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Abstract: We study classification of random sequences of characters selected from a given alphabet
into two classes characterized by distinct character selection probabilities and length distributions.
The classification is based on the sign of the log-likelihood score (LLS) consisting of a random sum and
a random term depending on the length distributions for the two classes. For long sequences selected
from a large alphabet, computing misclassification error rates is not feasible either theoretically or
computationally. To mitigate this problem, we computed limiting distributions for two versions of the
normalized LLS applicable to long sequences whose class-specific length follows a translated negative
binomial distribution (TNBD). The two limiting distributions turned out to be plain or transformed
Erlang distributions. This allowed us to establish the asymptotic accuracy of the likelihood-based
classification of random sequences with TNBD length distributions. Our limit theorem generalizes a
classic theorem on geometric random sums due to Rényi and is closely related to the published results
of V. Korolev and coworkers on negative binomial random sums. As an illustration, we applied
our limit theorem to the classification of DNA sequences contained in the genome of the bacterium
Bacillus subtilis into two classes: protein-coding genes and standard noncoding open reading frames.
We found that TNBDs provide an excellent fit to the length distributions for both classes and that the
limiting distributions capture essential features of the normalized empirical LLS fairly well.

Keywords: Rényi theorem; sequence classification; classification accuracy; random sum; translated
negative binomial distribution; Kullback–Leibler distance; Erlang distribution; protein-coding gene;
open reading frame

MSC: 60F05; 92D20

1. Introduction

This study concerns classification of sequences of characters selected randomly and
independently of each other from a given alphabet of M ≥ 2 characters. The length, N, of
any such sequence is assumed to be a random variable (rv) independent of the sequence
content. Suppose that there are two models of sequence assembly: one where characters
are selected from the alphabet with positive probabilities p(1), p(2), . . . , p(M) and the
sequence length has a certain distribution P (model A), and another where characters are
selected with positive probabilities q(1), q(2), . . . , q(M) and the length has a distribution Q
(model B). The two vectors of character selection probabilities (or equivalently, probability
measures on {1, 2, . . . , M}) are assumed to be distinct and will be denoted by P and Q.
Then, the model-generating probabilities are PA = P × P and PB = Q×Q.

The sequence classification problem consists of deciding, for a given sequence of
characters C = (C1, C2, . . . , Cn), which model generated this sequence. To simplify our
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notation, in what follows we will adopt the following convention: if Ck is the nk-th character
of the alphabet, then we will write p(Ck) = p(nk) and likewise q(Ck) = q(nk), 1 ≤ k ≤ n.
A natural approach to solving the classification problem is to compare the likelihoods of a
sequence C associated with models A and B:

LA(C) = P(n)Πn
k=1 p(Ck) and LB(C) = Q(n)Πn

k=1q(Ck). (1)

Specifically, if LA(C) > LB(C), then we decide that sequence C is generated by model
A, while in the case where LB(C) > LA(C), the sequence C is attributed to model B (in
the unlikely case where LA(C) = LB(C), the sequence C is not assigned to any model).
Equivalently, denoting by L(C) the log-likelihood

L(C) = log
LA(C)
LB(C)

, (2)

we classify sequence C as being generated by model A if L(C) > 0 and by model B if
L(C) < 0.

Formulas (1) and (2) suggest that the log-likelihood ratio for a randomly and indepen-
dently generated sequence (C1, C2, . . . , CN) of random length N is a rv

X = log
P(N)

Q(N)
+

N

∑
n=1

log
p(Cn)

q(Cn)
= f (N) + U, (3)

where f (N) = log[P(N)/Q(N)] and

U =
N

∑
n=1

Xn (4)

is a random sum generated by independent and identically distributed (iid) rvs

Xn = log
p(Cn)

q(Cn)
.

The expected value of rvs Xn for sequences generated by models P and Q is given by

µP =
M

∑
m=1

p(m) log
p(m)

q(m)
and µQ =

M

∑
m=1

q(m) log
p(m)

q(m)
. (5)

It follows from Jensen’s inequality [1] that µQ < 0, hence also µP > 0. Note that µP repre-
sents the Kullback–Leibler distance [2] between distributions P and Q : µP = dKL(P ,Q)
and similarly µQ = −dKL(Q,P). We denote by σ2

P and σ2
Q the corresponding variances.

An alternative way of looking at rv U arises from the following observation. For 1 ≤
m ≤ M, denote by νm the number of occurrences of the m-th letter of the alphabet in a
random sequence of length N. Then, ν1 + ν2 + . . . + νM = N and

U =
M

∑
m=1

νm log
p(m)

q(m)
. (6)

Suppose the sequence is generated by model A. Note that, conditional on N = n, the ran-
dom vector (ν1, ν2, . . . , νM) follows the multinomial distribution Mult(n; p(1), p(2), . . . p(M)).
In particular, the distribution of rv νm is binomial B(n, p(m)), 1 ≤ m ≤ M. Then, from
Formulas (4)–(6), we obtain the following expression for the expected value of rv U under
model A:

EAU =
∞

∑
n=1

P(N = n)
M

∑
m=1

np(m) log
p(m)

q(m)
= µPEPN. (7)
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Similarly, under model B we have EBU = µQEQN. Thus, rv U is closely related to the
multinomial process with M outcomes and a random number of replications. The above
formulas for the expectation of rv U under models A and B can also be obtained directly by
applying Wald’s identity [3] to the random sum (4).

Computation of various measures of classification accuracy including important mis-
classification error rates PA(X ≤ 0) and PB(X ≥ 0) requires the knowledge of the distribu-
tion of the log-likelihood score X under models A and B. However, in applications with a
large alphabet size, computing these distributions for long sequences, let alone sequences of
variable length, in closed form is a daunting task. This motivates studying approximations
to the model-specific distributions of rv X arising for very long sequences. In this article,
such approximations will be derived from the asymptotic distributions of two normalized
versions of rv X,

Y =
X
EX

and Z =
X−EX

σ(X)
, (8)

where, as usual, EX is the expected value of rv X and σ(X) is its standard deviation under
a given model of sequence assembly. The two asymptotic distributions are identified in
Theorem 1 (see below). This theorem implies (see Section 4) that the two misclassification
error rates for very long sequences are negligible, i.e., that the likelihood-based classification
rule is asymptotically accurate (Theorem 2).

