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Abstract: The frequency and severity of natural disasters is surging, posing an urgent need for robust
communication network infrastructure that is capable of withstanding these events. In this paper,
we present a groundbreaking graph-theoretic system designed to evaluate and enhance network
resilience in the face of natural disasters. Our solution harnesses the power of topological robustness
metrics, integrating real-time weather data, geographic information, detailed network topology
data, advanced resilience algorithms, and continuous network monitoring. The proposed scheme
considers four major real-world U.S.-based network providers and evaluates their physical topologies
against two major hurricanes. Our novel framework quantifies the important characteristics of
network infrastructure; for instance, AT&T is identified to have fared better against Hurricane Ivan
(57.98 points) than Hurricane Katrina (39.17 points). We not only provide current insights into network
infrastructure resilience, but also uncover valuable findings that shed light on the performance of
backbone U.S. networks during hurricanes. Furthermore, our findings provide actionable insights to
enrich the overall survivability and functionality of communication networks, mitigating the adverse
impacts of natural disasters on communication systems and critical services in terms of improving
network resiliency via adding additional nodes and link or rewiring.
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1. Introduction

The rapid advancements in communication networks has had a profound impact on
the development of society, and such networks have become a critical part of the infras-
tructure, underpinning numerous aspects of daily life [1]. Communication networks play
a pivotal role in providing essential services to end users, including social networking,
smart-grid management, e-banking services, e-government services, and remote work-
ing. The availability of reliable and dependable communication services is paramount
to ensure widespread access to these vital services. However, the proper functioning
of communication networks is constantly threatened by a wide range of potential disas-
ter events that could result in the simultaneous failure of multiple network components,
thereby degrading their operation and performance [2]. Natural disasters are occurring
with increasing frequency worldwide, potentially inflicting significant damage to critical
infrastructure, including communication networks [3]. The breakdowns caused by these
disasters can severely disrupt communication networks, rendering their services inaccessi-
ble. The impact of natural disasters on communication networks extends beyond service
disruptions, hindering rescue and recovery efforts, exacerbating the effects of the disaster,
and prolonging the suffering of affected populations [4].

As indicated by worldwide meteorological observations, the risk posed by natural
disasters has been steadily increasing. These disasters can be classified as either predictable
(e.g., hurricanes, tornadoes, volcanic eruptions, and fires) or unpredictable (e.g., earth-
quakes) [5]. Regardless of their predictability, natural disasters present a grave threat
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to the backbone networks of a country, necessitating proactive measures to ensure net-
work resilience [6]. A notable example is Hurricane Katrina, which struck the Southeast
United States in August 2005, resulting in substantial damage to Louisiana and Missis-
sippi. Hurricane Katrina damaged the communications infrastructure in the New Orleans
metropolitan area, leaving emergency responders and the general public with little ability
to share critical information for the co-ordination of response efforts [6]. In the previous
September, the Atlantic Basin experienced the devastating impact of Hurricane Ivan, the
strongest hurricane of the 2004 season. The island of Grenada was particularly affected,
with the hurricane inflicting severe damage on the electricity and land-based telecom-
munications networks. The overwhelming demand led to a complete overload of the
mobile network. Despite the mobilization of numerous NGOs, institutions, and local
workers in St. George, the capital city, establishing communication with external parties
proved challenging [7]. Similarly, the 7.1-magnitude earthquake in Southern Taiwan in
December 2006 caused the simultaneous loss of seven underwater lines, disrupting interna-
tional communications to China, Hong Kong, Korea, Japan, and Taiwan. Another example
is the devastating 9.0-magnitude earthquake that struck Japan on 11 March 2011, known
as the Great East Japan Earthquake. This earthquake not only caused severe damage to
telecommunication switching offices but also wreaked havoc on undersea cables, severely
impacting the communication infrastructure. On average, such network outages persist for
approximately 10 days.

Natural disasters pose major threats to critical infrastructure such as power systems,
necessitating strategies to improve resilience [8]. As reviewed by Wang et al., power system
resilience can be enhanced through coordinated generation scheduling, network hardening
and reconfiguration, and integration of smart loads. Power distribution networks face re-
silience challenges during ice disasters, as emergency response plans made with imperfect
information can be risky when executed [9]. To address this, Wu et al. (2022) proposed
a multi-stage framework for urban distribution networks that amends response plans
based on updated disaster information to mitigate secondary impacts on critical loads.
Transportation networks play an underestimated yet critical role in disaster resilience by
providing access to vital services [10]. As Anderson et al. (2022) discussed, evaluating
community resilience requires understanding the direct and indirect impacts of transporta-
tion network damage during disasters on equitable service accessibility. They propose an
approach to simulate hazard scenarios and the resulting isolation to assess transportation
network support for community needs, highlighting the importance of a broad view of
transportation’s role in equitable preparedness and response to disasters.

Scientists widely agree that, as global temperatures continue to rise, the frequency
and intensity of violent storms, including hurricanes and tornadoes, will escalate. Conse-
quently, it has become imperative to equip backbone networks with the ability to respond
swiftly to disruptive events and withstand a wide array of potential natural disasters [11].
Figure 1 shows the potential consequences of natural disasters on a backbone network.
This serves as a reminder of the urgent need to develop robust strategies and solutions
that enhance network resilience against the destructive forces of nature. The severity and
urgency of this problem have garnered significant attention from the research community,
highlighting the importance of network survivability in the face of natural disasters [12,13].
However, there exists a considerable research gap concerning the comprehensive analysis
and understanding of the impact of these disasters. Properly understanding the underlying
patterns and behavior of natural disasters can greatly contribute to the development of
more robust and resilient communication networks that are capable of withstanding their
destructive effects. By leveraging network resilience tools, we can establish a framework for
evaluation of the resilience of communication networks during and after natural disasters.
In this paper, we propose a novel evaluation framework called ENRN: Evaluating the
Resilience of a Network against Natural disasters. Through systematic evaluation, we can
identify vulnerabilities and design more resilient networks that can effectively withstand
the impact of such events. Given enough data, the proposed framework can quantify and
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calculate the robustness and survivability of network infrastructure. We make significant
contributions through three main objectives:

• Introducing a novel system for evaluating network resilience against natural disasters
by leveraging graph-theoretic topological robustness metrics.

• Application of the proposed framework to assess the network resilience of the network
infrastructure in respect of four real-world U.S.-based network providers against two
major hurricanes.

