior [14]. For traffic guidance, consistency has an
impact on drivers’ compliance rate, which is also a key element in understanding route
choice behavior. Ozbay suggested that compliance behavior should be well-considered
in a traffic guidance system [15]. The compliance rate represented the degree of trust in
information, and a high compliance rate was the foundation of an effective traffic guid-
ance system. The level of compliance should not remain constant; instead, it should be a
dynamic variable influenced by the knowledge and experiences of travelers. Xu et al. [16]
studied control effects under a variable compliance rate. Their split rate was the sum of
experiential splitting ratios multiplied by the compliance rate. Considering robustness in
the proposed strategies is significant because of the uncertainty in driver behavior [17].

The coordination of traffic guidance strategy and signal control strategy has appeared
in the literature to further improve network-level performance [18,19]. Interactions and
interdependence exist between travel guidance services and traffic signal operations. Traf-
fic guidance strategies affect the spatial distribution of traffic. Signal control strategies
affect the travel experiences of drivers directly and their preference for guidance systems
indirectly [20]. Coordinated strategies for guidance and signal control aiming to improve
system performance by providing information via variable message signs (VMS) and fa-
vored traffic signal operations. Previous attempts had predicted travel behavior through
the concept of user equilibrium or dynamic user equilibrium [21,22]. Some major assump-
tions in these studies were rational thinking and complete knowledge of network-level
performance. The advanced data collection means, particularly mobile technologies and
vehicle-infrastructure networks will lead to the availability of information on behavior
preferences and characteristics of road users [23]. Discrete behavior modeling can im-
prove the prediction accuracy of behavior and decisions of users. A proactive guidance
model with predicted traffic conditions and expected choices of drivers can potentially
alleviate recurrent congestions or incident-induced impacts by adjusting control measures
in advance. Thus, a system that is capable of providing predicted traffic information to
drivers can provide a proactive route guidance mechanism that could decrease travel
times [24]. Claes and Holvoet explained a proactive traffic route guidance system that
utilizes an online embedded simulation distributed across road infrastructures, coupled
with a delegate multi-agent system, all operating on the foundation of a symbiotic relation-
ship [25]. They found that proactive traffic guidance strategies could outperform reactive
traffic guidance mechanisms. Adbelghany et al. [26] proposed a decision support system
for proactive-robust traffic network management, which accounts for uncertainty in the
network’s operational conditions.

The robustness of the proposed behavior-based control strategies should be examined
due to the uncertainty of driver behavior. Yin and Yang [27] developed a control system to
effectively ensure the robustness of control strategies due to travel time uncertainty under
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recurrent network congestion. Hong and Tung [28] defined route choice behavior in the
context of uncertain travel times, employing the concept of probabilistic user equilibrium.
Lindsey et al. [29] studied the effect of pre-trip information on route-choice decisions.
However, the uncertainty in the route selection behavior of users based on the road traffic
performance and the satisfaction of users has not been well addressed in the literature.
Given that such uncertainty in driver behavior and travel demand is significant, controller
stability is necessary to be carefully considered [30,31]. Here, user satisfaction is a measure
of the consistency between guidance information and the realized traffic states from the
perspective of road users. In general, the higher consistency corresponds to a higher user
satisfaction degree.

To make a modest contribution to the fast-developing research field of behavior-based
traffic control approach, this study formulates a proactive-coordinated model predictive
controller to optimize the coordinated strategies of traffic signal and VMS guidance for a di-
vergent network. This paper integrates several components in a rolling horizon framework
to analyze the coordination of proactive traffic guidance and signal control: behavior-based
proactive traffic guidance model, coordination of traffic guidance and traffic signal control,
a multinomial Logit route choice model, a traffic flow simulator SUMO as an evaluation
method of strategies. The main highlights can be condensed as follows:

(1) The key innovation lies in the proactive coordination approach, allowing VMS to
guide drivers based on system optimization while respecting compliance rates and
preferred traffic signal operations.

(2) The approach integrates traffic guidance and signal control systems, with traffic
signal control setting upper bounds for information deviation, and the traffic guid-
ance system providing demand predictions, ultimately optimizing network-level
performance.

(3) The proactive coordination strategy demonstrates flexibility, particularly in scenarios
with sudden changes in traffic conditions, such as accidents or events, where it
outperforms reactive and independent strategies.

The remainder of this paper is summarized as follows. Section 2 briefly presents the
optimization framework, develops driver behavior models based on the stated preference
(SP) survey, and then elucidates the optimization-based methodology. Section 3 presents
computational results in a typical divergent network. Section 4 discusses the key findings,
implications, and limitations. Finally, Section 5 concludes our findings and suggests
future work.