As an illustration of our results, we consider in Section 5 the classification of sequences
of triplets of nucleotides contained in the deoxyribonucleic acid (DNA) of a given organism
as protein-coding genes or noncoding open reading frames (ORFs). This classification
problem is central in computational gene finding for newly sequenced or incompletely
annotated genomes [4–6]. One of the most powerful tools used for this purpose is Hidden
Markov models, see, e.g., [5–8]. In this setting, triplets of nucleotides (or individual
nucleotides) generated by the same hidden state are emitted independently and have a
random length, i.e., they meet our model assumptions.

In many cases of practical interest, sequences of characters must be sufficiently long.
In the case of protein-coding genes, this is due to the fact that, in order to perform various
biological functions, e.g., to serve as enzymes, proteins must have certain structural features
that can only arise if they contain sufficiently many amino acids. Let ` ≥ 1 be the minimum
allowed length, then N ≥ ` with probability 1.

The limiting distribution of rvs Y and Z will be obtained in the case where the sequence
length in models A and B follows respective translated negative binomial distributions
(TNBDs) NB(a, p) + α and NB(b, q) + β, where 0 < p, q < 1 and a, b, α, β are integers
such that a, b ≥ 1 and α, β ≥ 0. Recall that there are two closely related kinds of negative
binomial distributions NB(r, p). The first is the distribution of the “waiting time” to r-th
“success” in a sequence of Bernoulli trials with the success probability p including the first r
successes, while the second is the distribution of the number of “failures" preceding the
r-th success. The latter distribution has a natural extension, sometimes called the Pólia
distribution, for any real number r > 0 [9]. For compelling biological reasons associated
with the structure of genes and elucidated in Section 5, see also [10], we will be modeling
the length of DNA segments using negative binomial distributions NB(r, p) of the first kind
with integer r ≥ 1. Thus,

P(N = n) =
(

n− α− 1
a− 1

)
pa(1− p)n−α−a, n ≥ a + α, (9a)

and similarly

Q(N = n) =
(

n− β− 1
b− 1

)
qb(1− q)n−β−b, n ≥ b + β. (9b)
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In what follows, the minimum sequence length under the two models will be assumed
the same:

` = a + α = b + β. (10)

Parameters a, b, α, β of TNBDs, related to each other through Formula (10), will be
assumed to be fixed. Therefore, limiting distributions of rvs Y and Z for very long sequences
under models A and B will be computed under the conditions p→ 0 and q→ 0.

Our main goal in Sections 2 and 3 is to prove the following limit theorem. To formulate
it, recall that the Erlang distribution E(a, λ) is a gamma distribution G(a, λ) with an integer
shape parameter a. Also, if S is a probability distribution on R and τ ∈ R, then S + τ
denotes the translated distribution and −S stands for the distribution S reflected about
the origin.

Theorem 1. Suppose the sequence length distributions under models A and B are P = NB(a, p) +
α and Q = NB(b, q) + β, respectively, with a + α = b + β = `.

(i) If p, q → 0 in such a way that p log q → 0, then under model A, rvs Y and Z converge in
distribution to E(a, a) and E(a,

√
a)−

√
a, respectively;

(ii) If p, q → 0 in such a way that q log p → 0, then under model B, rvs Y and Z converge in
distribution to E(b, b) and

√
b− E(b,

√
b), respectively.

In the case where rv X is just the random sum U, see Formula (4), the limit theorem
for plain (untranslated) negative binomial distributions was known previously. Specifically,
for a = 1, the fact that the limiting distribution of rv Y is Exp(1) represents a classic
theorem due to Rényi [11], see also [12]. A generalization of Rényi’s theorem to negative
binomial distributions NB(r, p) of the second kind with arbitrary r > 0 was obtained by
Korolev and Zeifman [13] based on an estimate of the Zolotarev distance [14] between
the distributions of the normalized random sum U and E(r, r); for a review of relevant
results and methodology, see the article by Korolev [9] and references therein. Although it
is probably possible to prove Theorem 1 by reduction to the known limit theorems for the
normalized random sum U, we here prefer, for greater insight and the reader’s convenience,
to give a direct, self-contained, and fairly elementary proof of Theorem 1. In particular,
the proof clearly demonstrates that conditions p log q → 0 and q log p → 0 in Theorem 1
make the term f (N) in (3) negligible in the limit. The meaning of these conditions is that
the expected length of random sequences generated by one model cannot tend to infinity
exponentially faster than for sequences generated by the other model.

The article is organized as follows. In Section 2, we study the asymptotic behavior of
the expected value and variance of rv X for long sequences generated by models A or B
under the conditions of Theorem 1. Section 3 delivers the proof of Theorem 1. In Section 4,
we show that, under the conditions of Theorem 1, the likelihood-based classification of
random sequences is asymptotically accurate. In Section 5, we delve into genomics and
describe in detail the problem of classification of DNA sequences as protein-coding genes
or noncoding ORFs using the genome of bacterium Bacillus subtilis as an example. In the
same section, we estimate the sequence length distributions from data and make a visual
comparison of the empirical and theoretical distributions of rvs Y and Z. Finally, in Section 6,
we discuss our findings from mathematical and bioinformatics perspectives.

2. Asymptotic Behavior of the Expectation and Variance of the Log-Likelihood Score

Our goal in this section is to establish the following result:

Proposition 1. Let character selection probabilities under models A and B be governed by the
respective probability distributionsP andQwith expected values µP and µQ. Also, let the respective
sequence length distributions under models A and B be P = NB(a, p) + α and Q = NB(b, q) + β
with a + α = b + β = `. Suppose that p, q→ 0. Then, for the expected value and variance of the
log-likelihood score X under models A and B, we have the following asymptotic relations:
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(i) If p log q→ 0, then p EAX → aµP and p2VarAX → aµ2
P ;

(ii) If q log p→ 0, then q EBX → bµQ and q2VarBX → bµ2
Q.

The following two lemmas will be instrumental in proving Proposition 1.

