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Abstract: Vaccination strategies remain one of the most effective and feasible preventive measures
in combating infectious diseases, particularly during the COVID-19 pandemic. With the passage
of time, continuous long-term lockdowns became impractical, and the effectiveness of contact-
tracing procedures significantly declined as the number of cases increased. This paper presents a
mathematical assessment of the dynamics and prevention of COVID-19, taking into account the
constant and time-varying optimal COVID-19 vaccine with multiple doses. We attempt to develop a
mathematical model by incorporating compartments with individuals receiving primary, secondary,
and booster shots of the COVID-19 vaccine in a basic epidemic model. Initially, the model is rigorously
studied in terms of qualitative analysis. The stability analysis and mathematical results are presented
to demonstrate that the model is asymptotically stable both locally and globally at the COVID-19-free
equilibrium state. We also investigate the impact of multiple vaccinations on the COVID-19 model’s
results, revealing that the infection risk can be reduced by administrating the booster vaccine dose
to those individuals who already received their first vaccine doses. The existence of backward
bifurcation phenomena is studied. A sensitivity analysis is carried out to determine the most sensitive
parameter on the disease incidence. Furthermore, we developed a control model by introducing
time-varying controls to suggest the optimal strategy for disease minimization. These controls are
isolation, multiple vaccine efficacy, and reduction in the probability that different vaccine doses
do not develop antibodies against the original virus. The existence and numerical solution to the
COVID-19 control problem are presented. A detailed simulation is illustrated demonstrating the
population-level impact of the constant and time-varying optimal controls on disease eradication.
Using the novel concept of human awareness and several vaccination doses, the elimination of
COVID-19 infections could be significantly enhanced.

Keywords: COVID-19 pandemic; multiple vaccine doses; sensitivity analysis; time-varying optimal
controls; Pontryagin maximum principle

MSC: 93D05; 34A34; 49J15; 92B10

1. Introduction

The world’s economy, communities, and public health have been profoundly impacted
by the emergence of the novel coronavirus, SARS-CoV-2, which led to the COVID-19
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pandemic. The first case of infection with this virus appeared in December 2019 in Wuhan,
Hubei province of China [1]. This disease quickly spread outside of China only a few weeks
after it first appeared. Initial reports of the disease outside China came from Japan and
Thailand [2]. The COVID-19 pandemic has had a significant impact on society in different
aspects. From a global health perspective, the virus has led to millions of worldwide cases
of infection and loss of life. It has strained healthcare systems, particularly in regions
with limited resources and capacity. This global disease also has far-reaching impacts
on the economy, with disruptions in worldwide supply chains, business closures, and
job losses. Socially, COVID-19 has led to school closures, travel restrictions, and changes
in social behaviors, affecting individuals’ mental health and well-being [3]. Extensive
scientific investigation has been carried out to comprehend the dynamics and transmission
of the SARS-CoV-2 virus [4]. There are many different indications and symptoms that
COVID-19 might exhibit. On the other hand, some patients may remain symptom-free,
and some may experience mild and then severe disease symptoms. Fever, coughing, sore
throat, shortness of breath, feelings of exhaustion or low energy, muscle discomfort, and
body pains are among the main signs and symptoms of COVID-19 [5,6]. The presence
and intensity of symptoms can differ from person to person, and some people may not
experience any symptoms at all or only experience minor ones. Different countries employ
various techniques to stop the spread of infections, and the majority of countries adhere to
similar rules such as social distancing, isolation, and self-quarantine [7].

Vaccination remains one of the effective interventions against severe infectious dis-
eases [8–10]. The careful application of non-pharmaceutical therapies and vaccination
programs work together to reduce the spread of COVID-19 globally. To prevent the disease,
multiple dosages of vaccines are given. The majority of vaccinations are given to a person
as primary (first time), secondary (second time), and booster shots (third time). The first
course of vaccination doses administered to people who have never had any vaccination
doses before is referred to as primary vaccination. The subsequent dosage given after
the original immunization is referred to second-time vaccine and is also referred to as a
second dose. The third-time vaccine is an additional dosage administered to people who
have finished their first vaccine course to strengthen and prolong their immunological
response [7].

In order to investigate the complex dynamics of infectious disease, different method-
ologies have been developed. The implementation of mathematical models is a valuable
tool that has been utilized successfully to present different aspects of infectious diseases.
Usually, these models include classical (ordinary and partial) derivatives [11–13], stochastic
derivatives [14,15] and fractional derivatives [16,17]. In particular, to better explore the
dynamic aspects of COVID-19, several epidemic models have been developed [18–20].
The impact of face mask use by the general public to curtail the COVID-19 pandemic was
studied in [21]. Augusto et al. studied the changing behavior of the COVID-19 model [22].
The global impact of the first year of COVID-19 vaccination programs was studied in [23].
The impact of vaccination on two variants of COVID-19, alpha and delta, was studied
in [24]. Ngonghala et al. [25] considered the omicron and delta variants of COVID-19
in the presence of multiple vaccinations. Their study revealed that treatment leads to a
reduction in hospitalization rates, and the potential for COVID-19 elimination is increased
when investments in control resources are directed toward promoting mask usage and
vaccine intervention. In [26], the authors analyzed the mitigation of the pandemic via
double-dose vaccination using an epidemic modeling approach. The outcomes of their
study indicated that primary and secondary vaccination alone is not adequate for infection
reduction, and thus it is essential to provide the booster shot (third time) of the vaccine for a
better eradication of the infection. Recently, a similar fractional and fractal-fractional study
with an exponential-type kernel analyzing the dynamics of COVID-19 under vaccination
was presented in [27].

In this paper, we develop a mathematical model based on the SEVIHR type of compart-
mental model and incorporate three vaccine compartments for the first, second, and booster
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shots of COVID-19 vaccines. This study stands out from previous literature by considering
multiple vaccination compartments in relation to the rates of antibody production against
the original virus. We also used the assumption that vaccinated individuals might become
infected with the virus if the antibodies have not been developed even after vaccinating to
account for breakthrough infections. This enabled us to illustrate the reproductive number
causing a significant widespread issue of the disease. The outcomes of these simulations
aid those who are skeptical of vaccination in making thoughtful decisions. The section-wise
description of the present work is as follows: The formulation of the COVID-19 model is
presented in Section 2. Section 3 covers the basic qualitative properties and results of the
proposed model. Section 4 presents the role of basic reproduction numbers, vaccination
coverage, and bifurcation analysis. A simulation of the proposed model with constant
control measures is given in Section 5. The sensitivity analysis is performed in Section 6.
The formulation of the optimal control problem is given in Section 6. A simulation of the
optimal control problem estimating the optimal solution is presented in Section 8. Finally,
Section 9 presents the conclusion.

2. Modeling the Dynamics of COVID-19 with Multiple Vaccine Doses

We divide the total population into the following compartments: 1. susceptible
individuals S; 2. exposed individuals E; 3. individuals with first-time vaccination V1;
4. individuals with second-time vaccination V2; 5. individuals with booster shots V3;
6. infected individuals I; 7. hospitalized individuals IH ; and 8. R represents the recovered
individuals. Therefore, the entire population can be expressed as

N(t) = S(t) + E(t) + V1(t) + V2(t) + V3(t) + I(t) + IH(t) + R(t).

The group of susceptible people is generated as a result of the birth rate θ, which reduces
due to the transmission to the vaccinated class V1 upon receiving the first vaccine dose at
a rate ξ1. Further, this class experiences a decrease after becoming infected at the contact
rate α. All population groups experience natural mortality at a rate of µ. Thus, we obtain
the following differential equation.