• Presenting the findings and inferences of the results obtained for four real-world U.S.-
based networks, providing valuable insights into potential network improvements to
enhance resilience against natural disasters.

Point of Presence (PoP) :servers, routers, network switches, multiplexers …. etc

Figure 1. Examples of natural disasters affecting a backbone network.

In this research, we aim to address pivotal questions, including: What is the level of
resilience exhibited by real-world U.S.-based network providers in the face of disasters? Can
network functionality be maintained during and after natural disasters? What strategies
can be implemented to enhance network infrastructure in preparation for inevitable future
threats? By addressing these essential research gaps, our key objective is to foster the
development of more resilient communication infrastructure. This, in turn, will enable
efficient communication and the uninterrupted provision of vital services in the aftermath
of natural disasters.

The remainder of this article is organized as follows. Section 2 provides a background
in graph theory and a comparative description of the relevant literature on the resilience
and survival of disasters in communication networks. The proposed ENRN system is
extensively discussed in Section 3. In Section 4, the evaluation methodology is discussed,
together with our resilience metrics and datasets. Section 5 details how four backbone
networks performed through two significant hurricane events, Katrina and Ivan, in the
United States, applying the ENRN algorithm to the dataset associated with these hurricanes.
Finally, our conclusions and directions for future research are summarized in Section 6.

2. Background and Related Work

In this section, we present basic graph notation and centrality measures. In addition,
we present related work that utilizes graph-theoretic approaches to network resilience.

2.1. Graph Theory Centrality

A graph-theoretic approach can be employed to model and analyze various large-scale
networks, such as cellular communications networks, water distribution networks (WDNs),
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and internet service providers. By representing these networks as graphs, we gain valuable
insights into the behavior of link failures and outages, which directly contribute to their
resilience during extreme events, such as hurricanes. In our system model, we define a
network infrastructure as G(V, E), where V represents the major nodes or vertices, such
as base stations, junctions, pumps, or grids. These nodes are interconnected by edges (E),
which represent power lines, links, pipelines, or other network connections. Each graph
has a finite number of nodes and edges, denoted by |V| and |E|, respectively.

To measure the connectivity of a given network using graph-theoretic approach,
several metrics can be used, such as average degree of centrality and betweenness.

The degree of centrality d(v) of a node v indicates its centrality and connectivity within
the network.

CD(v) =
dv

|V| − 1
(1)

where dv is the degree of the node v (i.e., the number of edges connected to v), and |V|
is the total number of nodes in the graph [14]. Nodes with higher degrees are more
crucial, and their failure can result in significant losses and outages. Conversely, ensuring
the stability of these nodes allows for the establishment of alternative connections to
enhance network resilience.

The average degree 〈d〉 can be calculated as follows:

〈d〉 = ∑v∈V d(v)
|V| . (2)

The shortest path d(u, v) between two nodes u and v is the minimum number of edges
traversed to travel from u to v [15]. The average shortest-path length L(G) of a graph is
the average of the shortest path lengths between all pairs of nodes, calculated as:

L(G) =
∑u,vs.∈V,u 6=v d(u, v)
|V|(|V| − 1)

. (3)

L(G) can provide insights into the efficiency of communications, water flow, and transport.
The betweenness centrality of a node in a network is a measure of the number of

shortest paths from all vertices to all others that pass through that node [16]. In a graph G
with vertices V, the betweenness centrality CB(v) for a node v is calculated as:

CB(v) = ∑
s,t∈V

σst(v)
σst

(4)

where s and t are nodes in the graph different from v, σst is the total number of shortest paths
from node s to node t, and σst(v) is the number of those paths that pass through v. These
basic graph-theoretic metrics can be used to measure connectivity during natural events.

The selection of an appropriate network topology is a critical task, as it plays a
significant role in determining the robustness of the network against node removals. The
choice of topology affects various important aspects of the network. For example, in a star
graph, removing the central node results in complete disconnection. However, a full-mesh
topology offers maximum robustness against node removals, but can be expensive to
implement in terms of adding all possible links [17,18]. The complexity of selecting an
optimal topology increases with the number of nodes, often falling into the category of NP-
hard problems [19,20]. Different graph robustness metrics have been introduced to evaluate
the resilience of networks against common attacks, such as node or link removals [21,22].
These metrics capture various graph properties, and their selection depends on the specific
problem at hand [23]. Commonly used metrics include node degree, average shortest path
length, and diameter, which provide insights into the robustness of a network. Additionally,
metrics such as min-cut [24], k-connectivity [17], and all-terminal reliability [25] have shown
promise in measuring robustness against node removals. However, it is important to note
that the computation of these metrics is NP-hard, adding complexity to the evaluation
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process [25]. Nevertheless, graph theory is a viable tool when it comes to the representation
of complex connected networks of nodes. However, several potential robustness graph
metrics are discussed in [26].

2.2. Related Work

Several studies have addressed network resilience to enhance the reliability and sur-
vivability of communication networks during natural disasters and large-scale failures.
Hossain et al. [27] proposed metrics and enhancement strategies for grid resilience, evalu-
ating the performance of power grids by simulating critical component failures. However,
their study was limited to specific types of power grids, necessitating further investigation
into its applicability to other grid types and regions. Liu et al. [28] presented a survivability-
aware routing restoration mechanism for smart-grid communication networks, utilizing
a two-phase routing restoration algorithm that did not consider various failure types.
Sadeghi Khomami and Sepasian [29] introduced a pre-hurricane repair team placement
model (PHRTPM) to improve the resilience of overhead electricity distribution networks,
significantly reducing repair time. However, the limitations included assumptions of con-
stant repair times and a lack of consideration of real-time information during hurricanes.

In a study by Izaddoost and Heydari [30], a novel approach was proposed to en-
hance network service survivability during large-scale failure scenarios. They introduced a
backup path selection algorithm to improve network survivability under various failure
scenarios and validated it through simulation experiments, demonstrating its effective-
ness in maintaining network connectivity. However, a limitation of the study was the
assumption of equal importance for all network nodes, which may not reflect real-world
network dynamics. Pasic et al. [31] introduced EFRADIR, an enhanced framework for
disaster resilience that combines different resilience-enhancing techniques. Although a
case study demonstrated the effectiveness of the framework, it did not consider the impact
of dynamic network conditions or potential interdependencies between network layers.
Tariq et al. [32] proposed an adaptable resilience framework to measure the impact of disas-
ters on communities at the local level, utilizing a mixed-method approach. The framework
can effectively measure community disaster resilience and identify areas for improvement;
however, the study’s limitations include its focus on only a single case study, indicating the
need to assess its applicability to other communities or disaster types. For the topological
properties and fault tolerance of networks using graph-theoretic approaches, several stud-
ies investigated computational and topological properties through graph parameters such
as degree, diameter, and closeness centrality [33–35].