Lemma 1. Let ` ∈ Z+ and {Pp(k) : k ≥ `}, 0 < p < 1, be a family of probability distributions
on {`, `+ 1, `+ 2, . . . }. Suppose there is a constant C > 0 independent of p such that p EPp ≤ C
for all p. Then, for any sequence {c(j)}∞

j=0 such that

c(j)
j
→ 0 as j→ ∞, (11)

we have

p
∞

∑
j=0

c(j)Pp(j + `)→ 0 as p→ 0. (12)

Proof. We may assume without loss of generality that c(j) ≥ 0 for all j ≥ 0. Fix ε > 0. In
view of (11), there exists K ≥ 0, which we will also fix, such that c(j) ≤ jε for all j > K. Let
MK = max{c(j) : 0 ≤ j ≤ K}. Then,

p
∞

∑
j=0

c(j)Pp(j + `) = p
K

∑
j=0

c(j)Pp(j + `) + p
∞

∑
j=K+1

c(j)Pp(j + `)

≤ pMK

K

∑
j=0

Pp(j + `) + εp
∞

∑
j=K+1

jPp(j + `)

≤ pMK + εp
∞

∑
j=K+1

(j + `)Pp(j + `) ≤ pMK + εp EPp ≤ pMK + Cε.

Clearly, pMK ≤ ε for all sufficiently small p. Therefore, for such p, we have

p
∞

∑
j=0

c(j)Pp(j + `) ≤ (C + 1)ε.

The second lemma concerns the asymptotic behavior of the Kullback–Leibler distance
dKL(P, Q) between two TNBDs.

Lemma 2. Let ` ∈ Z+, P = NB(a, p) + α and Q = NB(b, q) + β with a + α = b + β = `.
Suppose that p, q→ 0 in such a way that p log q→ 0. Then, p dKL(P, Q)→ 0.

Proof. We have

dKL(P, Q) =
∞

∑
n=`

P(n) log
P(n)
Q(n)

=
∞

∑
j=0

P(j + `) log
P(j + `)

Q(j + `)
. (13)

In view of Formulas (9),

P(j + `)

Q(j + `)
=

(
j + a− 1

a− 1

)
pa(1− p)j(

j + b− 1
b− 1

)
qb(1− q)j
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independently of `, so that

log
P(j + `)

Q(j + `)
= a log p− b log q + j log

1− p
1− q

+ c(j), (14)

where the sequence

c(j) = log

(
j + a− 1

a− 1

)
(

j + b− 1
b− 1

) , j ≥ 0, (15)

clearly has property (11). From (13) and (14), we conclude that

dKL(P, Q) = a log p− b log q + log
1− p
1− q

∞

∑
j=0

jP(j + `) +
∞

∑
j=0

c(j)P(j + `).

Recall that the expected value of the distribution NB(r, p) is r/p. Together with (10),
this implies

∞

∑
j=0

jP(j + `) =
∞

∑
j=0

(j + `)P(j + `)− ` =
a
p
+ α− ` = a

(
1
p
− 1
)

. (16)

Therefore,

dKL(P, Q) = a log p− b log q + a
(

1
p
− 1
)

log
1− p
1− q

+
∞

∑
j=0

c(j)P(j + `). (17)

We now apply Lemma 1 to the family of TNBDs Pp = NB(a, p) + α, 0 < p < 1, and
the sequence {c(j)}∞

j=0 given by (15). Note that the assumption of Lemma 1 regarding
distributions Pp is met because p EPp = a + αp ≤ a + α = ` for all p. Therefore, using (12),
we infer from (17) that if

p, q→ 0 in such a way that p log q→ 0, (18)

then p dKL(P, Q)→ 0, which completes the proof of Lemma 2.

Remark 1. A similar proof would show that if p, q → 0 in such a way that q log p → 0, then
q dKL(Q, P)→ 0.

Proof. We now proceed to proving part (i) of Proposition 1 assuming that conditions (18)
are met. Recall that the expected value µP and variance σ2

P of the TNBD (9a) are given by
µP = a/p + α and σ2

P = a(1− p)/p2. In view of (3) and (7), we find that

EAX = dKL(P, Q) + µP

(
a
p
+ α

)
. (19)

Then, according to Lemma 2, we have p EAX → aµP .
We turn to the asymptotic behavior of the variance of the log-likelihood score X

under model A. As a reminder, X = f (N) + U, where f (N) = log[P(N)/Q(N)] and
U = X1 + X2 + . . . + XN is a random sum, see (4). Then, for sequences generated by
model A, we have

VarA(X) = VarP[ f (N)] + VarP (U) + 2CovA[ f (N), U]. (20)

We begin with the term VarP[ f (N)] :

VarP[ f (N)] = EP f 2(N)− [EP f (N)]2 ≤ EP f 2(N). (21)
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Using the inequality (x + y + z)2 ≤ 3(x2 + y2 + z2), we find on account of (14) that

EP f 2(N) =
∞

∑
j=0

P(j + `) log2 P(j + `)

Q(j + `)
≤ 3 (a log p− b log q)2

+3 log2 1− p
1− q

∞

∑
j=0

j2P(j + `) + 3
∞

∑
j=0

c2(j)P(j + `). (22)

For the first term after the inequality sign in (22), we have, under the conditions in (18),
p2(a log p− b log q)2 → 0. Regarding the second term, we first estimate the second moment,

M2(P) =
∞

∑
j=0

(j + `)2P(j + `),

of the TNBD P = NB(a, p) + α as follows:

M2(P) =
a(1− p)

p2 +

(
a
p
+ α

)2
≤ a + (a + α)2

p2 =
a + `2

p2 .

Therefore,

p2 log2 1− p
1− q

∞

∑
j=0

j2P(j + `) ≤ p2 log2 1− p
1− q

∞

∑
j=0

(j + `)2P(j + `)

≤ (a + `2) log2 1− p
1− q

→ 0 as p, q→ 0.

Next, since c2(j)/j→ 0 as j→ ∞, we conclude from Lemma 1 that

p
∞

∑
j=0

c2(j)P(j + `)→ 0.

Combining the above limit relations for the three terms in Formula (22), we obtain p2EP f 2(N)
→ 0, which, in view of (21), implies

p2VarP[ f (N)]→ 0. (23)

We now focus on the second term in (20). According to the formula for the variance of
a random sum [3],

VarP (U) = σ2
P EPN + µ2

P VarP(N) =

(
a
p
+ α

)
σ2
P +

a(1− p)
p2 µ2

P ,

then
p2VarP (U)→ aµ2

P as p→ 0. (24)

Finally, for the third term in (20), we obtain by the Cauchy–Schwarz inequality

p2 | CovA[ f (N), U] | ≤
√

p2VarP[ f (N)]
√

p2VarP (U).