S
′
(t) = θ − αI

N
S− (ζ1 + µ)S,

Individuals in the exposed class are generated as a result of effective contacts between
individuals in the infectious class I with those in classes S, V1, V2, and V3 at the contact
rates α. The symbols δ1, δ2, and δ3 are the respective probabilities that vaccine recipients
in the V1, V2 and V3 groups do not develop antibodies to the original viruses after 28 days
of inoculation. Therefore, the individuals susceptible to the original viruses considered in
the model are S, δ1V1, δ2V2 and δ3V3. The transmission rate of the exposed individuals to the
infectious class is denoted by σ and as a result, we derive the following equation for this class:

E
′
(t) =

(
αIS
N

+
αδ1 I V1

N
+

αδ2 I V2

N
+

αδ3 I V3

N

)
− (σ + µ)E,

Individuals in the susceptible class move to the class of first-time vaccinated individuals
after receiving the initial vaccination at a rate of ζ1. Subsequently, the individuals in this
group reduce due to the contact rate α with infectious individuals and the administration of
the second dose at the rate ζ2. We obtain the following mathematical form for the dynamics
of the first-time vaccinated class.

V
′
1(t) = ζ1S− αδ1 I V1

N
− (ζ2 + µ)V1,

The population of second-time-vaccinated individuals is initially formed by administering a
second dose to individuals in V1 class at a rate ζ2. This group experiences a decrease due to the
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contact rate α with infectious individuals and the administration of booster shots at the rate ζ3.
We obtain the following equation for the dynamics of the second-dose-vaccinated class.

V
′
2(t) = ζ2V1 −

αδ2 I V2

N
− (ζ3 + µ)V2.

The class of third-time-vaccinated individuals is initiated through by administrating the
booster shot to individuals in the V2 class at a rate of ζ3. This population experiences a
decrease due to several factors, such as the contact rate α with infected people and the
natural mortality rate µ. Thus, we obtain the following differential equation.

V
′
3(t) = ζ3V2 −

αδ3 I V3

N
− µ V3.

The exposed individuals become infected and move to I class at the rate σ. The population in
this class declined because of the hospitalization at a rate η, and the COVID-19 and natural
deaths at rates denoted by γ and µ, respectively. Thus, we derive the following expression.

I
′
(t) = σE− (η + γ + µ)I.

The fraction 0 < b < 1 of the η I moves to R because of their natural immunity, while the
remaining (1− b) are hospitalized. The individuals in the IH class convalesce after proper
treatment and join the recovered class at the recovery rate d. Thus, we obtain the following
equations for the dynamics of hospitalized and recovered individuals.

I
′
H(t) = η(1− b)I − (d + γ + µ)IH ,

R
′
(t) = ηbI + dIH − µR.

In the result of the above discussion, the compartmental model for COVID-19 transmission
is summarized as follows:

S
′
(t) = θ − αI

N S− (ζ1 + µ)S,

E
′
(t) =

(
αIS
N + αδ1 I V1

N + αδ2 I V2
N + αδ3 I V3

N

)
− (σ + µ)E,

V
′
1(t) = ζ1S− αδ1 I V1

N − (ζ2 + µ)V1,

V
′
2(t) = ζ2V1 − αδ2 I V2

N − (ζ3 + µ)V2,

V
′
3(t) = ζ3V2 − αδ3 I V3

N − µ V3,

I
′
(t) = σE− (γ + η + µ)I,

I
′
H(t) = η(1− b)I − (µ + γ + d)IH ,

R
′
(t) = ηbI + dIH − µR.

(1)

subject to non-negative initial conditions, S(0) = S0, E(0) = E0, V1(0) = V1, V2(0) = V2,
V3(0) = V3, I(0) = I0, IH(0) = IH0 , R(0) = R0. Let

λ =
(αS + αδ1V1 + αδ2V2 + αδ3V3)

N
,

and
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q1 = (ζ1 + µ), q2 = (σ + µ), q3 = (ζ2 + µ), q4 = (ζ3 + µ), q5 = (η + γ + µ), q6 = (d + γ + µ).

Then, (1) becomes

S
′
(t) = θ − αI

N S− q1S,

E
′
(t) = λI − q2E,

V
′
1(t) = ζ1S− αδ1 I

N V1 − q3V1,

V
′
2(t) = ζ2V1 − αδ2 I

N V2 − q4V2,

V
′
3(t) = ζ3V2 − αδ3 I

N V3 − µV3,

I
′
(t) = σE− q5 I,

I
′
H(t) = η(1− b)I − q6 IH ,

R
′
(t) = ηbI + dIH − µR.

(2)

The transmission between various compartments are shown in the Figure 1.

Figure 1. Flow-Chart of the COVID-19 model with vaccinations (2).

3. Qualitative Analysis of the Model

This section presents necessary mathematical aspects of the proposed COVID-19
transmission model having multiple vaccine compartments. We proceed as follows:
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3.1. Positivity and Boundedness
3.1.1. Positivity

Theorem 1. Given S0 ≥ 0, E0 ≥ 0, V10 ≥ 0, V20 ≥ 0, V30 ≥ 0, I0 ≥ 0, IH0 ≥ 0, R0 ≥ 0.
Then, the solution (S(t), E(t), V1(t), V2(t), V3(t), I(t), IH(t), R(t)) of model (2) are positive for
all t > 0.

Proof. First equation of the model (2) gives

S
′
(t) = θ − αI

N S− q1S,

S
′
(t) ≥ −(ᾱ− q1)S, ᾱ(t) = αI

N .
(3)

The integrating factor is given by exp

(
t∫

0
ᾱ(s)ds + q1t

)
, multiplying the inequality (3) by

the integrating factor, we obtain,

S
′
(t) exp(

t∫
0

ᾱ(s)ds + q1t) ≥ 0. (4)

The solution of (4) implies

S
′
(t) ≥ S0 exp

(
−
( t∫

0

ᾱ(s)ds + q1t
))

> 0.

In similar pattern, it can be shown that E ≥ 0, V1 ≥ 0, V2 ≥ 0, V3 ≥ 0, I ≥ 0, IH ≥ 0, R ≥ 0
in the model (2). This implies that (S(t), E(t), V1(t), V2(t), V3(t), I(t), IH(t), R(t)) are all
non-negative for non-negative initial conditions.

3.1.2. Boundedness

Theorem 2. The solution (S(t), E(t), V1(t), V2(t), V3(t), I(t), IH(t), R(t)) of the model (2) are
bounded.

Proof. Adding all the equations of the proposed model (2), we have

N
′
(t) = θ − µN − γ(I + IH),

N
′
(t) ≤ θ − µN.

(5)

Solving the inequality in (5), we have the following steps.∫
deµtN(t) ≤

∫
θeµtdt,

eµtN(t) ≤ θ
µ eµt + C,

N(t) ≤ e−µt
(

θ
µ eµt + C

)
.
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Using the initial condition N(t) = N(0), at t = 0 implies that

N(t) ≤ e−µt
(

θ
µ eµt +

(
N(0)− θ

µ

))
,

≤ e−µtN(0) + θ
µ

(
1− e−µt),

⇒ lim
t→∞

N(t) ≤ θ
µ .

Hence, N(t) is bounded by θ
µ , and by using the comparison theorem [28], we deduce that

N(t) ≤ θ
µ , if N(0) ≤ θ

µ . Therefore, θ
µ remains the upper bound of the region

Ω =

(
(S(t), E(t), V1(t), V2(t), V3(t), I(t), IH(t), R(t))
: S(t) + E(t) + V1(t) + V2(t) + V3(t) + I(t) + IH(t) + R(t) ≤ θ

µ .

)
. Thus, the re-

gion Ω is also positively invariant [29].

3.2. Equilibria and the Threshold Parameter of the Model

The COVID-19 compartmental model (2) exhibits two equilibria, namely, the COVID-free
equilibrium (CFE), denoted as P0. This equilibrium can be given by the following expressions:

P0 =
(

S0, E0, V0
1 , V0

2 , V0
3 , I0, I0

H , R0
)
=

(
θ

q1
, 0,

θζ1

q1q3
,

θζ1ζ2

q1q3q4
,

θζ1ζ2ζ3

µq1q2q3
, 0, 0, 0

)
.