Raayatpanah et al. [36] presented a design for survivable wireless backhaul networks,
optimizing network design by considering the probability of link failures and the im-
portance of nodes. Simulation experiments demonstrated the model’s effectiveness in
improving network survivability, but dynamic network conditions and different failure
types were not considered. Sterbenz et al. [37] proposed a comprehensive framework
for evaluating network resilience, including natural disasters, equipment failures, and
human errors. Although case studies validated the framework’s effectiveness, the authors
did not consider real-time network changes or potential dependencies between network
components. In the context of content-centric networks and many-to-many routing, Davis
and Vokkarane [38] investigated failure-aware protection and proposed a routing algo-
rithm considering network failures and content request patterns to improve resilience.
However, dynamic network conditions and different failure types were not accounted for.
Astaneh et al. [39] explored the trade-offs between risk and operational cost in SDN failure
recovery plans, proposing a risk-aware plan that balanced failure probability and opera-
tional costs. Simulation experiments demonstrated its effectiveness, but its disadvantages
included assumptions of constant failure probabilities and limited consideration of different
network conditions.

In the context of SDN-enabled smart city networks, Aljohani and Alenazi [40] pro-
posed MPRESISDN, a multi-path resilient routing scheme that improves network resilience
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by considering multiple paths during failure scenarios. Simulation experiments were
conducted to validate the scheme’s effectiveness in maintaining network connectivity,
although they did not account for dynamic network conditions or different failure types.
Habib et al. [13] focused on disaster survivability in optical communication networks,
considering the spatial and temporal characteristics of disasters; although the authors
claimed that the method could maintain network connectivity during disasters, the study’s
limitations included assumptions of constant disaster probabilities and a lack of consid-
eration of different network conditions. Gardner et al. [41] proposed a resilience-aware
SLA model that utilized service-level agreements to ensure network resilience against dis-
asters, considering network failures, resource availability, and service-level objectives. The
model’s effectiveness in improving network resilience was demonstrated through a case
study. In the study by An et al. [42], the resilience evaluation of multi-path routing against
network attacks and failures was investigated. A novel resilience metric was proposed,
which can accurately measure network resilience by considering vulnerability to attacks
and failures. However, the study’s limitations included a lack of consideration of real-time
network changes and potential dependencies between different network components.

Agarwal et al. [43] studied the impact of single, multiple, and probabilistic physical
attacks on network connectivity. They developed models to quantify the vulnerability in
the form of the number of nodes or links that must be attacked to partition the network.
However, the study only considered targeted attacks without showing natural events.
Neumayer et al. [44] specifically analyzed the effect of geographically correlated network
failures by modeling spatial dependency between failures. They developed a polynomial-
time algorithm for finding a worst-case cut and used it on Alcatel’s submarine network
map in order to obtain numerical results. However, the analysis was limited to failures
within a single network. Das et al. [45] studied failures in an interconnected power
communication system and developed techniques for root cause analysis of such failures.
They demonstrated the cascading effects of failures to validate their analytical results
through experiments in the power communication network of Maricopa County.

Table 1 presents a comparative analysis of the studies retrieved through an exhaustive
literature review, focusing on the main contributions of the various studies and the aspects
of network resilience that they address. The literature review highlights significant research
efforts in the field of network resilience, specifically focusing on enhancing the reliability
and survivability of communication networks during natural disasters and large-scale
failures. Although several studies have proposed effective approaches and mechanisms,
there are certain limitations that need to be addressed to further improve network resilience.
Our proposed system addresses these limitations by adopting a graph-theoretic approach
that leverages real-time weather data to evaluate the impact of hurricanes on backbone
networks. Furthermore, we utilize the real-world backbone types of U.S.-based telecom-
munication networks, thus providing a realistic assessment of network resilience. The
proposed system is rigorously evaluated using data from two major hurricanes, allow-
ing us to analyze the results in the context of connectivity preference metrics. By taking
these factors into account, our proposed scheme offers several advantages over existing
approaches. It incorporates real-time weather data, enabling more accurate assessment
of the network’s vulnerability to hurricanes. Additionally, the utilization of real-world
backbone-type networks ensures the practical relevance of our findings. A comprehensive
evaluation using actual hurricane data further strengthens the reliability and applicability
of our proposed system.
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Table 1. Comparative analysis of related work on network resilience.

Ref. Methodology Data Sources Validation Limitations

[27]

Identification of critical
components and

simulation of their
failure

Specific power grid Simulation Limited to a specific
power grid

[28] Two-phase routing
restoration algorithm Simulation experiments Simulation

Did not consider
different types of

failures

[29]
Mixed-integer linear
programming (MILP)

model

Distribution network
topology and potential

hurricane damage
Mathematical model

Assumption of constant
repair times and lack of

consideration of
real-time information

during hurricanes

[39]

Risk-aware SDN failure
recovery plan

considering both the
probability of failure

and associated
operational costs

Simulation experiments Simulation

Assumption of
constant failure

probabilities and lack
of consideration of
different network

conditions

[42]

Novel resilience metric
considering the

network’s vulnerability
to attacks and failures

Simulation experiments Simulation

Lack of consideration
of real-time network

changes and potential
dependencies between

different network
components

[30] Backup path selection
algorithm Simulation experiments Simulation

Assumption that all
nodes have equal

importance

[31]

Multi-layered approach
combining demand
estimation, resource

allocation, and network
recovery

Case study Case study

Did not consider
dynamic network

conditions and
potential

interdependencies
between network

layers

[32]

Mixed-methods
approach including

interviews, focus
groups, and surveys

Single case study Case study

Focus on a single case
study and inability to

assess the framework’s
applicability to other

communities or
disaster types

[36]

Mathematical model to
optimize network

design considering the
probability of link

failures and importance
of different nodes

Simulation experiments Simulation

Did not consider the
effect of dynamic

network conditions or
impact of different

failure types

[37]

Comprehensive
framework for

evaluating network
resilience under
various failure

scenarios

Case studies Case studies

Lack of consideration
for real-time network
changes and potential
dependencies between

different network
components
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Table 1. Cont.

