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Abstract: In this paper, we present an innovative technique that improves the convergence order
of iterative schemes that do not require the evaluation of Jacobian matrices. As far as we know,
this is the first technique that allows us the achievement of an increase, from p to p ` 3 units,
in the order of convergence. This is constructed from any Jacobian-free scheme of order p. We
conduct comprehensive numerical tests first in academical examples to validate the theoretical
results, showing the efficiency and effectiveness of the new Jacobian-free schemes. Then, we apply
them on the non-differentiable partial differential equations that models the nutrient diffusion in a
biological substrate.
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1. Introduction

Let us consider the system of nonlinear equations Fpxq “ 0, where F : Ω Ď Rn ÝÑ Rn

and fi, i “ 1, 2, . . . , n, are the coordinate functions of F, with Fpxq “ p f1pxq, f2pxq, . . . , fnpxqqT .
Solving nonlinear systems is a challenging task, typically requiring either linearization of
certain nonlinear problems or the application of a fixed-point function G : Ω Ď Rn ÝÑ Rn,
which leads to a fixed-point iteration scheme. Additionally, these schemes can be applied
in different areas of knowledge, including engineering, chemistry, fluid dynamics, among
others, making them valuable tools for solving nonlinear and nondifferentiable problems
(see, for example, refs. [1–3]). Tackling such systems often involves employing lineariza-
tion techniques to approximate solutions or employing fixed-point iteration methods based
on function G. These strategies provide valuable insights and approximated solutions of
the nonlinear systems.

In many of these methods, the evaluation of Jacobian matrices at one or more points
per iteration is required. However, a significant challenge arises from the computation of
the Jacobian matrix, especially in cases where it may not exist or, for high-dimensional
scenarios, its computation becomes excessively costly or even infeasible. As a result, certain
authors have attempted to overcome this issue by eliminating the dependence on the
Jacobian matrix and replacing it with alternative techniques.

There are numerous methods for solving systems of nonlinear equations. Among
them is Steffensen’s method which was presented by Samanskii in [4]. This stands out
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as one of the most renowned techniques in the literature on iterative methods without
Jacobian. Its iterative scheme is given by the expression

xpk`1q “ xpkq ´
”

wpkq, xpkq; F
ı´1

F
´

xpkq
¯

, k “ 0, 1, 2, . . . ,

where wpkq “ xpkq ` F
´

xpkq
¯

, r¨, ¨; Fs : Ω ˆΩ Ă Rn ˆ Rn ÝÑ LpRnq being the divided
difference operator of F on Rn defined as (see [5])

rx, y; Fspx´ yq “ Fpxq ´ Fpyq, for any x, y P Ω. (1)

In this work, we explore innovative iterative methods for the resolution of nonlinear
systems of equations without the need to compute Jacobian matrices. Different researchers
in this field have made significant contributions to the development of these strategies.

Several authors have developed memory-based methods that also utilize the Kur-
chatov divided difference to enhance the efficiency of known methods. Additionally, as
part of our strategy, we adopted the mth-order vectorial divided differences proposed by
Amiri et al. in [6]. These strategies, found in the literature, circumvent the complexity and
costs associated with Jacobian matrices, making them particularly valuable for large-scale
systems. Among the most commonly used approaches are the finite difference method, as
well as polynomial interpolators, divided differences, and other clever techniques that have
also been employed in the literature to avoid the direct evaluation of derivatives. These
additional techniques further expand the tools available for tackling derivative-related
problems in complex systems.

The advances achieved by these different procedures are reflected in numerous works
by different authors. Chicharro et al. and Cordero et al. in [7,8], respectively, proposed
new parametric families for solving nonlinear systems. In a similar way, the authors of
manuscripts [9–11] replaced the Jacobian matrix by a particular divided difference operator.
The technique of weight functions (in this case, matrix functions) play an important role for
designing Jacobian-free schemes for solving nonlinear systems, as we can see in [12].

In this research, we present an approach that improves the convergence order from p
to p` 3, applicable to Jacobian-free schemes. We replace the traditional Jacobian matrix
of F with

”

xpkq ` H
´

xpkq
¯

, xpkq; F
ı

, a concept introduced by Amiri et al. in [6], where

H : Ω Ď Rn ÝÑ Rn with H
´

xpkq
¯

“

´

f m
1

´

xpkq
¯

, f m
2

´

xpkq
¯

, . . . , f m
n

´

xpkq
¯¯T

provides a
remarkable approximation of the Jacobian matrix for the function Fpxq at any given point.
By leveraging this approach with m “ 2, we achieve a convergence order of p` 3.

This novel approach not only circumvents the complexities associated with traditional
Jacobian matrix computations, but also opens new avenues for improving the convergence
rate of numerical methods, making it a valuable contribution to the field of numerical
analysis and optimization.