Taking the next generation approach into account [30], the threshold numberR0 is formu-
lated as follows:

R0 =
ασ

q2q5N0

(
S0 + δ1V0

1 + δ2V0
2 + δ3V0

3

)
.

3.3. Local Stability at COVID-Free Equilibrium Point

Theorem 3. The CFE point of the proposed model (2) is locally asymptotically stable (LAS) if
R0 < 1 and unstable whenR0 > 1.

Proof. To establish the desired outcome, we need to demonstrate that the Jacobian of the
linearized system at the CFE has negative eigenvalues. The matrix J(P0) can be evaluated as

J
(
P0
)
=



−q1 0 0 0 0 − αµ
q1

0 0

0 −q2 0 0 0 αµ
q1

+ αµδ1ζ1
q1q3

+ αµδ2ζ1ζ2
q1q3q4

+ αδ3ζ1ζ2ζ3
q1q3q4

0 0

ζ1 0 −q3 0 0 − αµδ1
q1q3

0 0

0 0 ζ2 −q4 0 − αµδ2ζ1ζ2
q1q3q4

0 0

0 0 0 ζ3 −µ − αδ3ζ1ζ2ζ3
q1q3q4

0 0
0 σ 0 0 0 −q5 0 0
0 0 0 0 0 (1− b)η −q6 0
0 0 0 0 0 bη d −µ


.

The eigenvalues of J(P0) are −µ,−µ, q1, q3, q4, q6, and the roots of the 2nd degree equation
c0λ2 + c1λ + c2 = 0. Here, the coefficients are defined in terms of the basic reproduction
numberR0 as

c0 = 1,
c1 = q2 + q5,
c2 = q2q5(1−R0).
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Since, c0, c1 > 0 and c2 > 0 if R0 < 1. Therefore, the well-known Ruth–Hurwitz criteria
demonstrate that the system (2) is LAS.

3.4. Global Asymptotic Stability of (GAS) for Special Case

The GAS of the model at CFE point is provided for a special case. Consider the special
case of the model (2) with γ = δ1 = δ2 = δ3 = 0. The assumption regarding the subsequent
parameters is made to facilitate mathematical analysis. The feasible region for the special
case of the model (2) is constructed as

Ω∗ =
{
(S, E, V1, V2, V3, I, IH , R) ∈ R∗+ : S ≤ S0, V1 ≤ V0

1 , V2 ≤ V0
2 , V3 ≤ V0

3

}
.

It can be shown that Ω∗ is a positive invariant set and attracts the solution of system (2)
with respect to the special case. Moreover, the basic reproductive number of the reduced
model is as follows:

R̂0 = R0|γ=δ1=δ2=δ3=0 =
ασS0

q1q2q∗5 N0 , where q∗5 = η + µ, q∗6 = µ + d.

Theorem 4. The CFE of the special case of the model (2) with γ = δ1 = δ2 = δ3 = 0 is GAS in Ω∗
whenever, R̂0 ≤ 1.

Proof.

L(t) = A1
(S−S0)

2

2S0 + A2E + A3 I,

L
′
= A1

(S−S0)
S0 S

′
+ A2E

′
+ A3 I

′
,

L
′
= A1

(S−S0)
S0

(
−
(

αI
N

)(
S− S0)− q1

(
S− S0)− αI

N S0
)
+ A2

(
αIS
N − q2E

)
+ A3(σE− q∗5 I)

≤ −A1
α(S−S0)

2

S0 I + A2

(
αI S0

N0 − q2E
)
+ A3(σE− q∗5 I),

= −A1
α(S−S0)

2

S0 I + (σA3 − q2 A2)E +
(

α S0

N0 A2 − q∗5 A3

)
I,

= −A1
α(S−S0)

2

S0 I + (σA3 − q2 A2)E + q∗5 A3

(
αS0

q∗5 A3 N0 A2 − 1
)

I,

L
′ ≤ −

(
S− S0)2 I + q2

(
R̂0 − 1

)
E,

where,

A1 =
S0

α
, A2 =

σA3

q2
, A3 = 1.

Thus, L
′
(t) ≤ 0 if R̂0 ≤ 1 furtherL

′
(t) = 0 if E = I = IH = 0. So, the number of

infected individuals becomes zero as t → ∞. Using E = I = IH = 0 in the above model,
we have S → θ

q1
, V1 → θζ1

q1q3
, V2 → θζ1ζ2

q1q3q4
, V3 → θζ1ζ2ζ3

µq1q3q4
and R → 0 as t → ∞. Thus, using

Lyapunov stability theorem, every solution of the given model with non-negative initial
condition approaches to P0 as t→ ∞ in Ω. Thus, it follows that the system (2) is GAS.
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4. Interpretation of Vaccination Coverages Based onR0

We provide the critical rate of vaccine coverage that could lead to eradication of the
infection, denoted as R0(ζ1, ζ2, ζ3) = R0e . In a scenario with no vaccine, i.e., when
ζ1 = 0, ζ2 = 0, and ζ3 = 0, thenR0 is reduced to

R0e = R0(0, 0, 0) =
ασ

q2q5
. (6)

After some rearrangementR0(ζ1) and with ζ2 = ζ3 = 0 can be written as

R0(ζ1) =
ασ(ζ1δ1 + µ)

q2q5(ζ1 + µ)
.

Thus,

R0(∞) = lim
ζ1→∞

R0(ζ1) =
ασ

q2q5
δ1 = R0e δ1.

The partial derivative with respect to ζ1 leads to the following form:

∂R0

∂ζ1
= −R0e µ(1− δ1)

q2
1

< 0.

Therefore, R0e δ1 ≤ R0(ζ1) ≤ R0e , and hence, R0e < 1 implies R0(ζ1) < 1. Further, if
R0e > 1, it is important to note that

R0(∞) < 1⇔ R0δ1 < 1⇔ δ1 > δ∗1 =
1
R0e

.

This interpretation suggests that when the value of δ1 is low, and if the effective reproductive
number R0e > 1, the disease might not spread extensively provided that the first-dose
vaccination coverage is substantial. Similarly, if ζ1, ζ2 6= 0,

R0(ζ1, ζ2) =
R0e

(
µ2 + µδ1ζ1 + (µ + δ2ζ1)ζ2

)
(ζ1 + µ)(ζ2 + µ)

.

After some rearrangement, we have

R0(ζ1, ζ2) =
1

µq3
R0(ζ1, 0) +

R0e(µ + δ2ζ1)ζ2

q1q3
.

Thus,

R0(ζ1, ∞) = lim
ζ2→∞

R0(ζ1, ζ2) =
R0e(µ + δ2ζ1)

q1
.

The partial differentiation with respect to ζ2 yields

∂R0

∂ζ2
= −R0e(δ1 − δ2)ζ1µ

q1q2q2
3q5

< 0.

Therefore, R0e (µ+δ2ζ1)
q1

≤ R0(ζ1, ζ2) ≤ R0e , and hence R0e < 1 implies R0(ζ1, ζ2) < 1.
Further if R0e > 1, it is important to note that

R0(ζ1, ∞) < 1⇔ R0e(µ + δ2ζ1)

q1
< 1⇔ δ2 > δ∗2 =

q1

R0e

− µ

ζ1
.
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The above interpretation implies that when the value of δ2 is minimal and if the effective
reproductive numberR0e > 1, there is a possibility of infection elimination if the second
vaccination coverage is substantial.
Finally, in a scenario if not only first and second vaccine doses are administrated, but
additionally, a booster short is provided, i.e., when ζ1, ζ2, ζ3 6= 0 then,

R0(ζ1, ζ2, ζ3) =
µR0(ζ1, ζ2, 0)

q4
+
R0e

(
µ2 + µδ1ζ1 + (µ + δ3ζ1)ζ2

)
ζ3

q1q3q4
.