Ref. Methodology Data Sources Validation Limitations

[38]

Novel routing
algorithm considering
network failures and

content request
patterns

Simulation experiments Simulation

Did not consider the
impact of dynamic

network conditions or
different failure types

[41]

Resilience-aware SLA
model considering
network failures,

resource availability,
and service-level

objectives

Case study Case study

Did not consider the
impact of dynamic

network conditions or
potential dependencies

between different
network components

[13]

Proactive protection
scheme considering the

spatial and temporal
characteristics of

disasters

Simulation experiments Simulation

Assumption of
constant disaster

probabilities and lack
of consideration of
different network

conditions

[40]

Novel routing
algorithm considering

multiple paths to
improve network

resilience

Simulation experiments Simulation

Did not consider the
impact of dynamic

network conditions or
different failure types

[43]

Mathematical modeling
of single, multiple, and
probabilistic physical

attacks

Random scenarios Mathematical modeling
Did not consider the

impact of natural
disasters

[44]

Modeling of large-scale
natural disasters or
strategic attacks on

network infrastructure

Case study Mathematical modeling The results are limited
to only one case study

[45]

Root cause analysis of
failures in

interconnected
networks

Case study Mathematical modeling The results are limited
to only one case study

3. The Proposed ENRN System for Evaluating Network Resilience

In this section, we present the proposed system’s components and their interaction.
We introduce the main algorithm that evaluates and monitors networks in natural disasters.
In addition, we present a discussion of our implementation and the tools used to integrate
the whole system.

3.1. Components of the Proposed System

We propose a novel evaluation framework, called ENRN, in order to identify the
resilience of communication network infrastructure against natural disasters. There are six
major components that coherently work together to enable the identification of actionable
observations. Figure 2 illustrates the communication between the components of the
proposed framework.
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Realtime Weather 
Database

GIS
Resilience 
Algorithm

Resilience 
Evaluation 

Component

Network Topology 
Discovery

Network 
Monitoring

Figure 2. Framework of the proposed six-component system.

The real-time weather database serves as a reliable source of current weather data, sup-
plying information on ongoing and predicted natural disasters, such as storms, floods, and
earthquakes. These data are vital for accurate and timely assessments, and are utilized by
the GIS and resilience algorithm components. The GIS component processes the real-time
weather database data in conjunction with geographic information to identify high-risk
areas susceptible to natural disasters. This information is then utilized by the resilience
algorithms for network resilience evaluation. The network topology discovery component
collects comprehensive data on the physical and logical structure of the network, including
node and link properties, which are subsequently analyzed by the resilience algorithm
component. In particular, using data from the real-time weather database, GIS, and the
network topology discovery components, the resilience algorithm component assesses
network resilience by employing various algorithms that analyze and determine the impact
of natural disasters on network performance. This algorithm takes the network topology
and information on disrupted components as input; it then computes the resilience metrics,
including the largest connected component size, shortest path lengths, and flow robust-
ness. The algorithm is optimized to efficiently analyze large-scale networks and quantify
resilience degradation during disasters. A key benefit is the ability to pinpoint vulnerable
areas based on how resilience metrics change when specific components fail. By identifying
weaknesses, preventive measures can be taken to strengthen network robustness. The
detailed information of this algorithm is discussed in Section 3.3. The resilience evalua-
tion component generates insightful reports based on the assessments carried out by the
resilience algorithm component. These reports provide valuable information regarding the
network’s resilience against natural disasters, enabling network operators to proactively
enhance resilience and mitigate potential risks. Additionally, the Network Monitoring
component continuously observes the network’s performance, detecting anomalies and
potential threats in real-time. By doing so, it ensures the network’s resilience against natural
disasters and provides immediate feedback on the effectiveness of implemented measures.

3.2. Interoperability of System Components

The integrated system components work in synergy to fulfill the primary objective
of evaluating network resilience in the face of natural disasters. The real-time weather
database serves as a vital data source, feeding crucial information to the GIS and resilience
algorithm components. In the GIS component, these data are merged with network topol-
ogy details, providing a comprehensive understanding of the network’s physical landscape.
The network topology discovery component plays a pivotal role by supplying essential
structural information to the resilience algorithm component, empowering it to assess the
network’s susceptibility to natural disasters. The resilience evaluation component lever-
ages these assessments to generate informative reports, enabling network administrators
to make data-driven decisions for network resilience improvement. Simultaneously, the
network monitoring component diligently monitors the network’s performance, promptly
detecting any changes that may indicate the impact of a natural disaster.

This combined observation guarantees a swift response and facilitates effective recov-
ery measures. The collective efforts of these system components contribute to a comprehen-
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sive evaluation of network resilience, empowering network operators to safeguard critical
communication infrastructure against the disruptive forces of natural disasters.

3.3. Proposed ENRN Evaluation Algorithm

Algorithm 1 presents a comprehensive framework for determining and assessing
network resilience indicators in the presence of natural disasters. The algorithm consists of
three main phases: determining the natural challenge track, identifying potential network
component failures, and evaluating network resilience.

Algorithm 1: ENRN Evaluation Algorithm
Functions:
GIS-Map(c,G) := determine affectedMap and ChallengeTrack based on
affectedBoundaries
WeatherDB(MonitoredArea) := returns naturalChallenge based on the
MonitoredArea
NetworkTopology(k,AreaAttributes) :=select k nodes based on AreaAttributes
array
connectivity(G) := compute graph-theoretic connectivity of a graph G
AffectedBoundaries(N) := compute affectedBoundaries based on naturalChallenge
Input:
MonitoredArea := specify the monitored area using a polygon
bu f f erRadius := specify the buffer radius of the natural event track
NetworkProvider := specify the topology of the network provider as the adjacency
matrix.
Output:
ResilienceValues := returns the set of network values during the course of the
natural disaster
begin