The work is developed as follows: first, in Section 1, we introduce the basic concepts
necessary for the development of the paper. Then, in Section 2, we prove in a general
way that the scheme has a convergence order of p` 3. To illustrate this, in Section 3, we
solve some academic problems to confirm the reliability of the modified methods without
Jacobian matrices. Finally, we address the solution of the problem entitled Modeling of
nutrient diffusion in a biological substrate, which is formulated through a nonlinear non-
differentiable second-order elliptic nonlinear partial differential equation. To address this
question, we proceed to discretize the equation by means of the finite difference method,
transforming it into a system of nonlinear equations. We then employ the modified Traub
method with increased order of convergence, which we denote as Traub-M2, to solve the
resulting system. We conclude by presenting the matrix representing the approximate
solution of this system of equations.
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Preliminary Concepts

First, we introduce a number of necessary concepts in order to develop the proposed
Taylor series scheme and prove the order of convergence of the proposed iterative scheme.

Definition 1. Let
´

xpkq
¯

kě0
be a sequence in Rn, n ě 1, convergent to ξ. Then, convergence is

1. linear, if there exists M, 0 ă M ă 1 for M P R, and k0 P N, such that
›

›

›
xpk`1q ´ ξ

›

›

›
ď M

›

›

›
xpkq ´ ξ

›

›

›
,@k ě k0.

2. sequence
´

xpkq
¯

kě0
, which converges to ξ with order p, p ą 1, if there exists M, M ą 0 for

M P R and k0 P N such that
›

›

›
xpk`1q ´ ξ

›

›

›
ď M

›

›

›
xpkq ´ ξ

›

›

›

p
@k ě k0.

We let F : Ω Ď Rn ÝÑ Rn sufficiently differentiable in Ω. The qth derivative of
F in u P Rn, q ě 1 is the q-linear function Fpqqpuq : Rn ˆ ¨ ¨ ¨ ˆ Rn ÝÑ Rn such that
Fpqqpuq

`

ω1, . . . , ωq
˘

P Rn. It is easy to see that

1. Fpqqpuq
`

ω1, ω2, . . . , ωq´1, ¨
˘

is a linear operator that maps Rn to LpRnq.

2. Fpqqpuq
´

ωτp1q, . . . , ωτpqq

¯

“ Fpqqpuq
`

ω1, . . . , ωq
˘

, for every permutation τ of t1, 2, . . . , qu.

From the above properties, we define the following notation:

paq Fpqqpuq
`

ω1, . . . , ωq
˘

“ Fpqqpuqω1 . . . ωq,

pbq Fpqqpuqωq´1Fppqωp “ FpqqpuqFppqpuqωq`p´1.

On the other hand, for ξ ` h P Rn which lies in a vicinity of a solution ξ of Fpxq “ 0, we can
apply the Taylor expansion, and if the Jacobian matrix F1pξq is not singular, we can express

Fpξ ` hq “ F1pξq

»

–h`
p´1
ÿ

j“2

Cjhj

fi

fl`Ophpq, (2)

where Cj “ p 1
j! q
“

F1pξq
‰´1Fpjqpξq, j ě 2. We observe that Cjhj P Rn since

Fpjqpξq P LpRn ˆ ¨ ¨ ¨ ˆRn,Rnq and
“

F1pξq
‰´1

P LpRnq. In addition, we can express F1pξ ` hq as

F1pξ ` hq “ F1pξq

»

–I `
p´1
ÿ

j“2

jCjhj´1

fi

fl`Ophpq, (3)

where I is the identity matrix. Therefore, jCjhj´1 P LpRnq. From (3), we can obtain

“

F1pξ ` hq
‰´1

“

”

I ´ X2h` X3h2 ´ X4h3 ` ¨ ¨ ¨
ı

“

F1pξq
‰´1

`Ophpq, (4)

where

X2 “ 2C2,

X3 “ 4C2
2 ´ 3C3,

X4 “ 8C3
2 ´ 6C2C3 ´ 6C3C2 ` 4C4.

...
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On the other hand, we denote by epkq “ xpkq´ ξ the error in the kth iteration. Equation

epk`1q “ Mepkq
p
`O

´

epkq
p`1

¯

,

where M is a p-linear function M P LpRn ˆ ¨ ¨ ¨ ˆRn,Rnq, is called the error equation, and
p is the order of convergence of the sequence xpkq generated by the iterative process. We
observe that epkq

p
is
´

epkq, epkq, . . . , epkq
¯

.
To estimate the convergence order, we use the Approximated Computational Order of

Convergence (ACOC), whose expression we can see below.