2. The Proposed Method
2.1. The Overall Logical Architecture

At present, traffic guidance systems passively present the current traffic information
on VMS and allow drivers to make their own route choices [32]. Once decisions are
made, traffic signal control systems rely on road sensors to detect vehicles’ presence to
allocate time and resources among various signal phases. In order to achieve better system
performance, the proposed approach allows the information on VMS to deviate from the
current status in order to proactively guide drivers toward route choice from the system
perspective. The deviation from the “current” status is constrained by the lower bound
of drivers’ long-term satisfaction rate and the upper bound of the favored traffic signal
operation. Through proactive guidance and coordinated system modeling, the proposed
approach has the potential to achieve better overall system performance.

Essentially, the proposed approach is not constrained by the size and shape of the
road network. However, the growth in network size and complexity would definitely
increase the difficulty of computation and implementation. Certainly, the traffic control
modeling can vary to accommodate the size and complexity of the network, e.g., the
adaptive control algorithm for small or large networks, and the green-band control for a
medium-size network. Among various network shapes, the divergent network with two
route alternatives is a fundamental element of a general road network when considering
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traffic guidance and area-wide signal control. The paper focuses on a divergent network of
medium-size, e.g., no more than 10 intersections on each leg.

Figure 1 conceptually shows the logical architecture of the proposed coordinated
approach. In this framework, we formulate a proactive-coordinated (PC) model predictive
controller to optimize coordinated strategies of traffic signal and VMS guidance for the
divergent network. The proposed approach aims to identify strategies for improved
performance but without any guarantee and any relationship to the unknown global optima.
In this framework, the optimization process is closely integrated with the estimation of
driver behavior.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 19 
 

 

Essentially, the proposed approach is not constrained by the size and shape of the 
road network. However, the growth in network size and complexity would definitely in-
crease the difficulty of computation and implementation. Certainly, the traffic control 
modeling can vary to accommodate the size and complexity of the network, e.g., the adap-
tive control algorithm for small or large networks, and the green-band control for a me-
dium-size network. Among various network shapes, the divergent network with two 
route alternatives is a fundamental element of a general road network when considering 
traffic guidance and area-wide signal control. The paper focuses on a divergent network 
of medium-size, e.g., no more than 10 intersections on each leg. 

Figure 1 conceptually shows the logical architecture of the proposed coordinated ap-
proach. In this framework, we formulate a proactive-coordinated (PC) model predictive 
controller to optimize coordinated strategies of traffic signal and VMS guidance for the 
divergent network. The proposed approach aims to identify strategies for improved per-
formance but without any guarantee and any relationship to the unknown global optima. 
In this framework, the optimization process is closely integrated with the estimation of 
driver behavior. 

The control approach consists of the following four components: 
 Control input: The system utilizes traffic demand, and traffic states as the control 

input. 
 Optimizer: The optimizer can accomplish the joint optimization of the proactive sig-

nal operation and VMS guidance strategies. The objective function of the optimizer 
is to minimize the total travel time of all drivers in the divergent network. 

 Flow split estimation and traffic state prediction: The general route choice behavior 
can be estimated on the basis of a given VMS strategy. The route choice behavior 
model together with the compliance behavior model can estimate the flow split rate, 
which can further impact traffic states. The change in traffic states will result in a 
different satisfaction rate. Correspondingly, the previous compliance rate will be up-
dated. An equilibrium and convergence process exists, as shown on the right side of 
Figure 1. 

 Control output: The controlled traffic states are sent back to the optimizer to evaluate 
the objective function. Improved coordinated strategies are obtained at the end of the 
entire control process. 

 
Figure 1. Proposed logical architecture. 
Figure 1. Proposed logical architecture.

The control approach consists of the following four components:

• Control input: The system utilizes traffic demand, and traffic states as the control input.
• Optimizer: The optimizer can accomplish the joint optimization of the proactive signal

operation and VMS guidance strategies. The objective function of the optimizer is to
minimize the total travel time of all drivers in the divergent network.

• Flow split estimation and traffic state prediction: The general route choice behavior can
be estimated on the basis of a given VMS strategy. The route choice behavior model
together with the compliance behavior model can estimate the flow split rate, which
can further impact traffic states. The change in traffic states will result in a different
satisfaction rate. Correspondingly, the previous compliance rate will be updated. An
equilibrium and convergence process exists, as shown on the right side of Figure 1.

• Control output: The controlled traffic states are sent back to the optimizer to evaluate
the objective function. Improved coordinated strategies are obtained at the end of the
entire control process.

2.2. Route Choice Behavior Model

The proposed route choice behavior model is to estimate how travelers make their
route choices under the information provision by the VMS at the divergent location. As
shown in Figure 1, the behavior model consists of three modules: en-route route choice
module, satisfaction degree module, and learning process module. In this study, all of the
modules are calibrated based on the data from the SP survey for the divergent network.
In a real network with a realistic number of possible OD pairs and route choices, a route
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guidance system would provide travelers with information for multiple alternative routes.
Since the divergent network is a classical and simplified component of a complicated
network, this study chooses the divergent network for a theoretical analysis. Such analysis
results can be a reference for further studies on a more complicated network representation.