// Phase1: Determine the natural challenge track
naturalChallenge = WeatherDB (MonitoredArea)
affectedBoundaries = AffectedBoundaries(naturalChallenge)
affectedMapAttributes, ChallengeTrack= GIS-Map(affectedBoundaries)
// Phase2: Identify potential network component failures
backboneNetwork=
NetworkTopology(NetworkProvider,affectedMapAttributes)

affectedNodes = []
for node in backboneNetwork.nodes() do

if node in ChallengeTrack then
affectedNodes.append(node)

end
end
// Phase3: Compute network resilience
ResilienceValues = []
for node in affectedNodes do

backboneNetwork.remove(node)
Rvalue = connectivity(backboneNetwork)
ResilienceValues.append(Rvalue)

end
return ResilienceValues

end

In the first phase of the algorithm, the primary objective is to calculate the path or
trajectory of the natural challenge (e.g., a hurricane, tornado, or other natural disasters). The
algorithm achieves this by employing two functions: WeatherDB and AffectedBoundaries.
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The WeatherDB function retrieves the weather forecast data for the monitored area, which
is specified by the user. This function returns data in the JSON (JavaScript Object Notation)
format, which is a lightweight data-interchange format. The JSON data represent the
predicted trajectory of the natural challenge. Following this, the AffectedBoundaries
function is utilized. This function takes the path of the natural challenge derived from
the WeatherDB function as an input and converts it into geographical coordinates. These
coordinates essentially set the boundaries of the area expected to be affected by the natural
challenge. The boundaries are then supplied to the GIS-Map function. This function
employs a geographical information system (GIS), a tool used for gathering, managing,
and analyzing data rooted in the science of geography. Based on the supplied boundaries,
the GIS-Map function generates two key outputs:

1. affectedMap—A graphical representation highlighting the regions likely to be im-
pacted by the natural disaster. This map is crucial for visualizing the potential impact
area and for developing mitigation strategies.

2. ChallengeTrack—The potential path of the natural disaster within the monitored area,
plotted based on the boundaries derived from the AffectedBoundaries function.

In the second phase of the algorithm, the primary focus is to identify potential network
component failures. This phase is achieved by using the NetworkTopology function, which
takes the NetworkProvider and the affectedMap as inputs, and tags the backboneNetwork
within the disaster-prone area. The algorithm then iterates through each node in the back-
boneNetwork, checking its location relative to the ChallengeTrack (which represents the
expected path of the natural disaster). This process helps in identifying the affectedNodes,
i.e., the nodes that are anticipated to fail during the disaster.

Moving into the third phase, the algorithm calculates the resilience of the network
by analyzing the affectedNodes. For each node in the affectedNodes list, the node is
removed from the backboneNetwork, and the connectivity function is used to evaluate
the connectivity of the remaining network. The output of the connectivity function is an
Rvalue, which represents the resilience of the network after the node has been removed.
The algorithm repeats this process for each node in the affectedNodes list, accumulating
the resulting Rvalues in the ResilienceValues list. This list provides a comprehensive
assessment of the network’s resilience to the natural disaster, thereby offering insights into
how the network might fare and where reinforcements might be necessary.

The ENRN evaluation algorithm provides a robust framework for researchers to
evaluate network resilience in the face of natural disasters. By determining the challenge
track, identifying potential failures, and assessing network resilience, the algorithm offers
valuable insights into network performance during adverse events. This understanding
enables network providers to make informed decisions to improve infrastructure and
mitigate the impact of natural disasters on their services.

3.4. System Implementation

The proposed ENRN framework was implemented in Python to integrate the system
components, leveraging key Python libraries and tools. NetworkX [46] was used for graph-
theoretic metrics and analysis in the resilience algorithm component, providing efficient
graph algorithms and data structures. Geopandas [47] processed spatial data in the GIS
component and overlaid network topology by extending pandas to support the merging
of geographic data. Contextily [48] added to the visualization capabilities to the resilience
evaluation component by including Google/OSM map tiles in Geopandas plots. NetworkX
abstracted the network topology as graphs, and Geopandas served as the central data
structure integrating spatial weather data with infrastructure. This implementation in
Python demonstrated the feasibility of prototyping the proposed ENRN framework using
real datasets and highlighted the capabilities of these tools in evaluating network resilience
through the interoperability of components.
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4. Dataset and Evaluation Methodology

The performance evaluation of the proposed graph-theoretic ENRN framework fo-
cuses on assessing the resilience and survivability of network infrastructure in the face of
natural disasters; specifically, hurricanes. To showcase the effectiveness of our solution,
we conducted extensive experiments on real-world networks provided by four U.S.-based
network providers. We specifically evaluated the performance of these network infras-
tructures during two significant hurricane events; namely, Hurricane Katrina in 2005 and
Hurricane Ivan in 2004. To facilitate our evaluations, we represented the network data as
graphs and utilized the NetworkX Python library for analysis [49]. The dataset used for our
experiments includes comprehensive information gathered from various sources, enabling
a thorough representation of the impacts of the hurricanes on telecommunication networks.
By leveraging this dataset and applying the proposed ENRN framework, we aim to gain
valuable insights into the resilience and effectiveness of the network infrastructure during
these natural disasters.

4.1. Network Infrastructure and Hurricanes Dataset

Hurricane Katrina, which took place in August 2005, was one of the deadliest and
costliest hurricanes in the history of the United States. The telecommunications infras-
tructure suffered significant damage during the hurricane, leading to widespread outages
and disruptions in communication services. The impact of Hurricane Katrina on the
communication infrastructure highlights the importance of network resilience in disaster
environments [50,51]. Hurricane Ivan occurred in September 2004 and caused widespread
damage to the telecommunications infrastructure in the affected areas. The hurricane
disrupted communication services, affecting the management of complex and dynamic
operations during the disaster. The dataset includes information on the extent of the dam-
age, recovery efforts, and the lessons learned to improve network resilience in the face of
future natural disasters. The study also utilized data from the National Hurricane Center’s
(NHC) tropical cyclone historical database, known as HURDAT (HURricane DATabase).
The HURDAT database provides crucial information about past tropical cyclones in the
Atlantic and North-East/Central Pacific regions [52].

In this study, we consider four major U.S.-based network providers: AT&T, Internet2,
Level3, and Sprint [53]. The dataset was acquired from KMI Corporation, specifically the
“North American Fiberoptic Long-haul Routes Planned and in Place”. This dataset provides
detailed information on the fiber optic cables of four major U.S.-based network providers:
AT&T, Sprint, Level3, and Internet2. It includes data on the physical and logical structure
of these networks, allowing for an in-depth evaluation of their resilience against natural
disasters such as hurricanes. In addition, our analysis of the dataset provides information
such as the number of nodes, connecting links, the radius and diameter of the geographical
network, and average hop counts that connect nodes with each other. AT&T, being the
largest provider, has the highest number of nodes and the densest network, whereas the
Internet2 service has a smaller number of physical nodes across the country. The density
and connectivity of nodes directly impact the resilience or availability of alternative paths in
the case of failures. However, a greater number of nodes means higher capital, operational,
and repair costs. Table 2 details the various properties of the backbone network providers.