It follows from (23) and (24) that p2CovA[ f (N), U]→ 0.
In summary, Formula (20) and the limit relations for its terms yield p2VarAX → aµ2

P .
To prove part (ii) of Proposition 1, notice that, in the case of model B, Formula (19)

takes on the form

EBX = µQ

(
b
q
+ β

)
− dKL(Q, P),
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which implies that if p, q→ 0 and q log p→ 0, then q EBX → bµQ. The proof of the limit
relation for the variance of rv X under model B is identical to that for model A.

Remark 2. Asymptotic formulas for the expected value of rv X in Proposition 1 hold for any
sequence of iid rvs (Xn) with finite expectation and, similarly, asymptotic formulas for the variance
of rv X are valid for any such sequence of rvs with a finite second moment.

3. Proof of Theorem 1

Because models A and B can be treated similarly, we only prove Theorem 1 for model A.
As a preliminary, we compute the characteristic function (ch. f.) of rvs X and Y = X/EAX.
To compute the ch. f. of rv X, denote by ϕP the ch. f. of rvs Xn for sequences generated by
model A. Conditioning on rv N and using its independence of rvs X1, X2, . . . , we find that

ΦX(s) = EAeisX = EAeis[ f (N)+U] =
∞

∑
n=`

P(n)eis log[P(n)/Q(n)] EP eis(X1+X2+. . . +Xn)

=
∞

∑
n=`

P(n)eis log[P(n)/Q(n)]ϕn
P (s). (25)

Also, for the ch. f. of rv Y, we have

ΦY(t) = EAeitY = ΦX(t/EAX). (26)

The following result shows that the presence of the exponential factor eis log[P(n)/Q(n)]

in (25) does not affect the asymptotic behavior of ΦX(t/EAX).

Lemma 3. Under the conditions in (18),

ΦX(t/EAX)−
∞

∑
n=`

P(n)ϕn
P (t/EAX)→ 0 , t ∈ R.

Proof. Recall that | ϕP (s) | ≤ 1 for all s ∈ R. Using the inequality | eix − 1 | ≤ | x |, x ∈ R,
we obtain in view of (25)

| ΦX(s)−
∞

∑
n=`

P(n)ϕn
P (s) | = |

∞

∑
n=`

P(n)ϕn
P (s)

(
eis log[P(n)/Q(n)] − 1

)
|

≤
∞

∑
n=`

P(n) | eis log[P(n)/Q(n)] − 1 | ≤ | s |
∞

∑
n=`

P(n) | log
P(n)
Q(n)

| .

We set here s = t/EAX and invoke (14) and (16) to find that

| ΦX(t/EAX)−
∞

∑
n=`

P(n)ϕn
P (t/EAX) |

≤ | t |
p EAX

[
ap | log p | + bp | log q | + a(1− p) | log

1− p
1− q

| + Sp

]
, (27)

where

Sp = p
∞

∑
j=0
| c(j) | P(j + `)

and sequence {c(j)} is defined by (15). By Lemma 1, we have Sp → 0 as p → 0. Also,
in view of Proposition 1,under the conditions in (18),

p EAX → aµP > 0. (28)
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The conclusion of Lemma 3 now follows immediately from (27).

Next, we prove Theorem 1 starting with the limiting distribution of rv Y. To identify
the latter, we have to find the limit of the ch. f. of rv Y given by (26). According to Lemma 3,
we only have to compute the limit of the function

Ω(s) =
∞

∑
n=`

P(n)ϕn
P (s) = ΨP[ϕP (s)]

evaluated at s = t/EAX, where

ΨP(z) =
∞

∑
n=`

P(n)zn = zα

[
pz

1− (1− p)z

]a
, | z | < 1

1− p
,

is the probability generating function of the TNBD P = N(a, p) + α.
Since the distribution of rvs Xn under model P has a finite first moment, we can use

the first-order Taylor expansion of its ch. f.:

ϕP (s) = 1 + ϕ
′
P (0)s + sρ(s) = 1 + iµP s + sρ(s),

where ρ(s)→ 0 as s→ 0. Then,

Ω(s) = [ϕP (s)]α
[

pϕP (s)
1− (1− p)ϕP (s)

]a

= [1 + iµP s + sρ(s)]α
[

p(1 + iµP s + sρ(s))
1− (1− p)(1 + iµP s + sρ(s))

]a

= [1 + iµP s + sρ(s)]α
[

1 + iµP s + sρ(s)
1− (1− p)(iµP + ρ(s))s/p

]a
.

Setting here s = t/EAX, we find, due to (28), that under the conditions in (18), s/p has a
finite limit t/(aµP ), which implies that s→ 0. Therefore, we conclude from (29) that

Ω(t/EAX)→
(

1− it
a

)−a
.

Thus, by Lemma 3, we also have

ΦY(t)→
(

1− it
a

)−a
. (29)

This limiting function represents the ch. f. of the Erlang distribution E(a, a).
To find the limiting distribution of rv Z under model A, notice that in view of (8)

Z = k(X)(Y− 1), (30)

where k(X) = EAX/σA(X). By Proposition 1, under the conditions in (18)

k(X)→ aµP/(
√

aµP ) =
√

a. (31)

Therefore, from (30)–(32),

ΦZ(t) = e−ik(X)tΦY[k(X)t]→ e−i
√

a t
(

1− it√
a

)−a
.

Thus, the limiting distribution of rv Z under model A is the Erlang distribution E(a,
√

a)
translated by

√
a to the left, or symbolically E(a,

√
a)−

√
a.
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The limiting ch. f. for rv Y under model B can be computed along similar lines. In this
case, one has to take into account that µQ < 0, which brings about a change of the sign
in the analogs of formulas (28) and (32). As a result, under conditions p, q → 0 and
q log p→ 0,

ΦY(t)→
(

1− it
b

)−b
and ΦZ(t)→ ei

√
b t
(

1 +
it√

b

)−b
.