2.2.1. Stated Preference Survey

Graphic VMS panels release information with a “congestion scale”, i.e., a graphic road
network with different colors. To illustrate, red represents that the average speed is lower
than 20 km/h, yellow represents that the average speed is 20 km/h through 40 km/h, and
green represents that the average speed is higher than 40 km/h. Mao et al. [33] conducted
an SP survey to investigate driver diversion behavior under VMS guidance and explore
the driver’s satisfaction degree in VMS. In that research, ratios of red, yellow, and green
segments on a certain route were utilized as a measure.

Driver attributes are classified into the following categories:

• Sociodemographic attributes of drivers: Age, gender, personal income, household
income, driving years, average annual mileage, educational level, occupation, and
car type.

• Preference information: Diversion behavior of drivers to VMS; satisfaction degree of
drivers in VMS compared with their actual experience.

• Dynamic graphics information on VMS panels (Figure 2): Lengths of the pre-trip route
(AB) and detour route (ACDB); color ratios of green, yellow, and red ratios on each
route; diversion advice.
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The notations for behavior modeling are listed in Table 1.

Table 1. Notations used in driver behavior models.

Notation Explanation

l1 distance of the route A-B
l2 distance of the route A-C-D-B

RLR1 red segment ratio of the route A-B
RLR2 red segment ratio of the route A-C-D-B

δsuggestion
1 denotes that the recommended route is A-C-D-B;

0 denotes that the recommended route is A-B

∆RLR
differences between displayed RLR and realized RLR for certain route:

(+): realized RLR is bigger than displayed RLR;
(−): realized RLR is smaller than displayed RLR

Vn utility of individual n choosing the alternative route
Un utility of individual n satisfied with traffic guidance
Pn probability that individual n chooses an alternative route
Sn satisfaction degree that individual n is satisfied with the VMS guidance
CR guidance compliance rate
SR satisfaction rate

2.2.2. En-Route Route Choice Module

The drivers’ response to VMS was represented using a binary Logit model with
two choices (0/1). In this model, ‘0’ indicates sticking to the original route, while ‘1’
indicates taking a diversion. Logistic regression was employed to analyze the data related
to driver diversions. As previously mentioned, many factors influence route switching and
compliance behavior, including traffic states displayed on VMS panels.

In this study, we extracted the following six variables: red segment ratio on route A-B,
yellow segment ratio on route A-B, red segment ratio on route A-C-D-B, length of route
A-B, length of route A-C-D-B, and diversion suggestion.

We utilized the responses from drivers who paid attention to the VMS-based informa-
tion. Before conducting the regression analysis, a Chi-square test was performed, and a
significance analysis was also carried out. The parameter calibration results of the binary
Logit model are presented in Table 2. It is worth noting that the estimated coefficients
of these variables were found to be statistically significant at the 95% confidence level.
The likelihood of diversion was positively affected by the length of route AB, diversion
suggestion, and red segment ratio of route AB, whereas it was negatively affected by the
length of route ACDB and red segment ratio on route ACDB.

Table 2. Binary Logit model for the en-route route choice.

Variables Coefficient Estimates Standard Error Significance

l1 α1 0.965 0.096 0.001
l2 α2 −0.439 0.076 0.001

RLR1 α3 3.510 0.606 0.000
RLR2 α4 −6.240 1.371 0.000

δsuggestion α5 0.431 0.211 0.000
Constant α0 −3.032 1.314 0.021

Thus, the utility function (Vn) of the driver n in choosing the alternative route is
formulated as

Vn = α0 + α1 · l1 + α2 · l2 + α3 · RLR1 + α4 · RLR2 + α5 · δsuggestion (1)
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The probability (Pn) for individual n to choose the alternative route (divert) can be
given by

Pn =
exp(Vn)

1 + exp(Vn)
(2)

2.2.3. Satisfaction Degree Module

The satisfaction degree reflects a driver’s perception of the accuracy or consistency
of a guidance strategy. This degree of satisfaction can be influenced by various factors,
including the personal characteristics of drivers, their travel patterns, and the level of
deviation between the traffic information provided by VMS and the actual traffic conditions
experienced by the driver. In this survey, we developed a questionnaire to assess the level
of satisfaction among drivers. Initially, respondents were inquired about their sociodemo-
graphic characteristics. Subsequently, they were presented with a set of questions related
to their opinions and preferences regarding information services provided through VMS.
Figure 2b illustrates the information conveyed through VMS and the real traffic status.
Respondents provided their satisfaction ratings using a six-point Likert scale. The Likert
scale was chosen to gather substantial data and gain a better understanding of driver
behavior. However, for the sake of simplifying the satisfaction degree model, we converted
the Likert scale into a binary choice. Respondents who selected 3, 4, or 5 were considered
dissatisfied with the VMS service, while those who selected 0, 1, or 2 were considered
satisfied. The satisfaction degree of drivers in the VMS guidance service was modeled by a
binary Logit model. Two options were employed, represented by the values 0 and 1. In
this context, ‘0’ signifies satisfaction with the guidance, while ‘1’ indicates dissatisfaction
with the guidance. We obtained the significant variable, differences in red segment ratio,
which can also be detected by the real-world system. The coefficient, standard error, and
significance are shown in Table 3. Although gender and commute time are also significant
in the satisfaction degree of drivers, we cannot consider it as the input of the controller
because it is impossible for a system to detect such information directly.