Definition 2. Let ξ be a zero of function F and suppose that xpk´1q, xpkq and xpk`1q are
three consecutive iterations close to ξ. Then, the order of convergence p can be approximated
using formula

p « ACOC “
ln
´
›

›

›
xpk`1q ´ xpkq

›

›

›
{

›

›

›
xpkq ´ xpk´1q

›

›

›

¯

ln
`
›

›xpkq ´ xpk´1q
›

›{
›

›xpk´1q ´ xpk´2q
›

›

˘ . (5)

To compare the different methods obtained by applying the results proposed in this
work, we employ Ostrowski’s efficiency index I “ p1{d (see [13]), where p is the order of
convergence and d is the total number of functional evaluations required by the method
(per iteration). This is the most commonly used index, but not the only one. In his book [14],
Traub uses an operational index that is defined as C “ p1{op, where op is the number of
operations per iteration. We recall that the number of products and quotients needed
to solve r linear systems with the same coefficient matrix, using the factorization LU, is
calculated as follows:

1
3

n3 ` rn2 ´
1
3

n.

We use a combination of both indices, CI “ p1{pd`opq, which is called the computa-
tional efficiency index.

The formula of Gennochi–Hermite (see [5]),

rx` h, x; Fs “
ż 1

0
F1px` thqdt,@x, h P Ω Ă Rn,

allows us the calculation of the Taylor expansion of the divided difference operator in terms
of the successive derivatives of F,

rx` h, x; Fs “
p
ÿ

j“0

1
pj` 1q!

Fpj`1qpxqhj `O
´

hp`1
¯

, @x, h P Ω.

By denoting y “ x` h and using the error at both points, e “ x´ ξ, ey “ y´ ξ, the
Taylor expansion of the divided difference (1) can be written as

ry, x; Fs “ F1pξq
”

I ` C2
`

ey ` e
˘

` C3

´

e2
y ` eye` e2

¯

` C4

´

e3
y ` e2

ye` eye2 ` e3
¯

` ¨ ¨ ¨

ı

. (6)

Now, we use these expressions to prove the following result.
In order to perform the Taylor development of Hpxpkqq, we use the following result,

presented in the work of Amiri et al. in [6].

Theorem 1. Let H be a nonlinear operator H : Ω Ď Rn ÝÑ Rn with coordinate functions
hi, i “ 1, 2, . . . , n and m P N such that m ě 1. Let us consider the divided difference operator

rxpkq ` λHpxpkqq, xpkq; Fs, where Hpxpkqq “
´

hm
1 px

pkqq, hm
2 px

pkqq, . . . , hm
n pxpkqq

¯T
and λ P R;

then, the order of the divided difference rxpkq ` λHpxpkqq, xpkq; Fs as an approximation of the
Jacobian matrix F1pxpkqq is m.
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Proof. Let hipxq, i “ 0, 1, 2, . . . , be the coordinate functions of Hpxq. Let us consider the
Taylor expansion of hipxq around ξ:

hipxq “hipξq `
n
ÿ

j1“1

Bhipξq

Bxj1
ej1 `

n
ÿ

j2“1

n
ÿ

j1“1

B2hipξq

Bxj2Bxj1
ej1 ej2 `

n
ÿ

j3“1

n
ÿ

j2“1

n
ÿ

j1“1

B3hipξq

Bxj3Bxj2Bxj1
ej1 ej2 ej3

` ¨ ¨ ¨ `

n
ÿ

jl“1

¨ ¨ ¨

n
ÿ

j2“1

n
ÿ

j1“1

Brhipξq

Bxr1
j1
Bxr2

j2
. . . Bxrl

jl

er1
j1

er2
j2

. . . erl
jl
` ¨ ¨ ¨ , (7)

where rs P t1, 2, . . . , ru for s “ 1, 2, . . . , l and r “ r1` r2`¨ ¨ ¨` rl , e “ x´ ξ and ejs “ xjs ´ ξ js ,
for s “ 1, 2, . . . , l is the js th coordinate of error e. We can write (7) as

hipxpkqq “ Ai
1epkq ` Ai

2epkq
2
` ¨ ¨ ¨ ` Ai

m´1epkq
m´1

` Ai
mepkq

m
` Ai

m`1epkq
m`1

` ¨ ¨ ¨ , (8)

with Ai
t P LpRn,Rnq for t “ 1, 2, . . ., since

Brhipξq

Bxr1
j1
Bxr2

j2
. . . Bxrl

jl

“ mpm´ 1q ¨ ¨ ¨ pm´ r` 1qhm´r
i pξq

Brhipξq

Bxr1
j1
Bxr2

j2

“ 0, for all r ă m,

so Ai
t “ 0 for t “ 1, 2, . . . , m´ 1, and we have

hipxpkqq “ Ai
mepkq

m
` Ai

m`1epkq
m`1

`O
´

epkq
m`2¯

.

By introducing the multilinear operator At “
“

A1
t , A2

t , . . . , An
t
‰

for t “ 1, 2, . . ., we can
express the Taylor series of Hpxpkqq around ξ as follows:

Hpxpkqq “ Amepkq
m
` Am`1epkq

m`1
`O

´

epkq
m`2¯

, (9)

so we define the error at w “ x` λHpxq as

ew “ w´ ξ “ x` λHpxq ´ ξ “ e` Hpxq.