Therefore, the limiting distributions of rvs Y and Z are, respectively, the Erlang distribu-
tion E(b, b) and the reflected Erlang distribution E(b,

√
b), translated by

√
b to the right,

or symbolically
√

b− E(b,
√

b).

Remark 3. Theorem 1 holds for any sequence (Xn) of iid rvs with a finite second moment that has
a positive expected value under model A and a negative expected value under model B.

Remark 4. It follows from (8) that, under model A, the distribution of rv X can be approximated
by either an Erlang distribution E(a, λ) with λ = aEAX or by a transformed Erlang distribution
E(a, γ) + τ with γ =

√
a σA(X) and τ = EAX −

√
a σA(X). A similar remark also holds for

model B.

4. The Accuracy of the Likelihood-Based Classification of Random Sequences

Among the many measures of classification accuracy, perhaps the most informative
ones are misclassification error rates PA(X ≤ 0) and PB(X ≥ 0). The first of them represents
the probability that a sequence generated by model A is not assigned to this model by the
classification decision rule, i.e., it is either assigned to model B or not assigned to any model.
A similar interpretation holds for the other error rate. An important question is whether,
for very long sequences, the classification produces the correct result with a probability
approaching 1; equivalently, this means that both misclassification error rates approach 0.
We will call such a classification asymptotically accurate. The following statement about the
asymptotic accuracy of the likelihood-based classification of random sequences described
in the Introduction follows from Theorem 1.

Theorem 2. Suppose that character selection probabilities P and Q for models A and B are
distinct and that the sequence length distributions under these models are P = NB(a, p) + α
and Q = NB(b, q) + β, respectively, with a + α = b + β = `. If p, q → 0 in such a way that
p log q→ 0 and q log p→ 0, then the likelihood-based classification of such random sequences is
asymptotically accurate.

Proof. It follows from (28) that if p, q and p log q are all sufficiently small, then EAX > 0.
Therefore, in view of Theorem 1 and due to the fact that the limiting distribution E(a, a)
does not have an atom at 0, we obtain

PA(X ≤ 0) = PA

(
X

EAX
≤ 0

)
→ PA(V ≤ 0) = 0,

where V is a rv with Erlang distribution E(a, a). Similarly, if p, q and q log p are all suffi-
ciently small, then EBX < 0. Using Theorem 1, we conclude that

PB(X ≥ 0) = PB

(
X

EBX
≤ 0

)
→ PB(W ≤ 0) = 0,

where W is a rv with Erlang distribution E(b, b).

Recall that the meaning of the assumptions of Theorem 2 related to parameters p
and q is that the expected length of long sequences generated by either model cannot be
exponentially larger than that for sequences generated by the other model.
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5. An Application to Genomics: Classification of DNA Sequences as Protein-Coding
or Noncoding

In this section, we apply Theorem 1 to the classification of DNA sequences of bacterium
Bacillus subtilis strain 168 as protein-coding or noncoding. Bacillus subtilis is a model
bacterial organism with a well-annotated genome [15], which was extracted from the open
source National Center for Biotechnology Information (NCBI) database (https://www.ncbi.
nlm.nih.gov/nuccore/AF012532.1) accessed on 10 October 2023.

The annotated list of Bacillus subtilis genes is found at https://www.ncbi.nlm.nih.gov/
genome/browse/#!/proteins/665/300274%7CBacillus%20subtilis%20subsp.%20subtilis%
20str.%20168/chromosome/, accessed on 21 August 2023.

5.1. Background

Recall that (a) genetic information stored in the DNA can be represented as a sequence
of nucleotides, A, C, T, G (adenine, cytosine, guanine, and thymine, respectively); (b) a
protein is a sequence of amino acids; (c) each amino acid is encoded by one or several (up
to six) triplets of DNA nucleotides, called codons; (d) a protein-coding gene is a sequence of
codons encoding a protein; (e) the first codon of a gene is a START codon (typically ATG,
encoding the amino acid methionine) signaling the start of transcription; (f) every gene
is followed by a STOP triplet (TAA, TAG, or TGA) that does not encode an amino acid
and signals the termination of the transcription process; (g) each gene belongs to one of
the two complementary strands of the DNA; (h) genes of many prokaryotic organisms
including all bacteria do not contain noncoding DNA segments, called introns. Thus,
bacterial genes are contiguous sequences of codons starting with a START codon, followed
by one of the three STOP triplets and not containing other in-frame STOP triplets. DNA
sequences with these properties are called open reading frames (ORFs). DNA of various
organisms, including Bacillus subtilis, contain numerous ORFs other than protein-coding
genes. For more information about DNA, codons, genes, ORFs, amino acids, and proteins,
see [16].

In what follows, we compare the Erlang distributions identified in Theorem 1 with
the empirical distributions of the normalized log-likelihood scores Y and Z under models
A and B associated with two respective classes of DNA sequences extracted from the
Bacillus subtilis genome: protein-coding genes and a certain natural class, defined below,
of protein noncoding ORFs. Parameters of these models of DNA sequence assembly were
estimated based on the known membership of Bacillus subtilis ORFs in the two classes.
A similar comparison can be performed for any other well-annotated prokaryotic genome
without introns.

5.2. Protein-Coding Genes and Noncoding Open Reading Frames: Data and Models

The genome of Bacillus subtilis was found to contain no repeated genes or those with
in-frame internal STOP triplets. A peculiar feature of the Bacillus subtilis genome is that only
about 77.5% of its 4237 protein-coding genes begin with the standard START codon ATG.
The vast majority of the remaining protein-coding genes begin with alternative START
codons: TTG (coding for amino acid leucine) or GTG (coding for valine), which occur
in 13% and 9% of all protein-coding genes, respectively. Additionally, 15 Bacillus subtilis
protein-coding genes have nonstandard START codons: CTG encoding leucine and ATT
encoding isoleucine.