Table 2. Physical graph properties of four service-provider backbone networks.

Graph Nodes Links Avg. Node Degree Radius Diameter Avg. Hop Count

AT&T 383 488 2.55 20 39 14.13
Internet2 57 65 2.28 8 14 6.69
Level 3 99 132 2.67 10 19 7.65
Sprint 264 313 2.37 19 37 14.70
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4.2. Performance Evaluation Metrics

We define four performance metrics to evaluate the resilience of the communica-
tion network infrastructure, denoted as G(V, E). These metrics provide a quantitative
assessment of backbone network resilience during hurricanes and assist in identifying
vulnerabilities and improvement strategies. The metrics are node failure, link failure,
largest component size, and flow robustness, each of which contributes to the compre-
hensive evaluation of network resilience. By utilizing these graph-theoretic performance
metrics, we can quantitatively analyze and identify the strengths and weaknesses of a net-
work against natural disasters. This assessment provides valuable insights for improving
network resilience and addressing vulnerabilities.

Node failure (Fn) measures the impact on the network when specific nodes malfunc-
tion, or are removed or disconnected, due to natural events such as hurricanes. This metric
quantifies the network’s ability to maintain connectivity when certain nodes are compro-
mised [54]. It is computed as the ratio of the number of nodes remaining in the largest
connected component to the total number of nodes in the network, as follows:

Fn =
|VF|
|V| , (5)

where VF is the set of failed nodes, and V is the set of all nodes in the network.
In addition to node failure, another key performance metric for evaluating network

resilience is link failure (Fl). This metric assesses the impact on the network when specific
links are disrupted or removed due to a hurricane. Link failure provides insights into
the network’s ability to maintain connectivity and data transfer when certain links are
compromised [54]. By quantifying the proportion of intact links in the largest connected
component, we can gauge the network’s robustness against link failures during hurricanes.
This metric helps to identify vulnerable areas and potential points of failure within the
network infrastructure. It is computed as the ratio of the number of links remaining in the
largest connected component to the total number of links in the network, as follows:

Fl =
|EF|
|E| , (6)

where EF is the set of failed links, and E is the set of all links in the network.
In evaluating network resilience during hurricanes, an important metric to consider

is the size of the largest connected component (SLCC). This metric provides insights
into the overall connectivity of the network after a hurricane, taking into account both
node failures and link disruptions [55]. By considering the SLCC value, we can assess the
network’s ability to maintain a significant portion of its connectivity despite the impact of
the hurricane. A larger LCC indicates a higher level of resilience, as more nodes remain
interconnected, facilitating continued communication and data transfer within the network.
SLCC is calculated as the ratio of the number of nodes in the largest connected component
to the total number of nodes in the network:

SLCC =
|VLCC|
|V| , (7)

where VLCC is the set of nodes in the largest connected component, and V is the set of all
nodes in the network.

Flow robustness is a crucial graph metric that quantifies the resilience of communica-
tion in a network by measuring the ratio of reliable flows to the total number of flows. A
flow is considered reliable if it maintains at least one unbroken path despite the presence
of node or link failures. The total number of flows in a network with V nodes is given
by |V|(|V| − 1)/2, representing all possible node–pair communications. Flow robustness
captures the network’s ability to sustain communication between nodes even in the face
of disruptions. This provides valuable insights into the network’s capacity to maintain
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connectivity and ensure the uninterrupted flow of information [26]. The range for flow
robustness values is [0, 1], where 1 indicates that all the nodes can communicate with each
other, and 0 means there is no node–pair communication in the whole network (i.e., there
are no links in the graph). We also define {Ci; 1 < i < k} as the set of components in a
graph G. A rough estimation of FR can be calculated as follows:

FR(G) =
∑k

i=1 |Ci|(|Ci| − 1)
|V|(|V| − 1)

, 0 ≤ FR ≤ 1. (8)

where Ci represents the ith connected component in graph G, the total number of connected
components is defined as k, and V represents the set of nodes in the graph G. FR(G) takes
on a value between 0 and 1, where a higher value indicates greater robustness.

These four metrics are used to assess the connectivity function, shown in Algorithm 1.
We note that in our proposed system, any graph-theoretic connectivity function can be used.
Utilization of these four graph-theoretic performance metrics allows for a comprehensive
quantitative assessment of backbone network resilience in the face of hurricanes and other
natural disasters. By using these metrics for evaluation, we can gain valuable insights
into the network’s vulnerabilities and areas that require improvement. This knowledge
is instrumental in ensuring the uninterrupted operation of critical infrastructure during
extreme weather events.

5. Results and Discussion

In this section, we present the results of our evaluation of the survivability and
resilience of four major U.S.-based communication networks—namely, AT&T, Internet2,
Level3, and Sprint—during hurricanes Katrina and Ivan. The evaluation was conducted
using the proposed ENRN algorithm, which allowed us to calculate novel performance
metrics, including node failure, link failure, the sum of the largest connected components,
and flow robustness. These metrics provide insights into the ability of the networks to
withstand and recover from the impact of hurricanes, highlighting their strengths and
weaknesses in terms of resilience.

5.1. ENRN Algorithm Results for the Hurricane Katrina Dataset

Figure 3 illustrates the impact of Hurricane Katrina on the four selected networks (i.e.,
AT&T, Sprint, Level3, and Internet2), determined by applying the ENRN algorithm to the
Hurricane Katrina dataset. The hurricane’s track is represented by a heatmap, depicting
wind speeds ranging from 15 to 245 km/s. Each network topology is displayed using
blue nodes and links to represent backbone connectivity, whereas the red nodes indicate
node failures during the hurricane. Specifically, Figure 3a presents the node failures and
significant damage experienced by the AT&T network in the southeastern United States.
Of the 383 nodes included in the network dataset, approximately 47 nodes failed dur-
ing the hurricane, resulting in a node failure rate of 12.27%. Similarly, Figure 3b shows
that the Sprint network observed 33 node failures out of 264 nodes, representing a node
failure rate of 12.50%. The Level3 network had 15 nodes that failed as a consequence of
Hurricane Katrina, accounting for a node failure percentage of 15.15% (Figure 3c). Ad-
ditionally, the Internet2 network encountered 8 node failures out of 57 nodes, resulting
in a node failure rate of 14.04% (Figure 3d). It is worth noting that the affected nodes in
all the networks resulted in complete disconnection of most of the data centers linking
Atlanta, Georgia, and other states in the southeast with the central and western parts of the
country. These observations highlight the vulnerabilities and the extent of the impact of
Hurricane Katrina on the connectivity and functionality of the networks in those regions.
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Figure 3. Temporal display of the network states during Hurricane Katrina. (a) AT&T; (b) Sprint;
(c) Level3; (d) Internet2.