Now, we let

Fpxq “ F1pξq
”

e` C2e2 ` C3e3 ` C4e4 ` C5e5 ` C6e6 ` C7e7
ı

`O
´

e8
¯

.

Let us consider the Taylor expansion of Fpxq around ξ. When we apply the Gennochi–
Hermite Formula (6), we obtain

rw, x; Fs “F1pξq
”

I ` C2pew ` eq ` C3

´

e2
w ` ewe` e2

¯

` C4

´

e3
w ` e2

we` ewe2 ` e3
¯

` ¨ ¨ ¨

ı

“F1pξq
”

I ` 2C2e` 3C3e2 ` ¨ ¨ ¨ `mCmem´1 ` pC2 Am ` pm` 1qCm`1qem

`pC2 Am`1 ` C3 Am ` pm` 2qCm`2qem`1 ` ¨ ¨ ¨
ı

.

Since the Taylor expansions of F1pxq and rw, x; Fs around ξ coincide for the first m
terms, the order of the divided difference rw, x; Fs is exactly m.

2. Main Result

In the following, we present a technique that allows increasing the order of conver-
gence from p to p` 3 units in Jacobian-free methods. To achieve this goal, it is necessary to
introduce a second arbitrary scheme or class of two-step iterative methods whose predictor
step must be Newton’s scheme, a second generic step ϕ

´

xpkq, ypkq
¯

of order p . We add a

third corrector step xpk`1q, which depends on real numbers α, β and γ guaranteeing that
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any scheme with such conditions will reach convergence order p` 3, for which we state
the following result.

In the following section, we introduce an iterative scheme that utilizes a Steffensen
type method as a predictor. This concept is inspired in the idea of divided differences

f rwk, xks « f 1pxkq “
f pwkq ´ f pxkq

wk ´ xk
with wk “ xk ` λ f pxkq

m to adapt various families of

derivative-dependent iterative methods. This adaptation ensures consistent convergence
orders when substituting derivatives with divided differences for different values of m,
especially in the scalar case.

For the scalar case, the iterative expression of a Steffensen type method is defined as:

xk`1 “ xk ´
f pxkq

f rwk, xks
, wk “ xk ` λ f pxkq, k “ 0, 1, 2, . . . . (10)

By applying a similar concept and replacing Jacobian matrices with divided differences
in the vectorial case, we create a generic scheme with an undetermined number of steps,
where the first step is an extension of the Steffensen scheme (10) to systems. This extension
enables an increase in the convergence order from p to p` 3 units.

In a more general way, we represent the scheme as follows:

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

F
´

xpkq
¯

,

zpkq “ ϕ
´

xpkq, ypkq
¯

, (11)

xpk`1q “ zpkq ´
”

αI ` G
´

xpkq, ypkq
¯´

βI ` γG
´

xpkq, ypkq
¯¯ı”

xpkq ` H
´

xpkq
¯

, xpkq; F
ı´1

F
´

zpkq
¯

,

where
G
´

xpkq, ypkq
¯

“

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

zpkq, ypkq; F
ı

,

and Hpxpkqq “
´

f m
1 px

pkqq, f m
2 px

pkqq, . . . , f m
n pxpkqq

¯T
, where f1pxpkqq, f2pxpkqq, . . . , fnpxpkqq are

coordinate functions of F : Rn Ñ Rn, converge to ξ with convergence order p` 3 for m “ 2.
We demonstrate this assertion below.

Theorem 2. Let F : Ω Ď Rn Ñ Rn be a sufficiently differentiable function at each point in a
neighborhood of an open convex set Ω containing ξ P Rn, such that Fpξq “ 0 is a solution of the
system. Let xp0q be an initial estimate sufficiently close to ξ, and suppose that the Jacobian matrix
F1pxq is continuous and nonsingular at ξ.

Then, the method defined in (11) has a convergence order of p` 3, where p is the order of the
arbitrary scheme zpkq, whose first step is Steffensen type method, for α “ 13

4 , β “ ´ 7
2 , and γ “ 5

4
and its error equation is as follows:

epk`1q “
1
2

”

2C2pC2 A2 ´ A2C2q ´ 3
´

C3 ` C2
2

¯

C2 ` C2C3

ı

Mpepkq
p`3
`O

”

epkq
p`4

ı

. (12)

Proof. To perform a Taylor series expansion of the divided difference, we need to develop
the Taylor series of F

´

xpkq
¯

, F1
´

xpkq
¯

, and F2
´

xpkq
¯

around ξ:

F
´

xpkq
¯

“ F1pξq
”

epkq ` C2epkq
2
` C3epkq

3
ı

`O
”

epkq
4
ı

, (13)

where Cj “

ˆ

1
j!