To identify all protein noncoding ORFs within the Bacillus subtilis genome, we deleted
all the protein-coding genes from the genome and read the resulting contiguous segments
of nucleotides in the 5

′ → 3
′

direction on the strand to which they belong. If the number, n,
of nucleotides in any such segment was divisible by three then the segment was read in its
natural frame; if n was of the form n = 3k + 1, then the segment was read in two reading
frames (i.e., starting with the first or second nucleotide), while in the case n = 3k + 2, it
was read in three reading frames (i.e., starting with the first, second, or third nucleotide).
From all these reads, sequences of triplets beginning with the main START codon ATG

https://www.ncbi.nlm.nih.gov/nuccore/AF012532.1
https://www.ncbi.nlm.nih.gov/nuccore/AF012532.1
https://www.ncbi.nlm.nih.gov/genome/browse/#!/proteins/665/300274%7CBacillus%20subtilis%20subsp.%20subtilis%20str.%20168/chromosome/
https://www.ncbi.nlm.nih.gov/genome/browse/#!/proteins/665/300274%7CBacillus%20subtilis%20subsp.%20subtilis%20str.%20168/chromosome/
https://www.ncbi.nlm.nih.gov/genome/browse/#!/proteins/665/300274%7CBacillus%20subtilis%20subsp.%20subtilis%20str.%20168/chromosome/
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utilized by Bacillus subtilis, followed by one of the STOP triplets, and not containing other
in-frame STOP triplets were selected. This resulted in 4571 ORFs beginning with the
standard START codon ATG. We will call them standard noncoding ORFs.

Note that some of them may actually represent genes encoding various kinds of RNA.
The following idea, borrowed from [10], allows one to view protein-coding genes and

standard noncoding ORFs as randomly and independently assembled sequences of triplets
of the kind discussed in the Introduction. Recall that any DNA sequence from each of
these two classes is followed by a STOP triplet. Proceeding from any such STOP triplet, we
move backwards adding new nucleotide triplets other than STOP triplets randomly and
independently of each other. The alphabet used for such sequence assembly thus contains
M = 43− 3 = 61 triplets. The character selection probabilities for protein-coding genes and
standard noncoding ORFs can be defined on empirical grounds as the respective frequencies
of the 61 triplets found in all 4237 protein-coding genes and all 4571 standard noncoding
ORFs, see Table 1. Also note that, under our independent model of DNA sequence assembly,
the empirical frequency of a triplet coincides with the maximum likelihood estimate of the
class-specific selection probability for the corresponding character given the data [8,17].
Based on the frequencies reported in Table 1, we found that µP = 0.0709, σP = 0.3575 and
µQ = −0.0791, σQ = 0.4182.

Table 1. Observed frequencies of 61 triplets or codons for the two classes of DNA sequences of the
Bacillus subtilis genome: A (protein-coding genes) and B (standard noncoding ORFs). Triplets are
ordered lexicographically.

Triplets A B Triplets A B

AAA 0.0496 0.0391 CTT 0.0232 0.0207
AAC 0.0172 0.0158 GAA 0.0493 0.0256
AAG 0.0211 0.0221 GAC 0.0186 0.0121
AAT 0.0223 0.0233 GAG 0.0232 0.0137
ACA 0.0223 0.0185 GAT 0.0332 0.0206
ACC 0.0086 0.0105 GCA 0.0217 0.0168
ACG 0.0145 0.0124 GCC 0.0159 0.0149
ACT 0.0087 0.0102 GCG 0.0202 0.0139
AGA 0.0108 0.0146 GCT 0.0190 0.0178
AGC 0.0142 0.0185 GGA 0.0218 0.0142
AGG 0.0038 0.0113 GGC 0.0235 0.0142
AGT 0.0066 0.0092 GGG 0.0112 0.0091
ATA 0.0094 0.0197 GGT 0.0127 0.0096
ATC 0.0271 0.0228 GTA 0.0134 0.0112
ATG 0.0271 0.0413 GTC 0.0174 0.0131
ATT 0.0372 0.0263 GTG 0.0178 0.0118
CAA 0.0197 0.0179 GTT 0.0193 0.0163
CAC 0.0074 0.0094 TAC 0.0121 0.0104
CAG 0.0187 0.0171 TAT 0.0228 0.0185
CAT 0.0153 0.0172 TCA 0.0148 0.0219
CCA 0.0070 0.0111 TCC 0.0080 0.0149
CCC 0.0033 0.0096 TCG 0.0063 0.0119
CCG 0.0159 0.0161 TCT 0.0129 0.0174
CCT 0.0105 0.0133 TGC 0.0043 0.0143
CGA 0.0040 0.0096 TGG 0.0103 0.0113
CGC 0.0085 0.0111 TGT 0.0036 0.0130
CGG 0.0064 0.0126 TTA 0.0192 0.0177
CGT 0.0074 0.0097 TTC 0.0142 0.0248
CTA 0.0049 0.0065 TTG 0.0155 0.0211
CTC 0.0109 0.0130 TTT 0.0308 0.0382
CTG 0.0233 0.0193

In what follows, models A and B are used for describing DNA sequences representing
protein-coding genes and standard noncoding ORFs, respectively. To specify these models
completely, we need to determine their length distributions. Because the first triplet of any
ORF is a START codon, random sequences anchored by a given STOP triplet and assembled
as described above form a cluster of nested ORFs, each determined by the number, r, of
START codons preceding the STOP triplet, as illustrated in Figure 1. Empirically, we found
that the number r displays substantial variation, see Figure 2, showing the histogram for
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the values of r for all protein-coding genes beginning with the standard START codon ATG
found in the Bacillus subtilis genome. According to our model of DNA sequence assembly,
the length of protein-coding genes and standard noncoding ORFs with a fixed number
r ≥ 1 of START triplets ATG would follow respective negative binomial distributions
NB(r, p) and NB(r, q), where p = 0.0271 and q = 0.0413 are the empirical frequencies
of the START codon ATG for the two respective classes of ORFs, see Table 1. Therefore,
the length distribution for protein-coding genes or standard noncoding ORFs is a mixture of
such negative binomial distributions over all observed values of r, whose relative weights
can also be determined empirically (for protein-coding genes with the START codon ATG,
the absolute weights are given in Figure 2). Additionally, to encode functional proteins,
genes have to be sufficiently long. In fact, the shortest protein-coding gene in the Bacillus
subtilis genome has 20 codons. By comparison, the shortest standard noncoding ORF
identified in this genome is 25 triplets long.

To account for such complexity of the length distribution, we assumed it to be TNBD
NB(a, p)+ α for model A and NB(b, q)+ β for model B, where a + α = b + β = ` = 20 triplets,
with adjustable parameters a, b, p, q, to be estimated from the data.