Table 3. Binary Logit model for the satisfaction degree of drivers.

Variables Coefficient Estimates Standard Error Significance

∆RLR β1 −8.851 1.332 0.000
Constant β0 2.935 1.019 0.004

Thus, driver n’s utility function (Un) of satisfying with guidance is formulated as

Un = β0 + β1 · ∆RLR (3)

The satisfaction degree (Sn) that individual n is satisfied with the VMS guidance can
be further obtained in the following equation:

Sn =
exp(Un)

1 + exp(Un)
(4)

2.2.4. Learning Process Module

VMS guidance is not obligatory for drivers; it is a voluntary choice for them to follow
or not. The recognition of compliance behavior aims to identify the decisions made by
multiple respondents based on a series of questions regarding their choices as agents. In
this research, we assumed that the compliance behavior of drivers varied according to their
level of satisfaction. Specifically, each driver (referred to as an agent) possesses individual
characteristics and a history of compliance behavior, as shown in Tables 4 and 5. The record
of compliance behavior includes information such as the number of times an agent receives
VMS-based information, the agent’s ID, and the box ID (indicating the compliance status of
drivers) during the i-th round of information provision.
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Table 4. Illustration of agent static information.

Static Information Notation

Agent ID j
Threshold for the number of continuous dissatisfaction Nj
Threshold for the number of continuous incompliance Mj

Threshold for the number of continuous transition Kj

Table 5. Illustration of agent dynamic information.

Dynamic Information Notation

The round of information provision i
Box ID (1, 2, or 3) bi

j
Number of continuous dissatisfaction nj
Number of continuous incompliance mj

Number of continuous transition kj

Figure 3 includes three boxes (i.e., compliance box, in compliance box, and transition
box) that represent the compliance behavior of an agent when he/she receives the VMS-
based guidance information. Their compliance behavior (box ID) changes according to the
following rules:

• If continuous dissatisfaction number nj > Nj, the agent j transitions from compliance
to incompliance status;

• If continuous incompliance number mj > Mj, the agent j transitions from incompliance
to transition status;

• If dissatisfaction occurs during the transition period, the agent j transitions from the
transition to incompliance status;

• If the number of continuous transitions k j > Kj, the agent j transitions from the
transition to compliance status.
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The specific thresholds for these rules were determined based on survey data. As a
result, the compliance rate under a certain satisfaction level can be calculated by considering
a larger number of agents in the analysis.
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2.2.5. Relationship between Satisfaction Rate and Compliance Rate

The compliance rate is a measure that quantifies the proportion of drivers who decide
to rely on the VMS information. When all drivers choose to trust the information, it is
assumed that the route choice follows the Logit model. Conversely, if all drivers become
frustrated with the information and decide not to use it, it is assumed that they will stick to
their experiential or habitual choices instead. Computational experiments were carried out
to investigate and establish the connection between the satisfaction rate and the compliance
rate. Static and dynamic properties of agents in Tables 4 and 5 can be determined based on
SP surveys. As shown in Figure 3, agents learn to adjust their compliance behavior under a
certain satisfaction rate. Given a satisfaction rate SR, the agents who are satisfied with VMS
information are randomly selected for N times in every simulation step. With each random
selection among N, those satisfied agents make their decisions between “compliance” and
“in compliance” following the learning process. Each simulation step generates a minimum,
a maximum and an average compliance rate among N selections. The overall compliance
rate under a given satisfaction rate converges to a certain level. The compliance rate
typically exhibits a positive correlation with the satisfaction rate. When the satisfaction rate
is low, the compliance rate tends to be low as well. Conversely, when the satisfaction rate is
high, the compliance rate approaches 1. This relationship between the compliance rate and
the satisfaction rate can be characterized by the following calibrated polynomial model:

CR = F(SR) = −3.02 · SR4 + 4.4 · SR3 − 0.427 · SR2 + 0.0648 · SR + 0.0018 (5)

2.3. Coordinated Mechanism of Traffic Guidance and Signal Control
2.3.1. Optimization Model

Among most traffic guidance systems in practice, the current detected traffic status
information is displayed on VMS to assist travelers in making their route choice decisions.
It is a reactive strategy because the information provision is not from the perspective of
system optimization. In comparison, the proactive traffic guidance strategy can actively
adjust the information provision within a certain boundary in order to achieve better system
performance. On the other hand, most present traffic signal control systems are independent
of traffic guidance systems. In our proposed approach, the traffic control system can
coordinate with the traffic guidance system for improved flow splits at diverging locations
and timings along each route in considering dynamic traffic demands and behaviors.