Figure 4 provides a comprehensive analysis of the performance of the selected net-
works during Hurricane Katrina, showcasing their behavior through the four perfor-
mance metrics. The results demonstrate that Level3 experienced the highest number
of node and link failures, indicating its vulnerability to Hurricane Katrina. Conversely,
AT&T exhibited greater resilience, as evidenced by the lower number of failures observed.
This is in alignment with the findings presented in Figure 3, showcasing the impact of
Hurricane Katrina on the network structure. Examining the performance metrics of flow
robustness and largest connected component (LCC), it can be observed that AT&T pre-
sented higher values in both metrics. This indicates that AT&T maintained a greater level
of reliable flows and overall network connectivity during the hurricane as compared to
Level3, which exhibited lower flow robustness and LCC values. These findings support
the notion of AT&T’s enhanced resilience and its ability to sustain network operations
during challenging conditions. A quick observation of these networks and the performance
metrics indicates that a higher average node degree is directly proportional to the resilience
and robustness of the network infrastructure against natural disasters. Additionally, Table 3
outlines the graph-theoretic performance evaluation metrics for all four networks during
Hurricane Katrina. The sums of the LCC and flow robustness metrics provide combined
measures of the network’s overall connectivity and resilience during a specific event, such
as a natural disaster. The AT&T network, being more geographically connected, had the
highest sums of LCC and flow robustness values (42.08 and 39.17, respectively). The Sprint
network had the second-highest values (28.69 and 26.52), followed by the Level3 network
(13.93 and 12.96) and the Internet2 network (7.51 and 7.05).
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Figure 4. Graphical display of performance metrics of four different networks during Hurricane Katrina.
(a) Node failure; (b) link failure; (c) flow robustness; (d) LCC.

Table 3. Performance evaluation of four U.S. backbone networks during Hurricane Katrina.

Network Sum of LCC Sum of Flow Robustness

AT&T 42.08 39.17
Sprint 28.69 26.52
Level3 13.93 12.96

Internet2 7.51 7.05

5.2. ENRN Algorithm Results for the Hurricane Ivan Dataset

Figure 5 provides a visualization of the impact of Hurricane Ivan on the four selected
backbone networks (i.e., AT&T, Sprint, Level3, and Internet2) when applying the ENRN
algorithm to the Hurricane Ivan data. The impact of Hurricane Ivan mostly affected the
Eastern coastal states. Figure 5a illustrates the node failures and significant loss in con-
nectivity experienced by the AT&T network in the southeastern United States. Of the
383 nodes included in the network dataset, approximately 69 nodes failed during the
hurricane, resulting in a node failure rate of 18.02%. Similarly, Figure 5b highlights that
the Sprint network encountered 52 node failures out of 264 nodes, representing a node
failure rate of 19.70%. The Level3 network experienced 15 node failures as a result of
Hurricane Ivan, leading to a node failure rate of 15.15%, as depicted in Figure 5c. Addition-
ally, the Internet2 network had 8 node failures out of 57 nodes, resulting in a node failure
rate of 14.04% (Figure 5d). These findings demonstrate the vulnerability of the networks in
the Southeast region of the United States to the impact of Hurricane Ivan.
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Figure 5. Temporal display of the network states during Hurricane Ivan. (a) AT&T; (b) Sprint;
(c) Level3; (d) Internet2.

The analysis of the performance metrics for the four networks during Hurricane Ivan
revealed interesting results. Figure 6 provides a graphical representation of these metrics,
shedding light on the resilience of each network. In terms of node and link failures, it
is evident that Sprint and AT&T experienced a higher number of failures, compared to
Internet2 and Level3. This observation aligns with the impact of Hurricane Ivan on the
network topology, as depicted in Figure 5. The higher number of failures in the Sprint
and AT&T networks indicates their vulnerability and the challenges that they faced during
the hurricane. Regarding flow robustness and LCC, the Internet2 network presented the
highest values, indicating its superior ability to maintain reliable flows and overall network
connectivity during the hurricane. AT&T followed closely behind, with the second-highest
values for both metrics. This highlights the resilience and robustness of the Internet2
and AT&T networks in maintaining communication pathways and connectivity, even
in the face of severe weather conditions. Overall, the results demonstrate variations in
the performance of the four networks during Hurricane Ivan, whereas Sprint and AT&T
encountered a higher number of failures, the Internet2 network showed stronger flow
robustness and LCC values.

In Table 4, we provide a comprehensive overview of the network performance during
Hurricane Ivan. Consistent with the observations from Hurricane Ivan’s impact, the AT&T
network demonstrated the highest sums of LCC and flow robustness, with values of 63.60
and 57.98, respectively. This indicates that AT&T exhibited strong overall network connec-
tivity and robust flow maintenance capabilities during the hurricane. The Sprint network
followed closely behind, with values of 44.94 and 39.42 for LCC and flow robustness,
respectively. Although slightly lower than those of AT&T, these metrics still indicate a
considerable level of resilience and an ability to maintain reliable flows within the Sprint
network during Hurricane Ivan.
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Figure 6. Graphical display of performance metrics of four different networks during Hurricane Ivan.
(a) Node Failure; (b) Link Failure; (c) Flow Robustness; (d) LCC.

Table 4. Performance evaluation of four backbone U.S. networks during Hurricane Ivan.

Network Sum of LCC Sum of Flow Robustness

AT&T 63.60 57.98
Sprint 44.94 39.42
Level3 12.90 11.42

Internet2 7.46 6.96

However, the Level3 network had significantly lower sums of LCC and flow robust-
ness, with values of 12.90 and 11.42, respectively. This suggests that Level3 experienced
greater challenges in maintaining network connectivity and reliable flows during the hur-
ricane. Similarly, the Internet2 network demonstrated the lowest performance in terms
of both LCC and flow robustness, with values of 7.46 and 6.96, respectively. This demon-
strates relatively weaker network connectivity and a reduced ability to maintain reliable
flows within the Internet2 network during the impact of Hurricane Ivan. In summary,
AT&T and Sprint showed higher levels of network resilience, whereas Level3 and Inter-
net2 encountered more significant challenges in maintaining network connectivity and
reliable flows.