 

                        . . . 
 
 

                         . . .                          . . .                          . . .                                    . . . 

                                                                                                                      ORF 1 

                                                                     ORF 2 

                                                                              ORF m 

START m START 2        START 1                 STOP 

Figure 1. A nested cluster of ORFs anchored by a given STOP triplet. Empty boxes represent triplets
of nucleotides other than START codons or STOP triplets. Reproduced with permission from [10].
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Figure 2. Histogram of the number of START codons ATG preceding a gene’s STOP triplet for
protein-coding Bacillus subtilis genes beginning with the START codon ATG.

5.3. Results

Parameters a, b, p, q of the two TNBDs were estimated by minimizing the total variation
distance, d, between the assumed TNBDs and the empirical length distributions for protein-
coding genes (model A) and standard noncoding ORFs (model B). The resulting optimal
values were a = 2, p = 0.0077 for model A and b = 1, q = 0.0467 for model B, while the
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respective minimal total variation distances were found to be dA = 0.3945 and dB = 0.4707.
Then, the translation parameters are α = `− a = 18 codons for protein-coding genes and
β = `− b = 19 triplets for standard noncoding ORFs. Thus, the best-fitting theoretical
length distribution for standard noncoding ORFs is a translated geometric distribution
G(q) + β. The relatively large magnitude of the minimum total variation distance is due to
the fact that many lengths of protein-coding genes and standard noncoding ORFs carrying
positive probabilities in the theoretical distributions are absent in the genome of Bacillus
subtilis; yet another reason is the presence in this genome of a large number of anomalously
long (in relative terms) sequences of both classes.

The profiles of the total variation distance as functions of parameters p and q for
the optimal values a = 2 and b = 1 are shown in Figure 3. Notice that (i) if p → 0 or
q→ 0, then the corresponding theoretical length distributions “escape to infinity” so that
d→ 2; (ii) if p→ 1, then d→ 2[1− P(20)], where P(20) = 1/4237 is the frequency of the
minimum gene length of 20 codons; and (iii) by contrast, if q→ 1, then d→ 2 due to the
fact that the shortest length of standard noncoding ORFs is 25 triplets rather than 20 triplets.
The limiting behaviors (i)–(iii) are clearly seen in Figure 3. Finally, the estimated TNBDs
and empirical length distributions approximated by suitable histograms are displayed in
Figure 4A,B. We conclude from Figure 4 that TNBDs with the above-specified parameters
provide an excellent visual fit to the empirical length distributions for the two classes of
DNA sequences.

For the expected model-based lengths of protein-coding genes and standard noncoding
ORFs, measured in triplets, we have

µP =
a
p
+ α ' 278 and µQ =

b
q
+ β ' 40

while the corresponding standard deviations, also measured in triplets, are

σP =

√
a(1− p)

p
' 183 and σQ =

√
b(1− q)

q
' 21,

to be compared with their empirical counterparts N̄A ' 290, N̄B ' 54 and sA(N) ' 266,
sB(N) ' 91. A few comments about the length distributions for the two classes of DNA
sequences are in order:

(i) The genome of Bacillus subtilis contains a large number of very short standard non-
coding ORFs. For example, the number of such ORFs with the length of 25 triplets
(the shortest possible) is 273, while the number of those with the length ranging from
25 to 30 triplets is 1331 or 29%;

(ii) On average, protein-coding genes are much longer than standard noncoding ORFs.
In fact, the ratio of their observed average lengths is about 5.4 and that of their
model-based expected lengths is about 7.0;

(iii) The genome contains a significant number of very long protein-coding genes. The
seven longest among them have lengths 3583, 3587, 3603, 4262, 4538, 5043, and
5488 codons, while the eighth longest gene is just 2561 codons long. This explains why
the empirical standard deviation of gene length, sA(N) ' 266 codons, is substantially
larger than its theoretical counterpart, σP ' 183 codons. Without the seven longest
genes, one would have sA(N) ' 208 codons;

(iv) Although the number of anomalously long standard noncoding ORFs is dispropor-
tionately smaller than the number of very long protein-coding genes, their effect on
the standard deviation of the length distribution is still considerable. For example,
the longest standard noncoding ORF has 4428 triplets, while the length of the second
longest ORF is 1190 triplets. Removing the longest ORF would reduce the standard
deviation of ORF length from sB(N) ' 91 to 64 triplets.

We also fitted TNBDs to the empirical length distribution for 3283 protein-coding
genes beginning with the standard START codon ATG. This resulted in a = 2 (implying
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that α = 18) and p = 0.0078, while the minimum total variation distance was 0.4313. Thus,
the best-fitting TNBD is virtually indistinguishable from the same for the entire set of
4237 Bacillus subtilis protein-coding genes; however, surprisingly, the goodness of fit for
the entire collection of genes is even better than for the seemingly more homogeneous
subset of genes with the standard START codon ATG. That is why we used the entire set of
protein-coding genes in our analysis.

Once models A and B are completely specified, one can evaluate the log-likelihood
score X given by Formula (3) for each DNA sequence from either class. For the above-
specified models of sequence length, the first term in (3) for any given sequence of length
N = n is

log
P(n)
Q(n)

= log
p2

q
+ log(n− 19) + (n− 20) log

1− p
1− q

,

where p = 0.0077 and q = 0.0467. We then computed the class-specific normalized scores

YA =
X

X̄A
, YB =

X
X̄B

and ZA =
X− X̄A
sA(X)

, ZB =
X− X̄B
sB(X)