The major advantage of the coordinated approach is to improve the system’s per-
formance by proactively guiding travelers through information display and traffic signal
control. In order to deploy the proactive and coordinated strategy, a time-rolling horizon
scheme is proposed as shown in Figure 4. The time-rolling horizon procedure has a pre-
determined planning horizon. From the roll period σ, the coordinated optimizer iteratively
converges to update the signal timing plan and VMS parameters for the time horizon σ + 1.
The time horizon is divided into a roll period and a tail period. In the numerical example,
the time horizon is set as 180 s and the roll period is set as 60 s. The resulting plan is
implemented during the roll period. Thus, VMS and signal timing are optimized for the
next 180 s at a 60-s frequency, and only the first 60 s from the optimized timing plan is
actually implemented.

In order to compare the system performance under various strategies, we design four
representative strategies in this study:

• Reactive-Independent (RI) strategy. The traffic guidance system simply displays the
current traffic status information. While the signal control system adjusts signal
timing based on the upstream detection of traffic flow. This strategy is similar to the
current practice.

• Reactive-Coordinated (RC) strategy. The traffic guidance system only displays the
current traffic status information. The route choice model estimates the dynamic flow
split at the diverging location. Such a flow split is an essential input to the signal
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control system for signal timing optimization. In this sense, the traffic signal control
system is coordinated with the traffic guidance system to optimize signal timings.

• Proactive-Independent (PI) strategy. The traffic guidance system can actively adjust
the information provision by VMS in order to obtain a better split of traffic flow at the
diverging location. While the traffic signal control system does not have any input
from the traffic guidance system but only relies on traffic detection.

• PC strategy. The traffic guidance system can actively adjust the information provision
by VMS. In addition, the traffic control system can coordinate with the traffic guidance
system for improved flow splits at diverging locations along each route considering
dynamic demand and behavior.
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This section considers an optimization-based framework for the strategies, consistent
with driver behavior. The notations and definitions are listed in Table 6.

The optimization problem can be formulated as follows:

min z = ∑
r∈Rw

TTt,r · qt,r (6)
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Table 6. Notations and definitions.

Notations Definitions

Z objective function
TTt,r total travel time on route r ∈ Rw between origin–destination (OD) pair w ∈W

ω penalty parameter
γ weighting parameter in robust control
n number of scenarios considered in robust control
zi objective value under scenario i
Q1 group of drivers who choose route 1
Q2 group of drivers who choose route 2

Ncompliance group of drivers who comply with VMS-based information
Rw set of routes between OD pair w ∈W
qt,r traffic flow rate on route r ∈ Rw at time t
SRt satisfaction rate of VMS information at time t
CRt compliance rate of VMS information service at time t

RLRVMS
i, t ratio of red segments in the VMS panel on route i at time t

YLRVMS
i, t ratio of yellow segments in the VMS panel on route i at time t

RLRi, t estimated ratio of red segments on route i at time t
YLRi, t estimated ratio of yellow segments on route i at time t
δRLR

i,t proactive adjustment of red segment ratio on route i at time t
δYLR

i,t proactive adjustment of yellow segment ratio on route i at time t
η1 disturbance or random component to describe the uncertainty in diversion behavior
η2 disturbance or random component to describe the uncertainty in the satisfaction rate
αi parameters of the driver diversion model
li total length of route i

δsuggestion
dummy variable of diversion advice, i.e., 1 indicates diversion advice on VMS panel,

and 0 indicates no diversion advice
βi parameters of driver satisfaction model

Pj
diversion

probability of diversion for driver j

Pj
satis f action,i

probability of driver j satisfied with VMS service on route i

λ0 experiential split rate
λ1,t split rate of drivers who comply with VMS-based information at time t
λ2,t actual split rate at time t
cj

i, t
cycle time at intersection j on route i at time t

gj
i, t

green split at intersection j on route i at time t
St group of signal control parameters at time t
G traffic state estimation function
F function of the compliance rate with respect to satisfaction rate
f decision function based on the probabilities of different choices

The optimization is subject to:

• Flow conservation constraint

∑
r∈Rw

qt,r = qw
t , ∀w ∈W (7)

• Constraints for the traffic guidance parameters

RLRVMS
2,t = RLR2,t + δRLR

2,t
YLRVMS

2,t = YLR2,t + δYLR
2,t

RLRVMS
1,t = RLR′1,t + δRLR

1,t
YLRVMS

1,t = RLR1,t + δYLR
1,t

δsuggestion ∈ {0, 1}

(8)
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• Estimation of the split rate

τj = α0 + α1 · l1 + α2 · l2 + α3 · RLRVMS
1, t + α4 · RLRVMS

2, t + α5 · δsuggestion, j ∈ Ncompliance

Pj
diversion = eτj

1+eτj + η1, j ∈ Ncompliance

λ1,t = f (Pj
diversion)