˙

“

F1pξq
‰´1
rFpjqpξqs, j ě 2 with xpkq ´ ξ “ epkq. The derivative F1pxpkqq is

F1pxpkqq “ F1pξq
”

I ` 2C2epkq ` 3C3epkq
2
` 4C4epkq

3
ı

`O
”

epkq
4
ı

, (14)
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F2
´

xpkq
¯

“ F1pξq
”

2C2 ` 6C3epkq ` 12C4epkq
2
ı

`O
”

epkq
3
ı

. (15)

According to Theorem 1,
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı

for m “ 2 is a second-order ap-

proximation of the Jacobian matrix F1
´

xpkq
¯

. Using (14) and (15), its Taylor series expansion
is as follows:

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı

“F1pξq
”

I ` 2C2epkq ` 3C3epkq
2
` 4C4epkq

3
ı

(16)

`
1
2

F1pξq
”

2C2 ` 6C3epkq ` 12C4epkq
2
ı´

λH
´

xpkq
¯¯

“F1pξq
”

I ` 2C2epkq ` p3C3 ` λC2 A2qepkq
2
` p4C4 ` λC2 A3 ` 3λC3 A2qepkq

3
ı

`O
”

epkq
4
ı

.

Let us now calculate the Taylor series development of
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

.
Forcing that equality

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı

“ I

must be satisfied, we conjecture

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

“

”

I ` X2epkq ` X3epkq
2
` X4epkq

3
ı

“

F1pξq
‰´1

`O
”

epkq
4
ı

, (17)

and, consequently,

I “
”

I ` X2epkq ` X3epkq
2
` X4epkq

3
ı”

I ` 2C2epkq ` p3C3 ` λC2 A2qepkq
2
` p4C4 ` λC2 A3 ` 3λC3 A2qepkq

3
ı

. (18)

Therefore,
$

&

%

X2 “ ´2C2,
X3 “ 4C2

2 ´ 3C3 ´ λC2 A2,
X4 “ ´λC2 A3 ` λ

`

4C2
2 ´ 3C3

˘

A2 ´ 8C3
2 ` 6C2C3 ` 6C3C2 ´ 4C4.

Let us calculate the error equation for the first step of the scheme as

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

F
´

xpkq
¯ı

.

It follows that

ypkq ´ ξ “ C2epkq
2
` p´X2C2 ´ X3 ´ C3qepkq

3
`O

”

epkq
4
ı

.

We denote B3 “ ´X2C2 ´ X3 ´ C3.
Now, let us suppose that the error of the second step ϕ

´

xpkq, ypkq
¯

is of order p; then,

the error in the kth iterate zpkq is

zpkq ´ ξ “ Mpepkq
p
`Mp`1epkq

p`1
`Mp`2epkq

p`2
`Mp`3epkq

p`3
`O

”

epkq
p`4ı

, (19)
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and therefore the Taylor development of F
´

zpkq
¯

around ξ is

F
´

zpkq
¯

“F1pξq
”

Mpepkq
p
`Mp`1epkq

p`1
`Mp`2epkq

p`2
`Mp`3epkq

p`3
` C2M2

pepkq
2p
ı

(20)

`O
”

epkq
p`4

ı

.

Thus, the Taylor series expansion of the Jacobian matrix F1
´

ypkq
¯

using the divided

difference
”

zpkq, ypkq; F
ı

is as follows:

”

zpkq, ypkq; F
ı

“F1pξq
”

I ` C2
2epkq

2
` C2B3epkq

3
` C2Mpepkq

p
` C2Mp`1epkq

p`1
(21)

`C2Mp`2epkq
p`2
` C2Mp`3epkq

p`3
ı

`O
”

epkq
p`4

ı

.

In order to calculate the error equation at the last step, we first calculate the product

G
´

xpkq, ypkq
¯

“

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

zpkq, ypkq; F
ı

.

For this, using (17) and (21), we have

G
´

xpkq, ypkq
¯

“

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

zpkq, ypkq; F
ı

“I ` X2epkq `D2epkq
2
`D3epkq

3
`D4epkq

p
(22)

`D5epkq
p`1
`D6epkq

p`2
`D7epkq

p`3
`O

”

epkq
p`4

ı

,

where
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

D2 “ X3 ` C2
2 ,

D3 “ X4 ` C2B3 ` X2C2
2 ,

D4 “ C2Mp,
D5 “ C2Mp`1 ` X2C2Mp,
D6 “ C2Mp`2 ` X2C2Mp`1 ` X3C2Mp,
D7 “ C2Mp`3 ` X2C2Mp`2 ` X3C2Mp`1 ` X4C2Mp.