,

where X̄A ' 59.50 and X̄B ' −2.30 are sample averages of the log-likelihood score X
over all sequences in the two respective classes, while sA(X) ' 61.50 and sB(X) ' 20.59
are the corresponding sample standard deviations. Because the values of parameters p
and q are small and have roughly the same order of magnitude, it would seem reasonable
to compare empirical distributions of the samples YA, YB, ZA, ZB with the respective
limiting distributions identified in Theorem 1, see Figures 5A,B and 6A,B, where empirical
distributions are represented as histograms with appropriately chosen bins. We conclude
from Figures 5 and 6 that the plain and transformed Erlang distributions found in Theorem
1 reproduce essential features of empirical distributions of the samples YA, YB, ZA, ZB
such as range, shape, and mode fairly well.
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Figure 3. Red curve: plot of the total variation distance, d, between theoretical length distribution
NB(2, p) + 18 for Bacillus subtilis protein-coding genes and its empirical counterpart as a function of
parameter p. Blue curve: plot of the distance d between theoretical length distribution G(q) + 19 for
Bacillus subtilis standard noncoding ORFs and its empirical counterpart as a function of parameter q.
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Figure 4. (A) Comparison of the empirical length distribution for all Bacillus subtilis protein-coding
genes with the best-fitting TNBD NB(2, p) + 18, p = 0.0077. (B) Comparison of the empirical length
distribution for Bacillus subtilis standard noncoding ORFs with the best-fitting translated geometric
distribution G(q) + 19, q = 0.0467.
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Figure 5. Comparison of the class-specific empirical distribution of the normalized log-likelihood
score Y with its theoretical limiting counterpart identified in Theorem 1. (A) Bacillus subtilis protein-
coding genes (class A); (B) Bacillus subtilis standard noncoding ORFs (class B).
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Figure 6. Comparison of the class-specific empirical distribution of the normalized log-likelihood
score Z with its theoretical limiting counterpart identified in Theorem 1. (A) Bacillus subtilis protein-
coding genes (class A); (B) Bacillus subtilis standard noncoding ORFs (class B).

6. Discussion

In this article, we derived a novel limit theorem for two natural normalizations,
Y = X/EX and Z = (X−EX)/σ(X), of the log-likelihood score X, where the expectation
and standard deviation are taken relative to either model A or B and it is assumed that the
sequence length for these models follows respective TNBDs NB(a, p) + α and NB(b, q) + β.
The limit theorem applies to long sequences (p, q → 0) under the essential additional
condition that the expected sequence length for either class is not exponentially larger than
for the other class (more precisely, p log q→ 0 and q log p→ 0). The limiting distributions
of rv Y under respective models A and B turned out to be Erlang distributions E(a, a) and
E(b, b), while for rv Z, they came out as transformed Erlang distributions E(a,

√
a)−

√
a

and
√

b− E(b,
√

b), see Theorem 1. It is noteworthy that the limiting distributions depend
on integer parameters a and b alone. Thus, the limiting behavior of the normalized log-
likelihood score for long sequences represents, under the assumptions of Theorem 1, a fairly
crude phenomenon.

Theorem 1 yields an important corollary: the asymptotic accuracy of the likelihood-
based classification of random sequences, see Theorem 2.

To test the utility of our limit theorem, we applied it to the classification of open
reading frames (ORFs), see Section 4, extracted from the genome of the bacterium Bacillus
subtilis strain 168, as protein-coding genes (class A) and standard noncoding ORFs (class
B). In this case, the alphabet consists of M = 61 triplets of DNA nucleotides other than
STOP triplets. Since the genome of Bacillus subtilis is well annotated, class membership
of all ORFs is known with certainty, which allowed us to empirically estimate character
selection probabilities and length distributions for both classes of DNA sequences, see
Table 1 and Figure 4. As was explained in Section 4, under the model of independent
DNA sequence assembly, the length distributions for both classes are mixtures of negative
binomial distributions, which we approximated, for each class of sequences, by a single
TNBD. The best-fitting distributions from this family provided a surprisingly good fit
to the empirical length distributions for both classes of DNA sequences, see Figure 4.
This serves as an indirect validation of our model of DNA sequence assembly. This also
corroborates earlier findings that the length of protein-coding genes in many organisms
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can be approximated by negative binomial distributions [6] or gamma distributions [18],
which serve as a continuous analog of negative binomial distributions.

The aforementioned (transformed) Erlang distributions with a = 2 and b = 1 and their
empirical counterparts (i.e., the distributions of the observed normalized log-likelihood
scores Y and Z for the two classes of DNA sequences) are compared in Figures 5 and 6. They
reveal that the theoretical limiting distributions provide a reasonable fit to the empirical
distributions and capture some of their salient features such as range, shape, and mode. This
is somewhat unexpected given that (a) the limiting distributions are one-parametric; (b) the
model of random independent DNA sequence assembly is quite simplistic; (c) frequencies
of the codons immediately following the START codon and immediately preceding the
STOP triplet in protein-coding genes are distinct from those for internal codons [6]; and
(d) our model disregards various additional features such as the presence in bacterial
genomes of short regulatory nucleotide sequences at characteristic distances from the
gene’s START codon including ribosome binding sites (or Shine–Dalgarno sequences) and
binding sites for transcription factors [5,6].

Our results can be applied to the classification of binary sequences (M = 2), DNA
sequences viewed at the level of individual nucleotides (M = 4), and proteins represented
as sequences of amino acids (M = 20). They may also potentially have applications in the
areas of natural language processing and artificial intelligence.

The principal limitation of this work is the use of an independent (or zero-order
Markov chain) model of sequence assembly. It was found long ago that DNA sequences are
characterized by the presence of substantial short-range [7] and long-range [8] correlations
between nucleotides and their triplets. As a result, efficient modern methods of computa-
tional gene finding employ higher-order, or even variable-order, Markov chain models and
Hidden Markov models at the level of individual nucleotides [4–6]. For example, a gene
finder called GeneMark [5] employs a 5th-order Markov chain model, while GLIMMER
gene finder [4] combines k-th order Markov chain models for 0 ≤ k ≤ 8. Although the
accuracy of gene finding generally increases with k (the order of the Markov chain), the use
of large values of k is prohibited by the large number, 4k+1, of Markov transition proba-
bilities that have to be estimated from a training set and the sparsity of (k + 1) − tuples
of nucleotides used for estimation purposes. Thus, to make our limit theorem a better
discriminator between protein-coding genes and noncoding ORFs in prokaryotic genomes,
it should be extended to higher-order Markov chain models and Hidden Markov models
of DNA sequence assembly, and to more general sequence length distributions including
translated mixtures of negative binomial distributions.

On the mathematical side, our limit theorem would be more practical if augmented
with a tight estimate of the Zolotarev metric [9,14] or another suitable distance [19] be-
tween the empirical distribution of the normalized log-likelihood score and its theoretical
limiting counterpart.
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