λ2,t = λ0(1− CRt) + λ1,t · CRt

(9)

• Constraints for the traffic signal control

St =
{

c1
1,t, . . . , cm

1,t, c1
2,t, . . . , cn

2,t, g1
1,t, . . . , gm

1,t, g1
2,t, . . . , gn

2,t

}
cr,i ∈ (Cmin, Cmax), gr,i ∈ (Gmin, Gmax) ∀r, i

(10)

• Traffic state prediction

TTr
t = G(St, λ2,t, qt,r) ∀r (11)

• Estimation of the satisfaction rate of drivers

∆RLR1,t = RLRActual
1,t − RLRVMS

1,t
∆RLR2,t = RLRActual

2,t − RLRVMS
2,t

τ1
satis f action = β0 + β1 · ∆RLR1,t, j ∈ Ncompliance ∩ j ∈ Q1

τ2
satis f action = β0 + β1 · ∆RLR2,t, j ∈ Ncompliance ∩ j ∈ Q2

Pj
satis f action,1 = e

τ1
satis f action

1+e
τ1
satis f action

, j ∈ Ncompliance ∩ j ∈ Q1

Pj
satis f action,2 = e

τ1
satis f action

1+e
τ1
satis f action

, j ∈ Ncompliance ∩ j ∈ Q2

SRt =
∑ f (Pj

satis f action,1)+∑ f (Pj
satis f action,2)

qt,1+qt,2
+ η2

(12)

• Estimation of the compliance rate of drivers

CRt = F(SRt) (13)

Equation (6) is used to minimize the total travel time from the network level.
Equation (7) is the flow conservation constraint. Equations (8) and (9) are the constraints
of the traffic guidance parameters. Equation (10) indicates the constraints of traffic sig-
nal control. Equation (11) represents the travel time with respect to path flow and sig-
nal control parameters. Considering the differences between VMS-based information
and actual traffic status, we focus on the satisfaction and compliance rates of drivers in
Equations (12) and (13), respectively.

A nonlinear constraint of the satisfaction rate is introduced to ensure a high compliance
rate.

SRt ≥ 85% (14)

In our objective function, we have introduced a penalty function that includes a
penalty coefficient. This coefficient serves as a quantification of how much the satisfaction
constraint is being violated.

min z = ∑
r∈Rw

TTr
t · qt,r + ω ·max(85%− SRt, 0) (15)

where ω ·max(85%− SRt, 0) is the penalty function, and ω is the penalty coefficient.
The compliance rate CRt is used in Equation (9) and computed in Equation (13). Hence,

the fixed-point problem can be resolved through the utilization of the bisection algorithm
in combination with iterative methods.
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In the numerical study, we make use of the proposed driver diversion model (as
indicated by Equations (1) and (2)) in simulations, as a proxy of the real world. For the
behavior-estimation module in the controller, we assume that there exist certain estimation
errors in diversion behavior. Therefore, we add a random error term to the diversion
behavior in the optimization procedure (as indicated in Equation (9)).

2.3.2. Solution Procedure

The optimization problem of coordinated strategies is complicated and difficult to
solve because of the non-convexity of the controller-estimated behavior. The presence
of nonlinear constraints and a combination of both continuous and discrete variables
classify this problem as a typical mixed-integer nonlinear programming (MINP) problem.
We utilize an improved surrogate-based optimization algorithm designed specifically for
MINP. The optimization process is illustrated in Figure 5.
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The optimization procedure is described as follows:

• Step 1. Initial point sampling is conducted with Latin hypercube sampling.
• Step 2. Objective values are calculated on the selected points.
• Step 3. Surrogate modeling is performed (by the radial basis function in this study).
• Step 4. If the stopping criteria have been met, Step 5 is performed; otherwise, a random

sampling strategy is used in the current surrogate model to determine the subsequent
group of points to evaluate, and Step 2 is repeated.

• Step 5. The minimum objective function value of all points in the group is generated
as the final solution.

3. Experimental Results

This experiment explores an innovative approach to traffic management through
a bounded divergent network, comprising VMS and signalized intersections, which is
employed to evaluate the impact of various strategies on network-level performance. The
study considers two scenarios: normal traffic and incidents, and compares various control
strategies. The experiment also addresses the robustness of the proposed approach by
examining its performance under varying levels of estimation errors.
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3.1. Network Setup and Parameter Settings