(23)

In addition,

´

G
´

xpkq, ypkq
¯¯2

“

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

zpkq, ypkq; F
ı”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

zpkq, ypkq; F
ı

“I ` 2X2epkq ` E2epkq
2
` E3epkq

3
` E4epkq

p
(24)

` E5epkq
p`1
` E6epkq

p`2
` E7epkq

p`3
`O

”

epkq
p`4

ı

,

where
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

E2 “ 2D2 ` X2
2 ,

E3 “ 2D3 ` X2D2 `D2X2,
E4 “ 2D4,
E5 “ 2D5 ` X2D4 `D4X2,
E6 “ 2D6 ` X2D5 `D4D2 `D5X2 `D2D4,
E7 “ 2D7 ` X2D6 `D2D5 `D3D4 `D4D3 `D5D2 `D6X2.

(25)

Finally, we calculate the product
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

Fpzpkqq
ı

using (17) and (20):
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”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

Fpzpkqq
ı

“Mpepnq
p
`
`

Mp`1 ` X2Mp
˘

epkq
p`1

(26)

`
`

Mp`2 ` X2Mp`1 ` X3Mp
˘

epkq
p`2

`
`

Mp`3 ` X2Mp`2 ` X3Mp`1 ` X4Mp
˘

epkq
p`3
`O

”

epkq
p`4

ı

.

Therefore, the error in the third step xpk`1q is calculated by using (19), (22), (24)
and (26).

xpk`1q “ zpkq ´
”

αI ` G
´

xpkq, ypkq
¯´

βI ` γG
´

xpkq, ypkq
¯¯ı”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

F
´

zpkq
¯ı

,

epk`1q “ Mpepkq
p
`Mp`1epkq

p`1
`Mp`2epkq

p`2
`Mp`3epkq

p`3

´

”

pα` β` γqI ` pβ` 2γqX2epkq ` pβD2 ` γE2qepkq
2
` pβD3 ` γE3qepkq

3

`pβD4 ` γE4qepkq
p
` pβD5 ` γE5qepkq

p`1
` pβD6 ` γE6qepkq

p`2

`pβD7 ` γE7qepkq
p`3

ı

¨

”

Mpepkq
p
`
`

Mp`1 ` X2Mp
˘

epkq
p`1

`
`

Mp`2 ` X2Mp`1 ` X3Mp
˘

epkq
p`2
`
`

Mp`3 ` X2Mp`2 ` X3Mp`1
˘

epkq
p`3

ı

`O
”

epkq
4
ı

,

“ p1´ α´ β´ γqMpepkq
p
`
“

p1´ α´ β´ γqMp`1 ´ pα` 2β` 3γqX2Mp
‰

epkq
p`1

(27)

`

”

p1´ α´ β´ γqMp`2 ` pα` 2β` 3γqX2Mp`1 ´ pα` 2β` 3γqX3Mp

´ p5β` 14γqC2
2 Mp

ı

epkq
p`2
`
“

p1´ α´ β´ γqMp`3 ´ pα` 2β` 3γqX2Mp`2

´pα` 2β` 3γqX3Mp`1 ´ pα` 2β` 3γqX4Mp
‰

epkq
p`3

`

”

´p5β` 14γqC2
2 Mp`1 ` p3β` 8γqC2X3Mp ´ pβ` 3γqX3X2Mp

`p2β` 10γqC3
2 Mp ` pβ` 2γqC2C3Mp

ı

epkq
p`3

.

From (27), we derive system
$

&

%

1´ α´ β´ γ “ 0,
α` 2β` 3γ “ 0,

5β` 14γ “ 0,

whose solution is α “ 13
4 , β “ ´ 7

2 and γ “ 5
4 . Simplifying the resulting error equation,

we obtain

epk`1q “
1
2

”

2C2pC2 A2 ´ A2C2q ´ 3
´

C3 ` C2
2

¯

C2 ` C2C3

ı

Mpepkq
p`3
`O

”

epkq
p`4

ı

,

showing that the order of convergence is p` 3. This ends our proof.

3. Numerical Results

Below, we present several systems of nonlinear equations that we solve to confirm
the reliability of the methods based on the conditions stated in Theorem 2, specifically the
methods that do not require the evaluation of Jacobian matrices.

Each table displays the initial approximation xp0q used to find the solutions. Addi-
tionally, we indicate the number of iterations (Iter) required for the schemes to converge,
the approximate computational order of convergence (ACOC) for each method, and the
approximate computational time (e-time) required (in seconds).
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Calculations are performed with MATLAB programming software using variable
precision arithmetics with 2000 digits of mantissa and an error tolerance of ε “ 10´8. In
addition, the expression (5) is used to calculate the approximated computational order
of convergence ACOC. Each table includes the CPU time used by each method to obtain
the solution. It is important to note that the computer used for these calculations has the
following software and hardware specifications: macOS Ventura operating system version
13.4.1, Intel Core i7 quad-core processor Chip M1 Pro, 16 GB Ram Memory LPDDR5 and
year of manufacture 2021. In addition, we apply the following stopping criteria:

›

›

›
xpk`1q ´ xpkq

›

›

›
`

›

›

›
F
´

xpk`1q
¯
›

›

›
ă ε.