Thus,

R0(ζ1, ζ2, ∞) = lim
ζ3→∞

R0(ζ1, ζ2, ζ3) =
R0e

(
µ2 + µδ1ζ1 + (µ + δ3ζ1)ζ2

)
q1q3

.

Taking partial derivative with respect to ζ3 yields

∂R0

∂ζ3
= −ασµ(δ2 − δ3)ζ1ζ2

q1q2q3q2
4q5

< 0.

Therefore,
R0e(µ2+µδ1ζ1+(µ+δ3ζ1)ζ2)

q1q3
≤ R0(ζ1, ζ2, ζ3) ≤ R0e , and hence R0e < 1 implies

R0(ζ1, ζ2, ζ3) < 1. Further, if R0e > 1 it is important to note that

R0(ζ1, ζ2, ∞) < 1⇔
R0e

(
µ2 + µδ1ζ1 + (µ + δ3ζ1)ζ2

)
q1q3

< 1⇔ δ3 > δ∗3 =
q1q3

R0e ζ1
− µ(µ + δ1ζ1 + ζ2)

ζ1
.

This implies that when δ3 is minimal and the effective reproductive numberR0e > 1, the
disease has the potential to be eliminated through the administration of a booster shot to a
person who had already received the initial dose.

Backward Bifurcation Analysis

In this subsection, we discuss the existence of backward bifurcation of the system (2).
To analyze this, we follow the center manifold theory. If we take α as bifurcation parameter
then atR0 = 1 we have,

α∗ =
q1q2q3q4q5

σ(µq3q4 + ζ1(µq4δ1 + ζ2(µδ2 + δ3ζ3)))
.

The variables in the system (2) are subjected to the following variations so that S = x1,
E = x2, V1 = x3, V2 = x4, V3 = x5, I = x6, IH = x7, and R = x8. Further, using the vector
notation x = (x1, x2, x3, x4, x5, x6, x7, x8)

tr. COVID-19 (2) can be written equivalently as
dx
dt = f , where f = ( f1, f2, f3, f4, f5, f6, f7, f8)

tr as shown below:
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x
′
1(t) = θ − αx6

N x1 − q1x1,

x
′
2(t) =

(
αx6
N x1 +

αδ1x6
N x3 +

αδ2x6
N x4 +

αδ3x6
N x5

)
− q2x2,

x
′
3(t) = ζ1x1 − αδ1x6

N x3 − q3x3,

x
′
4(t) = ζ2x3 − αδ2x6

N x4 − q4x4,

x
′
5(t) = ζ3x4 − αδ3x6

N x5 − µx5,

x
′
6(t) = σx2 − q5x6,

x
′
7(t) = η(1− b)x6 − q6x7,

x
′
8(t) = ηbx6 + dx7 − µx8,

where N = ∑8
i=1 xi.

The Jacobian matrix evaluated at CFE point P0 with α∗ is

J
(
P0
)
=



−q1 0 0 0 0 − α∗µ
q1

0 0

0 −q2 0 0 0 α∗µ
q1

+ α∗µδ1ζ1
q1q3

+ α∗µδ2ζ1ζ2
q1q3q4

+ α∗δ3ζ1ζ2ζ3
q1q3q4

0 0

ζ1 0 −q3 0 0 − α∗µδ1ζ1
q1q3

0 0

0 0 ζ2 −q4 0 − α∗µδ2ζ1ζ2
q1q3q4

0 0

0 0 0 ζ3 −µ − α∗δ3ζ1ζ2ζ3
q1q3q4

0 0
0 σ 0 0 0 −q5 0 0
0 0 0 0 0 η(1− b) −q6 0
0 0 0 0 0 bη d −µ


,

The Jacobian matrix has a simple eigenvalue calculated at α∗. The right and left eigenvectors
are denoted by W = (w1, w2, w3, w4, w5, w6, w7, w8) and V = (v1, v2, v3, v4, v5, v6, v7, v8),
respectively, where

w1 = − µq2q3q4q5w6
σq1(µq3q4+ζ1(µδ1q4+ζ2(µδ2+δ3ζ3)))

, w2 = q5w6
σ ,

w3 = −w6

(
µq2q5δ1ζ1q4

σq3(µq3q4+ζ1(µδ1q4+ζ2(µδ2+δ3ζ3)))
+ µq2q5ζ1q3q4

σq1q3(µq3q4+ζ1(µδ1q4+ζ2(µδ2+δ3ζ3)))

)
,

w4 = − µq2q5w6ζ1ζ2(δ1q1q4+q2(µ+δ2q1+ζ3))
σq1q3q4(µ2q4+µδ1ζ1q4+ζ2(µ(µ+δ2ζ1)+(µ+δ3ζ1)ζ3))

,

w5 = − q2q5w6ζ1ζ2ζ3(µδ1q1q4+q3(µδ2q1+(µ+δ3q1)q4))
µσq1q3q4(µ2q4+µδ1ζ1q4+ζ2(µ(µ+δ2ζ1)+(µ+δ3ζ1)ζ3))

,

w6 > 0, w7 = η(1−b)w6
q6

, w8 = (dη+bγη+bηµ)
µq6

w6,

and,

v1 = 0, v2 > 0, v3 = v4 = v5 = 0, v6 =
q2v2

σ
, v7 = v8 = 0.
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Furthermore, bifurcation coefficients ā, and b̄ of the proposed model (2) evaluated at
(P0, α∗) are calculated as

ā =
8

∑
k,i,j=1

vkwiwj
∂2 fk

(
P0, α∗

)
∂xi∂xj

, b̄ =
8

∑
k,i=1

vkwi
∂2 fk

(
P0, α∗

)
∂xi∂β

.

So we have

ā = −2α∗µ v2w6
θq1q3q4

(
q3q4

(
ζ1w1 + µ(w2 + w3 + w4 + w5 + w6 + w7 + w8)− q1(w3δ1 + w4δ2 + w5δ3)
+(w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8)ζ1(µq4δ1 + ζ2(µδ2 + ζ3δ3))

))
< 0,

b̄ = v2w6(µq3q4+ζ1(µq4δ1+ζ2(µδ2+δ3ζ3)))
q1q3q4

> 0.

The presence of the backward bifurcation in the system depends on the sign of b̄, as
indicated in [31]. Specifically, if ā > 0 and b̄ > 0, the system will experience a backward
bifurcation. In the context of backward bifurcation, the endemic equilibrium and the CFE
coexist with one being stable and the other being unstable whenR0 < 1. For the COVID-
19 model (2), the biological significance of backward bifurcation lies in the fact that the
conditionR0 < 1 is essential, but not solely adequate for mitigating the infection from the
community. The outcome depends on the initial population size.

5. Estimating the Time Series Solution

This section focuses on the numerical simulation of the epidemic model (2) to analyze
the dynamics of various state variables forR0 > 1 andR0 < 1. The model without optimal
controls is numerically solved using the well-known Runge–Kutta iterative scheme of
fourth order. Simulation is conducted in Matlab version R2022b for the 0–700 days. Initially,
the model is simulated with the parameter values given in Table 1 such thatR0 < 1, and
the resulting plots are depicted in Figures 2 and 3. The figures show that the population
curves converge to the COVID-19-free equilibrium state. Similarly, in Figures 4 and 5, a few
values of the model’s parameters provided in Table 1 are changed in a way that R0 > 1.
These graphical interpretations show that the solution trajectories converge to an endemic
state. Moreover, we analyzed the dynamics of the model with different initial values of
state variables forR0 > 1 andR0 < 1 as shown in the Figures 6 and 7, respectively.

Table 1. Description with numerical values of the model’s parameters.