In the numerical example, a bounded divergent network with one VMS and eight
signalized intersections (square-shaped nodes: 2–9) is designed to test the effect of strategies
on the network-level performance. The network structure is specified in this section, as
illustrated in Figure 6. The road network includes 5 OD pairs (1→10, 11→15, 12→16,
13→17 and 14→18), 26 nodes and 18 road sections (links). For example, links 1, 2, 3, 4, and
5 have a capacity of 3000 veh/h and a free-flow travel time of 30 s. The main demand from
node 1 to node 10 is 4000 veh/h. Given the network layout and initial supply and demand
parameters, a flow split can be determined under the user-equilibrium condition. The flow
split (X:Y) is set as the initial condition for the simulation.
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For simplification, only the cycle length and green splits are considered as the decision
variables for the signal operation. Meanwhile, each signal is under the two-phase control.
The VMS panel is located at the upstream of node 1. On VMS, the display information
includes graphical traffic conditions (represented by red and yellow ratios in the proposed
model) and route choice suggestions. In summary, 16 continuous variables (i.e., cycles
and green splits of eight signalized nodes) and five discrete variables (e.g., red and yellow
ratios, and diversion suggestion) are considered as the control variables of the coordinated
optimizer. It is worth mentioning that the red and yellow ratios cannot be continuous
variables because the traffic status displayed on the VMS panel is segmented.

In order to demonstrate the performance of the proposed PC approach, the numerical
study consists of two scenarios, i.e., normal traffic and incident. In the normal traffic
scenario, the link capacity remains the same value as shown in Table 7. While in the
incident scenario, the capacity of link 3 drops by V for 30 min. In this study, the reduced
capacity is 1500 veh/h. The demand remains at 4000 veh/h. All the aforementioned
four strategies, i.e., PC, PI, RC, and RI (baseline), have been evaluated in a one-hour
simulation study.

The optimization parameters are set as follows. The number of initial points is 43,
which is required to be two times more than the dimensions of the solution space. The
total simulation times are 300. VMS displays non-personalized real-time information on
traffic conditions to drivers encountering them. Unlike an in-vehicle navigation system,
VMS is constrained to display generic information. Moreover, due to the limited ability of
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VMS to display messages, each VMS panel is designed to show traffic states of a divergent
network with one or two possible diversion routes. In this paper, we propose a coordinated
optimization method in such a divergent network. Large-scale networks can be divided
into some sub-networks, and each sub-network is controlled by an optimal controller.
Each controller works on the basis of real-time detection data and estimation of driver
en-route diversion behavior within a sub-network. Additionally, the diversion behavior
model should be further calibrated for specific sub-networks. Therefore, under endemic
recurrent congestion or incident, each controller works separately to improve network-level
performance. While under serious incidents or special events, controllers in the affected
area can work together by controlling the input and output flows of sub-networks to
improve network-level performances.

Table 7. Link capacity and free-flow travel time.

Link Free-Flow Time (s) Capacity (veh/h) Length (m)

1, 2, 4, 5 30 3000 300
3 30 3000–V 300

6,7, 8, 9, 10 30 2000 300
11, 12, 13, 14 30 1000 300
15, 16, 17, 18 30 1000 300

3.2. Optimization Results
3.2.1. Real-Time Traffic Control under Rolling Horizon Framework

Table 8 presents a quantitative analysis of the network-level performance under
the four strategies. Under the normal traffic scenario, the PC control strategy has an
approximate 10% reduction in total travel time in comparison with the traditional strategy,
i.e., the RI strategy. One of the major reasons for the performance improvement is that the
coordinated approach can proactively share the predicted demand information between
the guidance system and the signal control system for their joint optimization. In addition,
the drivers’ satisfaction degree for PC strategy has improved from the baseline of 76% to
95%. Such an improvement together with the system performance demonstrates that the
proposed approach is able to improve the system operation meanwhile keeping the system
trustworthy. The lower satisfaction degree boundary could further improve the system
performance due to the relaxation of the key constraint. In contrast, the lower satisfaction
degree might jeopardize users’ trust and the long-term system performance. A future study
might be able to discover the optimal boundary for users’ satisfaction degrees to balance
the short-term and long-term system performance. Moreover, the RC strategy performs
better than the PI strategy.

Table 8. Network-level performances under various strategies.

Traffic Flow Rate Scenario Results PC RC PI RI (Baseline) Improvement

4000 veh/h
Normal traffic

Total travel time 78.65 83.01 85.27 87.32 9.9%
Satisfaction rate 0.95 0.83 0.93 0.76 20%

Incident
Total travel time 85.97 116.96 95.64 121.54 28.8%
Satisfaction rate 0.89 0.58 0.78 0.74 23.8%

In the incident scenario, the PC strategy has a significant advantage over the baseline
strategies in the network-level performance. The major reason is that the proposed PC
strategy can help the system operation respond to the change in either the dynamic demand
or supply. Moreover, it can help the users to make a decision from the system perspective.
Therefore, the more significant system “change” leads to the more significant advantage of
the proposed PC strategy. The PI strategy works better than the RC strategy. It demonstrates
that the proactive guidance for users in the incident scenario is more meaningful than the
coordination of the guidance and the signal control system from the system perspective.
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3.2.2. Robustness Analysis