3.1. Computational Efficiency

Now, we present five classes of iterative methods that we use to apply our technique
and perform various numerical tests in relation to specific academic problems. Then, we
apply the third step of our approach to each of these methods. In a first step, we compute
the computational efficiency index of each of these methods in order to be able to compare
the methods of order p with the schemes modified to p` 3 among the different classes
of approaches.

The first scheme to be used to increase its convergence order and check its efficiency is
a modification of the method presented by Cordero et al. in [15], where we eliminate the
Jacobian matrix. For simplicity, we denote it as MET1,λ,4, where λ represents the parameter
selected in that scheme, four is the order of the method and m “ 2.

MET1,λ,4 :

$

’

&

’

%

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

Fpxpkqq,

xpk`1q “ xpkq ´
”´

β
6 G3 ` 2G2 ` G` 1

¯ı”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

F
´

xpkq
¯

,

for β “ 1, G
´

xpkq, ypkq
¯

“ 1´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

xpkq, ypkq; F
ı

,

where k “ 0, 1, 2 . . . .
The second test scheme we employ in this paper is Traub’s method, which is introduced

by Traub in [16]. The system-transferred version of this method, where the Jacobian is also
replaced by the split difference and m “ 2, is represented by the following expression:

MET2,λ,3 :

$

’

&

’

%

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

Fpxpkqq,

xpk`1q “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

F
´

xpkq
¯

` F
´

ypkq
¯ı

,

where k “ 0, 1, 2 . . . .
Chun’s method was initially introduced in [17]. Now, we present a modification of

this scheme, in which we replace the Jacobian matrix with the divided difference for m “ 2.

MET3,λ,4 :

$

’

&

’

%

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

F
´

xpkq
¯

,

xpk`1q “ ypkq ´ p3´ 2Γpkqq
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

F
´

ypkq
¯

,

being Γpkq “
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

xpkq, ypkq; F
ı

, where k “ 0, 1, 2 . . . .

Ostrowski’s method is presented in [13] and transferred to systems by Grau et al.
in [18]; as in the previous cases, we modify this method by replacing the Jacobian matrix
by the split difference proposed in this work for m “ 2.
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MET4,λ,4 :

$

’

&

’

%

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

Fpxpkqq,

xpk`1q “ ypkq ´
”

2rxpkq, ypkq; Fs ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ıı´1

F
´

ypkq
¯

,

where k “ 0, 1, 2 . . . .
Finally, we employ the family of iterative methods proposed by Cordero et al. in [19].

This class, characterized by having convergence order p “ 6 in three steps, allows us the
application of our new technique, stated in Theorem 2, resulting in a transformation of
the scheme into a four-step method, achieving an increase in its convergence order up to
p “ 9 units. The adoption of this advanced technique promises to offer a level of accuracy
and efficiency in the results obtained. This scheme takes its new form after replacing the
Jacobian matrix by the proposed divided difference for m “ 2; its iterative expression in
three steps is as follows:

MET5,λ,6 :

$

’

’

’

’

&

’

’

’

’

%

ypkq “ xpkq ´
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

F
´

xpkq
¯

,

zpkq “ ypkq ´
´

2
”

xpkq, ypkq; F
ı

´

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı¯´1

F
´

ypkq
¯

,

xpk`1q “ zpkq ´ΛpkqF
´

zpkq
¯

´ p1` γq
”

I ´ Γpkq
ı”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

F
´

zpkq
¯

,

for Λpkq “

„

γ
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1

` p1´ γq
”

xpkq, ypkq; F
ı´1



and

Γpkq “
”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı´1”

xpkq, ypkq; F
ı

.
We note that in each method we use the value λ “ 0.001. After several numerical tests,

we find that the iterative schemes converge faster to the solution when λ is near to zero.
We apply to each of them the conditions of Theorem 2 in order to increase their orders

of convergence from p to p` 3.
In Table 1, we present information on the order of convergence, the number of scalar

functional evaluations per iteration, the number of products/quotients per iteration, and
the computational efficiency index (CI) for each method, both before and after applying
our proposed third step. It is important to remember that in order to evaluate the function
in one iteration, the computation of scalar functions is required. The number of scalar
function evaluations is n2 ´ n for any split-difference evaluation rxpkq, ypkq; Fs and n2 ´ 2n
for the expression

”

xpkq ` λH
´

xpkq
¯

, xpkq; F
ı

. Furthermore, to each iterative class presented
after applying our scheme, we refer as MET1,λ,p through MET5,λ,p, respectively, where p
represents the convergence order of each modified method.