Parameter Meaning Value Reference

θ humans’ recruitment rate 7,828,143 [32]
µ natural death rate 0.011380 [32]
ζ1 rate of first COVID vaccine dose 0.710 [32]
ζ2 rate of second COVID vaccine dose 0.650 Assumed
ζ3 rate of booster shot 0.290 [32]
δ1 possibility that after 28 days of vaccinations, those who received the first

vaccine dose has not produced immunity to the original virus
4.7% [33]

δ2 possibility that after 28 days of vaccinations, those who received the 2nd
vaccine dose has not produced immunity to the original virus

0.2% [33]

δ3 possibility that after 28 days of vaccinations, those who received the
booster shot has not produced immunity to the original virus

0.1% [33]

σ transmission rate of exposed to infectious class 1/5.2 [26]
b recovery rate of infectious people 0.76210 [26]
η flow rate of infectious individuals 0.0720 [32]
α effective contacts rate 0.750 Assumed
γ mortality rate due to infection 0.000010 Assumed
d recovery rate of hospitalization individuals 0.01070 Assumed
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Figure 2. Graphical results of the proposed model for exposed, infected, hospitalized and recovered
compartments whenR0 < 1.
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Figure 3. Simulation of the proposed model for susceptible and vaccinated compartments using
R0 < 1.
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Figure 4. Simulation of the proposed model for individuals with booster short, exposed, infected,
hospitalized and recovered compartments whenR0 > 1.
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Figure 5. Simulation of the proposed model for susceptible and primary and secondary vaccinated
compartments whenR0 > 1.
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Figure 6. Simulation of the proposed COVID-19 model with different initial values of the state

variables andR0 > 1, where (a) susceptible, (b) exposed, (c) recovered, (d) hospitalized, (e) infected,
(f) shows the individuals with booster short. The curves with different colors show the dynamics by
choosing different values of the corresponding state variables.
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In the next section, the application of optimal control theory for the mitigation of
pandemic is carried out. Before establishing effective optimal controls, we perform the
sensitivity analysis to investigate the most influential factors on the transmission of disease.
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Figure 7. Dynamics of the COVID-19 model with different initial values of the state variables and
R0 < 1, where (a) secondary vaccinated, (b) individuals with booster short, (c) exposed, (d) infected,
(e) hospitalized, (f) R]recovered individuals. The curves with different colors show the dynamics by
choosing different values of the corresponding state variables.

6. Sensitivity Analysis

Sensitivity theory is a powerful tool that provides insights into the model’s behavior
and helps in better understanding the influence of the variations in the input parameters
on the respective output of the model. This technique is used in various fields, including
economics, engineering, and biological sciences, to assess the potential factors of the
problem under consideration. The analysis examines how small changes in the input
values of the model affect the corresponding output. In the epidemiological modeling
approach, sensitivity analysis provides valuable insights into identifying the parameters
that play a substantial role in influencing disease transmission and control. In this study,
we specifically performed sensitivity analysis of some crucial parameters. We employ the
well-known normalized parametric scheme based on the forward sensitivity index of the
model’s parameters, as described by Chitnis et al. [34]. A positive (or negative) index
illustrates that the parameter has a direct (or inverse) effect onR0.
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Definition 1. The normalized sensitivity index, which is used to quantify the relative change in
R0 concerning changes in model’s various parameters, is defined as

Yx =
x
|R0|

× ∂R0

∂x
. (7)

Applying Equation (7), the Table 2 shows the normalized sensitivity index assessing the pro-
portional change ofR0 with respect to the model parameters. The parameters α, σ, µ, δ1, δ2,
and δ3 directly effectR0. This shows that the value ofR0 will grow with an increase in the
parameters above (or decrease respectively). The parameters γ, η, ζ1, ζ2, ζ3 have an inverse
relationship withR0. The graphical representation of sensitivity indices are depicted in the
plot (Figure 8).

Table 2. Sensitivity index of the selected model’s parameters.

Parameter Index

Yα 1
Yσ 0.0558698
Yµ 0.73501
Yδ1 0.0452883
Yδ2 0.0041564
Yδ3 0.0529594
Yγ −0.000119918
Yη −0.863413
Yζ1 −0.881821
Yζ2 −0.0435263
Yζ3 −0.00199973

Parameters
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Figure 8. Bar graph of sensitivity indices of the COVID-19 model.

The significant insights gained from the sensitivity analysis can be helpful in various
applications such as

• Identifying potential parameters: This helps identify the input parameter(s) that play
a substantial role in influencing disease dynamics.

• This helps understand how uncertainties in input parameters can propagate to uncer-
tainties in the model’s predictions.

• Optimization: In optimization problems, the sensitivity indices of model parameters
can guide the setting of appropriate optimal interventions.
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• Decision-making: Understanding the sensitivity of the model to various inputs can
assist decision-makers in making informed choices.

7. Optimal Control Analysis of COVID-19 Model

In this section, we introduce an optimal control strategy for the model (2). The aim of optimal
control is to minimize the COVID-19 disease by providing the following control strategies.

• u1(t) : The first control is used to reduce the number of effective contacts between
infected and susceptible individuals.

• u2(t) : The second control is used to enhance the first vaccine dose efficacy.
• u3(t) : The third control is used to reduce the possibility that after 28 days of vacci-

nation, those who received the first dose do not develop immunity to the original
virus.

• u4(t) : This control is used to reduce the possibility that after 28 days of vaccination,
those who received the second dose do not develop immunity to the original virus.

• u5(t) : The fifth control is used to reduce the possibility that after 28 days of vaccination,
those who received the third dose do not develop immunity to the original virus.

• u6(t) : The sixth control is used to enhance the second-time vaccination rate.
• u7(t) : This control is used to enhance the third-time vaccination rate.

By employing the controls mentioned above, this section formulates an optimal con-
trol problem that elucidates how time-dependent control strategies contribute to disease
eradication. The control model is established in (8). Based on the sensitivity index, the
desired controls are selected. Hence, the resulting control model is structured as follows:

S
′
(t) = θ − αI

N S(1− u1(t))− (u2(t) + µ)S,

E
′
(t) =

(
αIS
N (1− u1(t)) +

αδ1 I V1
N (1− u3(t)) +

αδ2 I V2
N (1− u4(t)) +

αδ3 I V3
N (1− u5(t))

)
− (σ + µ)E,

V
′
1(t) = u2(t)S− αδ1 I V1

N (1− u3(t))− (u6(t) + µ)V1,

V
′
2(t) = u6(t)V1 − αδ2 I V2

N (1− u4(t))− (u7(t) + µ)V2,

V
′
3(t) = u7(t)V2 − αδ3 I V3

N (1− u5(t))− µ V3,

I
′
(t) = σE− (η + µ + γ)I,

H
′
(t) = η(1− b)I − (γ + µ + d)IH ,

R
′
(t) = ηbI + dIH − µR.

(8)

with the same initial conditions given in (2). The respective objective functional is described as

J(u1, u2, u3, u4, u5, u6, u7) =

T∫
0

(
A1E + A2V1 + A3V2 + A4V3 +

A5u2
1

2 +
A6u2

2
2 +

A7u2
3

2

+
A8u2

4
2 +

A9u2
5

2 +
A10u2

6
2 +

A11u2
7

2

)
dt, (9)

where, A1 , A2 , A3 , A4 are the balancing constants associated with the suggested variables
of the objective function, A5 , A6 , A7 , A8 are the the cost factors while T represents the final
time. We used the quadratic objective functional due to the non-linearity of the intervention
considered for the mitigation of the pandemic. For a more comprehensive understanding,
please refer to the work and associated references [35–37]. Our primary goal is to identify
the optimal controls

ūi(t) f or i = 1, 2, 3, 4, 5, 6, 7,
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so that,

J(ū1, ū2, ū3, ū4, ū5, ū6, ū7) = min
Ξ
{J(u1, u2, u3, u4, u5, u6, u7)}.