Analysis of the selected four networks in respect of their resilience and performance
during Hurricanes Katrina and Ivan provided valuable insights, demonstrating the ef-
fectiveness of the proposed ENRN framework. The results consistently indicate that the
AT&T network outperformed the other networks in terms of the sums of both the LCC and
flow robustness, establishing it as the most resilient network during these extreme weather
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events. The Sprint network ranked second in terms of performance, whereas the Level3
and Internet2 networks exhibited lower performance.

5.3. Discussion

The findings of this study highlight the ability of the proposed ENRN algorithm to
accurately forecast the natural challenge path, identify potential failures of the network
components, and quantify network resilience by analyzing affected nodes. This framework
not only provides an assessment of the resilience of well-known examples of network in-
frastructure against past events, but also has the potential to predict the survivability of any
network against any disaster, given sufficient data. By leveraging these insights, network
operators can proactively identify vulnerabilities in their backbone networks and develop
strategies to enhance their resilience during extreme weather events. These strategies may
include infrastructure improvements, redundancy measures, and network management im-
provements. Furthermore, the findings of this analysis can inform emergency response and
recovery efforts by guiding the prioritization of resources and the restoration of network
connectivity in affected areas. The proposed ENRN framework contributes to the field of
network resilience by providing a comprehensive approach for assessing the resilience of
the network infrastructure. By understanding the strengths and weaknesses of different
networks, stakeholders can make informed decisions to improve infrastructure designs
and implement measures that enhance resilience.

5.4. Comparison to Related Work Approaches

The task of evaluating and comparing different network resilience approaches is not
straightforward due to the inherent differences in their objectives, performance metrics,
and datasets. Each approach is designed with specific goals and use cases in mind, thus
adopting unique datasets for testing and different metrics for measuring performance.
These variations in methodologies can make it challenging to perform a direct comparison.
However, in this paper, we strive to compare these approaches as comprehensively as
possible with our proposed model, known as the Evaluation of Network Resilience against
Natural Disasters (ENRN). The ENRN model leverages network topology and real-world
hurricane data to assess network resilience, setting it apart from other techniques. As we
delve into the comparisons, it is important to remember the distinctiveness of each model
and the context within which they operate.

As shown in Table 5, our proposed method focuses on assessing network resilience
in the face of natural disasters, specifically hurricanes, using real-world data from US
providers AT&T, Sprint, Level3, and Internet2. It primarily measures the node and link
failures and flow robustness. In contrast, Pasic et al. [31] proposed a two-stage spine selec-
tion model, a regional failure model, and optimal disaster-resilient network planning. This
approach uses various network topologies and earthquake and seismic data for Europe and
the USA, with performance metrics including availability upgrade cost, intensity tolerance
upgrade, average capacity allocated, and blocking probability. Izaddoost et al. [30] em-
ployed a preventive protection approach using different network topologies for evaluation.
Their performance metrics include disrupted connections and network disruption time.
On the other hand, An et al. [42] presented two routing approaches, First-Hop Multi-Path
(FMP) and Multi-Hop Multi-Path (MMP), using an 18 ASes dataset from six countries. Their
performance is evaluated based on latency and loss rate. Finally, Liu et al. [56] proposed a
model for disaster protection and adaptive multi-path routing utilizing various network
topologies. Their performance metrics include spectrum utilization, the maximal index of
occupied frequency slots (MOFI), and content storage space. In summary, although these
models share a common goal of enhancing network resilience, they differ significantly in
their datasets, proposed models, and performance metrics, making a direct comparison
challenging. However, the ENRN approach provides a unique perspective by focusing on
the impact of hurricanes on network resilience.
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Table 5. Comparison of ENRN with other papers in terms of proposed model, dataset, and perfor-
mance metrics.

Paper Proposed Model Dataset Performance Metrics

ENRN (Our proposed
model)

Network resilience
evaluation against

hurricane data

US providers (AT&T,
Sprint, Level3,

Internet2)

Node and link
failures, and

flow robustness

Pasic et al. [31]

Two-stage spine
selection, regional
failure model, and

optimal
disaster-resilient

network planning

Janos-us, Interoute,
Cost266, and

Germany50 network
topologies

Earthquake and
seismic data for
Europe (Italy)

and USA

Availability upgrade
cost, Intensity

tolerance upgrade,
Average capacity

allocated,
Blocking probability

Izaddoost et al. [30] Preventive protection
approach

COST-239, Sprint,
TeliaSonera, and
Level3 topologies

Disrupted
connections and

network
disruption time

An et al. [42]

First-Hop Multi-Path
(FMP) and Multi-Hop

Multi-Path
(MMP) routing

18 ASes Dateset of
six countries latency and loss rate

Liu et al. [56]
Disaster protection

and adaptive
multi-path routing

NSFNET, COST239,
and US Backbone

topologies

Spectrum utilization,
maximal index of

occupied frequency
slots (MOFI), content

storage space

6. Conclusions

In conclusion, the proposed ENRN framework represents a significant advancement
in evaluating network resilience against natural disasters. By integrating real-time weather
data, geographic information, detailed network topology data, advanced resilience al-
gorithms, and continuous network monitoring, this framework provides accurate and
actionable insights for designing and maintaining robust communication networks. The
large AT&T network, having more than 350 major nodes, presented the highest robustness
of 39.17, compared to the Internet2 backbone with a robustness of only 7.05. With a higher
number of nodes, AT&T also presented a high number of node failures during Hurricanes
Katrina and Ivan. The ability of the proposed framework to inform decision-making pro-
cesses and support the development of more resilient networks ensures the continued
functionality of communication networks during extreme weather events, thus benefiting
affected populations.

To enhance our understanding of network resilience, future research may focus on
examining the specific factors contributing to the resilience of each network, such as infras-
tructure design, redundancy, and network management practices. Additionally, conducting
simulations and case studies involving different types of natural disasters and scenarios can
provide a more comprehensive assessment of network resilience capabilities. Moreover, we
plan to run our system with real-time data via the weather database application program-
ming interface (API). Furthermore, exploring the impacts of emerging technologies, such
as 5G, edge computing, and artificial intelligence, on network performance and resilience
during disasters will contribute to further advancements in this field. Finally, we plan to
incorporate graph neural networks (GNNs) in our future work. GNNs, with their ability to
effectively capture complex relationships in graph-structured data, present a promising
avenue for enhancing our understanding of network resilience.
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