The performance of the proposed approach relies on the estimation accuracy of be-
havioral responses, e.g., the compliance rate, the diversion rate, and the flow split. The
robustness analysis is to testify to the performance reliability of the proposed approach
under various levels of estimation errors. In the proposed approach, the estimation of the
diversion rate is the key to deciding the guidance information and signal timings. In this
study, the estimation error of the diversion rate is assumed to follow a normal distribution
with zero mean. The estimation error term is defined as η1 in Equation (9). As shown in
Table 9, the system performance is evaluated under the four cases with standard deviations
of 10%, 20%, 30% and 40%, respectively. With the increment of the standard deviation
of the estimation error, the network-level performance worsens. The total travel time
increases by 6.46% when the standard deviation rises from 10% to 30%. For Case 4, the total
travel time is much longer than those in Cases 1, 2 and 3. The total travel time increases
by 19.14% than Case 1. The proposed approach is reasonably robust with the standard
deviation of the estimation error smaller than 30%. When the standard deviation is 40% or
above, the proposed approach is no longer robust. Therefore, thorough surveys or field
observations are necessary to keep the standard deviation less than 30% and achieve robust
system performance.

Table 9. Network-level performances under various estimation errors.

Case i Standard Deviation of the
Estimation Error Term η1

Total Travel Time (h):
Ti

Difference (%):
Ti−best

best

1 10% 87.32 -
2 20% 90.14 +3.23%
3 30% 92.96 +6.46%
4 40% 104.03 +19.14%

4. Discussion

This study presents a comprehensive evaluation of a novel traffic management ap-
proach, with a focus on network-level performance and driver satisfaction. The research
employs a bounded divergent network featuring one VMS and eight signalized inter-
sections, examining the impact of various strategies under normal traffic and incident
scenarios. The primary findings encompass the advantages of the PC strategy, notably
its ability to significantly reduce total travel time (by approximately 10%) compared to
the traditional RI strategy under normal traffic conditions. Additionally, the PC strategy
demonstrates a remarkable enhancement in driver satisfaction, elevating it from a baseline
of 76% to an impressive 95%. Moreover, the PC strategy outperforms baseline strategies in
incident scenarios, showcasing its adaptability to dynamic changes in demand or supply.

The results underscore the potential of proactive coordination in optimizing traffic
management systems, leading to improved network-level performance and elevated user
satisfaction. The PC strategy’s ability during incidents highlights its effectiveness in han-
dling unexpected disruptions in traffic flow. The implications of this research can extend to
the realm of effective traffic management. Proactive coordination between traffic guidance
and signal control systems can reduce travel times and enhance user satisfaction. The
adaptability of the PC strategy to incident scenarios highlights its potential for bolstering
overall network resilience.

This study has several limitations, including the use of a simplified model that may
not fully capture the complexities of real-world traffic conditions. Additionally, the as-
sumption of estimation errors following a normal distribution with a mean of zero may not
entirely align with practical scenarios. Future research directions include real-world testing
and validation of the proposed approach to assess its efficacy in complex and dynamic
traffic scenarios.
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5. Conclusions

In current traffic management practices, conventional traffic guidance systems pas-
sively relay real-time traffic information through VMS, leaving route choices in the hands
of individual drivers. To enhance overall system performance, we introduce an innovative
approach that proactively guides drivers towards optimal route choices, aligning with
system-level objectives such as minimizing vehicle hours traveled. This proactive guidance
allows for deviations from estimated travel times, subject to the constraints of drivers’
long-term compliance rates and preferred traffic signal operations. The proposed approach
coordinates the traffic guidance system with the signal control system to optimize network-
level performance for all users. The traffic signal control system determines the upper
bounds for information deviation on VMS, while the traffic guidance system offers demand
predictions to inform the traffic signal control system.

In our numerical study, we evaluate four distinct strategies (PC, PI, RC, and RI)
within two scenarios: normal traffic conditions and incidents. The results reveal that the PC
strategy consistently outperforms other strategies, delivering a substantial reduction in total
travel time (approximately 10% reduction in the normal traffic scenario and a remarkable
29% reduction in the incident scenario). This performance improvement is complemented
by a high user satisfaction rate (95%), which is pivotal for maintaining long-term trust in
the system. Thus, the proposed approach not only enhances system operation but also
preserves its trustworthiness. In sum, the significant innovation lies in the introduction of a
proactive approach to traffic management, which actively guides drivers towards optimal
routes, aligning with system-level objectives. This innovation empowers the system to
dynamically adapt to changes in demand or supply while enhancing user satisfaction, thus
preserving the system’s trustworthiness.

For future work, the optimal boundary for users’ satisfaction degrees to balance the
short-term and long-term system performances might be discovered. Moreover, we can
extend the study to a larger network by combining our model of divergent networks
together under certain rules. Special events, such as accidents, and large events with
evolvement characteristics should also be considered. Furthermore, we can take sustainable
factors (e.g., fuel consumption and emission) as part of the optimization objective to address
the crucial traffic environmental issues.
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