The corresponding control set is given by

Ξ = {(u1, u2, u3, u4, u5, u6, u7) : [0, T]→ [0, 1] (u1, u2, u3, u4, u5, u6, u7) is a Lebesgue measurable}. (10)

The Lagrangian and Hamiltonian for the provided control system (8) are shown as L and
H, respectively, and are given as follows:

L = A1E + A2V1 + A3V2 + A4V3 +
1
2

(
A5u2

1 + A6u2
2 + A7u2

3 + A8u2
4 + A9u2

5 + A10u2
6 + A11u2

7

)
, (11)

and

H = A1E + A2V1 + A3V2 + A4V3 +
1
2
(

A5u2
1 + A6u2

2 + A7u2
3 + A8u2

4 + A9u2
5 + A10u2

6 + A11u2
7
)
+

λ1

(
θ − αIS

N (1− u1)− (u2 + µ)S
)
+ λ2

(
αI
N

(
S(1− u1) + V1δ1(1− u3) + V2δ2(1− u4)+
V3δ3(1− u5)

)
−(σ + µ)E

)
+λ3

(
u2S− αIV1δ1

N (1− u3)− (u6 + µ)V1

)
+ λ4

(
V1u6 − IV2δ2α

N (1− u4)− (u7 + µ)V2

)
+

λ5

(
u7V3 − αIV3δ3

N (1− u5)− µV3

)
+ λ6(σE− (µ + η + γ)I) + λ7(η(1− b)I − (µ + d + γ)IH)

+λ8(ηbI + dIH − µR),

(12)

where, λm for m = 1, 2, 3, . . . , 8 represents the adjoint variables.

Solution of Optimal Control Problem

In this section, the solution to the optimal control COVID-19 as outlined in (8) is
established. To achieve this, famous Pontryagin’s principle [38,39] is employed. The desired
optimal solution is denoted by (ū1, ū2, ū3, ū4, ū5, ū6, ū7). Furthermore, the following are the
corresponding necessary optimality conditions used in the solution procedure stated as

dz
dt = ∂

∂λm
H(t, ūi, λm),

∂
∂uH(t, ūi, λm) = 0,
dλm(t)

dt = − ∂
∂z λm(t, ūi, λm).

(13)

The criteria′s mentioned in (13) and the following theorem has been utilized to derive the
solution of the optimal system.

Theorem 5. The controls (ū1, ū2, ū3, ū4, ū5, ū6, ū7) and the solution (S̄, Ē, V̄1, V̄2, V̄3, Ī, ¯IH , R̄)
of the control system (8) minimizing the objective functional in the problem, then there exist
adjoint variables (co-state variables) λm, m = 1, 2, . . . , 8. Further, the transversality conditions
λm(T) = 0, m = 1, 2, 3 . . . 8, such that
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λ
′
1(t) = µλ1 + u2(λ1 − λ3) + (λ1 − λ2)

(
α Ī(N̄−S̄)

N̄2

)
(1− u1) + (λ2 − λ3)(1− u3)(

αV̄1δ1 Ī
N̄2

)
+ (λ2 − λ4)(1− u4)

(
αV̄2δ2 Ī

N̄2

)
+ (λ2 − λ5)(1− u5)

(
αV̄3δ3 Ī

N̄2

)
,

λ
′
2(t) = −A1 + µλ2 + σ(λ2 − λ6) + (λ2 − λ1)(1− u1)

α Ī S̄
N̄2 + (λ2 − λ3)(1− u3)(

αV̄1δ1 Ī
N̄2

)
+ (λ2 − λ4)(1− u4)

(
αV̄2δ2 Ī

N̄2

)
+ (λ2 − λ5)(1− u5)

(
αV̄3δ3 Ī

N̄2

)
,

λ
′
3(t) = −A2 + µλ3 + (λ3 − λ4)u6 + (λ2 − λ1)(1− u1)

α Ī S̄
N̄2 + (λ3 − λ2)(1− u3)(

αδ1 Ī(N̄−V̄1)
N̄2

)
+ (λ2 − λ4)(1− u4)

(
αV̄2δ2 Ī

N̄2

)
+ (λ2 − λ5)(1− u5)

(
αV̄3δ3 Ī

N̄2

)
,

λ
′
4(t) = −A3 + µλ4 + u7(λ4 − λ5) + (λ2 − λ1)(1− u1)

α Ī S̄
N̄2 + (λ2 − λ3)(1− u3)(

αV̄1δ1 Ī
N̄2

)
+ (λ4 − λ2)(1− u4)

(
αδ2 Ī(N̄−V̄2)

N̄2

)
+ (λ2 − λ5)(1− u5)

(
αV̄3δ3 Ī

N̄2

)
,

λ
′
5(t) = −A4 + µλ5 + (λ2 − λ1)(1− u1)

α Ī S̄
N̄2 + (λ2 − λ3)(1− u3)

(
αV̄1δ1 Ī

N̄2

)
+ (λ2 − λ4)(1− u4)(

αV̄2δ2 Ī
N̄2

)
+ (λ5 − λ2)(1− u5)

(
αδ3 Ī(N̄−V̄3)

N̄2

)
,

λ
′
6(t) = (λ1 − λ2)(1− u1)

(
αS̄(N̄− Ī)

N̄2

)
+ (λ3 − λ2)(1− u3)

(
αδ1V̄1(N̄− Ī)

N̄2

)
+ (λ4 − λ2)(1− u4)(

αδ2V̄2(N̄− Ī)
N̄2

)
+ (λ5 − λ2)(1− u5)

(
αδ3V̄3(N̄− Ī)

N̄2

)
+ (µ + γ)λ6 + η(λ6 − λ7)+

bη(λ7 − λ8),

λ
′
7(t) = d(λ7 − λ8) + (µ + γ)λ7 + (λ2 − λ1)(1− u1)

α Ī S̄
N̄2 + (λ2 − λ3)(1− u3)

(
αV̄1δ1 Ī

N̄2

)
+(λ2 − λ4)(1− u4)

(
αV̄2δ2 Ī

N̄2

)
+ (λ2 − λ5)(1− u5)

(
αV̄3δ3 Ī

N̄2

)
,

λ
′
8(t) = µλ8 + (λ2 − λ1)(1− u1)

α Ī S̄
N̄2 + (λ2 − λ3)(1− u3)

(
αV̄1δ1 Ī

N̄2

)
+(λ2 − λ4)(1− u4)

(
αV̄2δ2 Ī

N̄2

)
+ (λ2 − λ5)(1− u5)

(
αV̄3δ3 Ī

N̄2

)
.

(14)

Furthermore, the associated optimal controls ū1, ū2, ū3, ū4, ū5, ū6, and ū7 are given by

ū1 = Ī S̄α(λ2−λ1)
A5 N , ū2 = S̄(λ1−λ3)

A6
, ū3 = Ī V̄1αδ1(λ2−λ3)

A7 N , ū4 = Ī V̄2αδ2(λ2−λ4)
A8 N ,

ū5 = Ī V̄3αδ3(λ2−λ5)
A9 N , ū6 = V̄1(λ3−λ4)

A10
, ū7 = V̄2(λ4−λ5)

A11
.

(15)
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Proof. By using the condition stated in (13), the transversality conditions and results
given in (14) are obtained for the Hamiltonian function given in (12) using S = S̄, E = Ē,
V1 = V̄1, V2 = V̄2, V3 = V̄3, I = Ī, IH = ĪH , and R = R̄. Moreover, using the condition
∂H(t,ūi ,λm)

∂ui
= 0 given in (13), the optimal controls ū1, ū2, ū3, ū4, ū5, ū6, and ū7 shown in (15)

are derived.

8. Estimating the Optimal Solution

This section aims to analyze the significant impact of the proposed time-varying
controls on disease incidence and potential mitigation. For this purpose, the COVID-
19 control model is simulated with the aforementioned time-varying control variables to
display their impact on the disease dynamics. An effective iterative approach known as RK4
is used to carry out the simulation process. The weights and balancing constants are chosen
as A1 = 10, A2 = 0.1, A3 = 0.1, A4 = 0.01, A5 = 50, A6 = 10, A7 = 30, A8 = 100,
A9 = 50, A10 = 20, and A11 = 100, while the simulation’s parameters are taken from
Table 1. It is important to note that the numerical values of weighed and balanced constants
are taken for the sake of simulation. The red dashed curves illustrate the dynamical
behavior of various populations under varied control measures (implementing all the
control measures at the time), while the black solid curves exhibit the changing behavior
with constant controls. The dynamics of susceptible, primary vaccinated, exposed, and
secondary vaccinated individuals with and without time-varying controls are analyzed in
Figure 9, while a similar analysis of individuals with a booster shots, hospitalized, infected,
and recovered individuals are presented in Figure 10. Figures 11 and 12 demonstrate the
corresponding control profiles. When the suggested optimal controls are actively utilized,
the population in the susceptible class reduces while the population in all vaccinated
classes increases significantly and reaches its maximum level with time. However, the
population in the exposed and infected classes dramatically decreased and vanished after
60 and 90 days, respectively, with the implementation of time-varying controls. Because of
averting infection, the populations in the hospitalized and recovered classes also reduced
significantly, as shown in Figure 10c,d. The time-varying personal protection control u1
is utilized at the maximum level from the initial time to approximately 220 days and
decreases gradually until the end of the considered time level, as shown in Figure 11a.
The time-varying control for first-time vaccine efficacy enhancement u2 is initially at the
maximum level until the first 100 days and then immediately reduces until the end, as can
be seen in Figure 11b. Figures 11c,d and 12a illustrate the intensity of controls u3, u4, and
u5 evaluating the reduction in the possibility that first, second, and third vaccine doses
do not develop immunity to the original viruses, respectively. It can be observed that
all of these controls are initially maintained at the maximum level and then gradually
reduced until the end of the considered time interval. The implementation level of controls
used for the enhancement of second- and third-time vaccinations u6 and u7 are shown in
Figure 12b,c, respectively. These controls are implemented at the maximum level from the
start to the end of the time level under consideration.
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Figure 9. Simulation of (a) susceptible, (b) exposed, (c) primary and (d) secondary vaccinated
individuals in the model (8) with optimal and with constant controls. The constant values of first,
second and booster COVID-19 vaccine controls are considered as 0.7, 0.6, and 0.29, respectively.
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Figure 10. Simulation of people with (a) booster short, (b) infected, (c) hospitalized and (d) recovered
compartment in the model (8) with optimal and with constant controls. The constant values of first,
second and booster COVID-19 vaccine controls are considered as 0.7, 0.6, and 0.29, respectively.
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Figure 11. The corresponding optimal control profiles with controls (a) u1(t), (b) u2(t), (c) u3(t) and
(d) u4(t).
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Figure 12. The corresponding optimal control profiles with controls (a) u5(t), (b) u6(t) and (c) u7(t).
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9. Conclusions

Vaccination remains one of the most effective preventive interventions and is a critical
component in mitigating disease outbreaks. In this study, we developed a novel mathe-
matical model to assess the impact of administering multiple constant and time-varying
vaccines, including the first and second doses and booster shots, on infection incidence
and persistence. Initially, the necessary mathematical assessment of the model is presented
and basic reproduction is calculated. To curb infection, we determined the critical vac-
cination convergence rate, which is dependent on the reproduction number. Moreover,
using backward bifurcation analysis, we concluded that bifurcation depends on the sign
of ā. To measure each parameter’s relative influence on disease spread, the sensitivity
indices of the proposed model parameters for the basic reproduction number are tabulated
using a normalized approach. Furthermore, we reconstructed the model using optimal
control theory to identify the best control strategy for minimizing infection. We introduced
seven time-varying controls, where u1(t) is the personal protection control used for the
reduction in effective contacts of infected individuals with susceptible, u2(t), u6(t), u7(t)
controls are used for the 1st, 2nd, and 3rd vaccine dose efficacy enhancement. The controls
u3(t), u4(t), u5(t) are used to reduce the possibility that after 28 days of vaccination, those
who received the first, second, and third doses do not develop immunity to the original
virus. Using the well-known Pontryagin’s maximum principle, the necessary optimal
conditions are determined. The implementation of the suggested time-varying optimal
controls has been found to play a crucial role in effectively minimizing the risk of disease
transmission. Moreover, by effectively adjusting vaccination strategies, such as the timing
and frequency of doses, the model shows that the spread of the disease can be significantly
controlled. These time-varying controls allow for a more adaptive and responsive approach,
enabling healthcare authorities to tailor vaccination campaigns on the basis of evolving
epidemiological conditions, the emergence of new variants, and the overall vaccination
coverage in the population. This flexibility empowers the public health system to optimize
vaccination efforts and better control the spread of the infection, ultimately leading to a
reduced incidence of the disease and improved public health outcomes.

Author Contributions: Y.L.: Conceptualization, formal analysis, writing—review and editing, S.
and L.Z.: Software, methodology, visualization, validation, writing—review & editing, E.A.A.I. and
F.A.A.: Conceptualization, supervision, project administration, formal analysis, writing—review and
editing, funding acquisition, A.M.H.: Supervision, investigation, funding acquisition, resources. All
authors have read and agreed to the published version of the manuscript.

Funding: This project is funded by King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: Researchers Supporting Project number (RSPD2023R1060), King Saud University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26,

450–452. [CrossRef] [PubMed]
2. World Health Organization. Novel Coronavirus (2019-nCoV): Situation Report; World Health Organization: Geneva, Switzerland,

2020; p. 11.
3. Pfefferbaum, B.; North, C.S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 2020, 383, 510–512. [CrossRef] [PubMed]
4. Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; et al. A review of

SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci. 2020, 21, 2657. [CrossRef]
5. Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical characteristics of

coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [CrossRef]
6. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period

of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med.
2020, 172, 577–582. [CrossRef]

http://doi.org/10.1038/s41591-020-0820-9
http://www.ncbi.nlm.nih.gov/pubmed/32284615
http://dx.doi.org/10.1056/NEJMp2008017
http://www.ncbi.nlm.nih.gov/pubmed/32283003
http://dx.doi.org/10.3390/ijms21072657
http://dx.doi.org/10.1056/NEJMoa2002032
http://dx.doi.org/10.7326/M20-0504


Mathematics 2023, 11, 4253 24 of 25

7. World Health Organization. Non-Pharmaceutical Public Health Measures for Mitigating the Risk and Impact of Epidemic and Pandemic
Influenza: Annex: Report of Systematic Literature Reviews (No. WHO/WHE/IHM/GIP/2019.1); World Health Organization: Geneva,
Switzerland, 2019.

8. Polack, F.P. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [CrossRef]
[PubMed]

9. Al-arydah, M. Mathematical modeling and optimal control for COVID-19 with population behavior. Math. Meth. Appl. Sci. 2023,
1–15. [CrossRef]

10. Al-arydah, M.; Berhe, H.; Dib, K.; Madhu, K. Mathematical modeling of the spread of the coronavirus under strict social
restrictions. Math. Meth. Appl. Sci. 2021, 1–11. [CrossRef]

11. Aatif, A.; Ullah, S.; Khan, M.A. The impact of vaccination on the modeling of COVID-19 dynamics: A fractional order model.
Nonlinear Dyn. 2022, 110, 3921–3940.

12. Zarin, R. Numerical study of a nonlinear COVID-19 pandemic model by finite difference and meshless methods. Partial. Differ.
Equations Appl. Math. 2022, 6, 100460. [CrossRef]

13. Alshehri, A.; Ullah, S. A numerical study of COVID-19 epidemic model with vaccination and diffusion. Math. Biosci. Eng. 2023,
20, 4643–4672. [CrossRef]

14. Ali, I.; Khan, S.U. Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method.
AIMS Math. 2023, 8, 4220–4236. [CrossRef]

15. Din, A.; Amine, S.; Allali, A. A stochastically perturbed co-infection epidemic model for COVID-19 and hepatitis B virus. Nonlinear
Dyn. 2023, 111, 1921–1945. [CrossRef]

16. Rahat, Z.; Khan, A.; Yusuf, A.; Sayed, A.-K.; Inc, M. Analysis of fractional COVID-19 epidemic model under Caputo operator.
Math. Methods Appl. Sci. 2023, 46, 7944–7964.

17. Ravichandran, C.; Logeswari, K.; Khan, A.; Abdeljawad, T.; Goamez-Aguilar, J.F. An epidemiological model for computer virus
with Atangana-Baleanu fractional derivative. Results Phys. 2023, 51, 106601. [CrossRef]

18. Lou, J.; Zheng, H.; Zhao, S.; Cao, L.; Wong, E.L.; Chen, Z.; Chan, R.W.; Chong, M.K.; Zee, B.C.; Chan, P.K.; et al. Quantifying the
effect of government interventions and virus mutations on transmission advantage during COVID-19 pandemic. J. Infect. Public
Health 2022, 15, 338–342. [CrossRef]

19. Wang, Y.; Wang, P.; Zhang, S.; Pan, H. Uncertainty modeling of a modified SEIR epidemic model for COVID-19. Biology 2022, 11,
1157. [CrossRef]

20. Liu, P.; Huang, X.; Zarin, R.; Cui, T.; Din, A. Modeling and numerical analysis of a fractional order model for dual variants of
SARS-CoV-2. Alex. Eng. J. 2023, 65, 427–442. [CrossRef]

21. Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To mask or not to mask:
Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect. Dis. Model. 2020, 5,
293–308. [CrossRef] [PubMed]

22. Agusto, F.B.; Erovenko, I.V.; Fulk, A.; Abu-Saymeh, Q.; Romero-Alvarez, D.; Ponce, J.; Sindi, S.; Ortega, O.; Saint Onge, J.M.;
Peterson, A.T. To isolate or not to isolate: The impact of changing behavior on COVID-19 transmission. BMC Public Health 2022,
22, 138.

23. Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination:
A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [CrossRef] [PubMed]

24. Eyre, D.W.; Taylor, D.; Purver, M.; Chapman, D.; Fowler, T.; Pouwels, K.B.; Walker, A.S.; Peto, T.E. Effect of COVID-19 vaccination
on transmission of alpha and delta variants. N. Engl. J. Med. 2022, 386, 744–756. [CrossRef] [PubMed]

25. Ngonghala, C.N.; Taboe, H.B.; Safdar, S.; Gumel, A.B. Unraveling the dynamics of the Omicron and Delta variants of the 2019
coronavirus in the presence of vaccination, mask usage, and antiviral treatment. Appl. Math. Model. 2023, 114, 447–465. [CrossRef]
[PubMed]

26. Peter, O.J.; Panigoro, H.S.; Abidemi, A.; Ojo, M.M.; Oguntolu, F.A. Mathematical model of COVID-19 pandemic with double dose
vaccination. Acta Biotheor. 2023, 71, 9. [CrossRef] [PubMed]

27. Wang, Y.; Ullah, S.S.; Khan, I.U.; AlQahtani, S.A.; Hassan, A.M. Numerical assessment of multiple vaccinations to mitigate the
transmission of COVID-19 via a new epidemiological modeling approach. Results Phys. 2023, 52, 106889. [CrossRef]

28. Lakshmikantham, V.; Leela, S.; Martynyuk, A.A. Stability Analysis of Nonlinear Systems; M. Dekker: New York, NY, USA, 1989;
pp. 249–275.

29. LaSalle, J.P.; Lefschetz, S. The Stability of Dynamical Systems (SIAM, Philadelphia, 1976); Zhonghuai Wu Yueyang Vocational
Technical College Yueyang: Hunan, China, 1976.

30. Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef] [PubMed]

31. Castillo-Chavez, C.; Song, B. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 2004, 1, 361–404.
[CrossRef] [PubMed]

32. Akinwande, N.I.; Ashezua, T.T.; Gweryina, R.I.; Somma, S.A.; Oguntolu, F.A.; Usman, A.; Abdurrahman, O.N.; Kaduna, F.S.;
Adajime, T.P.; Kuta, F.A.; et al. Mathematical model of COVID-19 transmission dynamics incorporating booster vaccine program
and environmental contamination. Heliyon 2022, 8, e11513. [CrossRef]

http://dx.doi.org/10.1056/NEJMoa2034577
http://www.ncbi.nlm.nih.gov/pubmed/33301246
http://dx.doi.org/10.1002/mma.9619
http://dx.doi.org/10.1002/mma.7965
http://dx.doi.org/10.1016/j.padiff.2022.100460
http://dx.doi.org/10.3934/mbe.2023215
http://dx.doi.org/10.3934/math.2023210
http://dx.doi.org/10.1007/s11071-022-07899-1
http://dx.doi.org/10.1016/j.rinp.2023.106601
http://dx.doi.org/10.1016/j.jiph.2022.01.020
http://dx.doi.org/10.3390/biology11081157
http://dx.doi.org/10.1016/j.aej.2022.10.025
http://dx.doi.org/10.1016/j.idm.2020.04.001
http://www.ncbi.nlm.nih.gov/pubmed/32355904
http://dx.doi.org/10.1016/S1473-3099(22)00320-6
http://www.ncbi.nlm.nih.gov/pubmed/35753318
http://dx.doi.org/10.1056/NEJMoa2116597
http://www.ncbi.nlm.nih.gov/pubmed/34986294
http://dx.doi.org/10.1016/j.apm.2022.09.017
http://www.ncbi.nlm.nih.gov/pubmed/36281307
http://dx.doi.org/10.1007/s10441-023-09460-y
http://www.ncbi.nlm.nih.gov/pubmed/36877326
http://dx.doi.org/10.1016/j.rinp.2023.106889
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://www.ncbi.nlm.nih.gov/pubmed/12387915
http://dx.doi.org/10.3934/mbe.2004.1.361
http://www.ncbi.nlm.nih.gov/pubmed/20369977
http://dx.doi.org/10.1016/j.heliyon.2022.e11513


Mathematics 2023, 11, 4253 25 of 25

33. Kim, Y.R.; Choi, Y.J.; Min, Y. A model of COVID-19 pandemic with vaccines and mutant viruses. PLoS ONE 2022, 17, e0275851.
[CrossRef]

34. Chitnis, N.; Hyman, J.M.; Cushing, J.M. Determining important parameters in the spread of malaria through the sensitivity
analysis of a mathematical model. Bull. Math. Biol. 2008, 70, 1272–1296. [CrossRef]

35. Saif, U.; Khan, M.A. Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with
optimal control analysis with a case study. Chaos Solitons Fractals 2020, 139, 110075.

36. Agusto, F.B.; Khan, M.A. Optimal control strategies for dengue transmission in Pakistan. Math. Biosci. 2018, 305, 102–121.
[CrossRef]

37. Saif, U.; Khan, M.A.; Gmez-Aguilar, J.F. Mathematical formulation of hepatitis B virus with optimal control analysis. Optim.
Control. Appl. Methods 2019, 40, 529–544.

38. Pontryagin, L.S. Mathematical Theory of Optimal Processes; CRC Press: Boca Raton, FL, USA, 1987.
39. Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Springer Science and Business Media: Berlin/Heidelberg,

Germany, 2012; Volume 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0275851
http://dx.doi.org/10.1007/s11538-008-9299-0
http://dx.doi.org/10.1016/j.mbs.2018.09.007

	Introduction
	Modeling the Dynamics of COVID-19 with Multiple Vaccine Doses
	Qualitative Analysis of the Model
	Positivity and Boundedness
	Positivity 
	Boundedness

	Equilibria and the Threshold Parameter of the Model
	Local Stability at COVID-Free Equilibrium Point
	Global Asymptotic Stability of (GAS) for Special Case

	Interpretation of Vaccination Coverages Based on  R0
	Estimating the Time Series Solution
	Sensitivity Analysis
	Optimal Control Analysis of COVID-19 Model
	Estimating the Optimal Solution
	Conclusions
	References 