In Figures 1 and 2, we can observe the computational efficiency behavior of our
technique, both for the methods MET1,λ,p through MET5,λ,p and for the modified methods
by incorporating our third step when applied to small and large systems.

2 4 6 8 10 12 14 16 18 20
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

(a)

10 20 30 40 50 60 70 80
1

1.0002

1.0004

1.0006

1.0008

1.001

1.0012

1.0014

1.0016

1.0018

1.002

(b)

Figure 1. Efficiency index for methods of order p. (a) Efficiency index of order p for small systems of
equations; (b) Efficiency index of order p for large systems of equations.
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Figure 2. Efficiency index for methods of order p` 3. (a) Efficiency index of order p` 3 for small
systems of equations; (b) Efficiency index of order p` 3 for large systems of equations.

Table 1. Computational efficiency index of order p and p` 3.

Original Methods

Scheme C. Order d Op CI

MET1,λ,4 4 2n2 ´ 2n 1
3 n3 ` 12n2 ´ 1

3 n 41{pp1{3qn3`14n2´p7{3qnq

MET2,λ,3 3 n2 1
3 n3 ` 2n2 ´ 1

3 n 31{pp1{3qn3`3n2´p1{3qnq

MET3,λ,4 4 2n2 ´ n 1
3 n3 ` 4n2 ´ 1

3 n 41{pp1{3qn3`6n2´p4{3qnq

MET4,λ,4 4 2n2 ´ n 1
3 n3 ` 2n2 ´ 1

3 n 41{pp1{3qn3`4n2´p4{3qnq

MET5,λ,6 6 2n2 1
3 n3 ` 6n2 ´ 1

3 n 61{pp1{3qn3`9n2´p1{3qnq

Schemes with Modified Order

MET1,λ,7 ´Mod 7 2n2 ´ n 1
3 n3 ` 18n2 ´ 1

3 n 71{pp1{3qn3`20n2´p4{3qnq

MET2,λ,6 ´Mod 6 n2 ` n 1
3 n3 ` 8n2 ´ 1

3 n 61{pp1{3qn3`9n2`p2{3qnq

MET3,λ,7 ´Mod 7 2n2 1
3 n3 ` 10n2 ´ 1

3 n 71{pp1{3qn3`12n2´p1{3qnq

MET4,λ,7 ´Mod 7 2n2 1
3 n3 ` 8n2 ´ 1

3 n 71{pp1{3qn3`10n2´p1{3qnq

MET5,λ,9 ´Mod 9 2n2 ` n 1
3 n3 ` 12n2 ´ 1

3 n 91{pp1{3qn3`20n2`p2{3qnq

3.2. Some Academical Problems

Example 1. The first case we present is a system of equations of size n “ 20,

p2x2
j ` 1q ´ 2

˜

20
ÿ

m“1

x2
m

¸

` arctan xj “ 0, j “ 1, 2, . . . n. (28)

The solution of System (28) is given by ξ « p0.175768, . . . , 0.175768qT and the initial estimate
used is xp0q “ p 1

2 , 1
2 , . . . , 1

2 q
T .

Example 2. The second case presented is a system of size n “ 30,

xj ´ cos

˜

2xj ´

30
ÿ

m“1

xm

¸

“ 0, j “ 1, 2, . . . , n. (29)

The solution of System (29) is ξ « p0.486743, . . . , 0.486743qT and the initial estimate used is

xp0q “
´

1
2 , 1

2 . . . , 1
2

¯T
.



Mathematics 2023, 11, 4238 13 of 18

Example 3. The third case presented is a system of size n “ 30,

#

x2
j xj`1 ´ 1 “ 0 j “ 1, 2, . . . , n´ 1;
x2

nx1 ´ 1 “ 0,
(30)

whose exact solution is ξ “ p1, 1, . . . , 1qT , and initial estimate is xp0q “
` 3

2 , 3
2 , . . . , 3

2

˘T .

Example 4. The fourth system presented has size n “ 40; the expression representing this system
is given by

"

xjxj`1 ´ 1 “ 0, j “ 1, 2, . . . , n´ 1,
xnx1 ´ 1 “ 0.

(31)

The exact solution of System (31) is ξ “ p1, 1, . . . , 1qT , for which we use the initial estimate
xp0q “

` 3
2 , 3

2 , . . . , 3
2

˘T .

Example 5. Finally, we consider system
"

xj sin
`

xj`1
˘

´ 1 “ 0, j “ 1, 2, . . . , n´ 1,
xn sinpx1q ´ 1 “ 0.

(32)

It is a system of size n “ 40, and we select the initial estimation xp0q “
` 3

4 , 3
4 , . . . , 3

4

˘T to
approximate the solution ξ « p1.1141, 1.1141 . . . , 1.1141qT .

Tables 2–6 provide strong confirmation of our theoretical findings as the application
of the proposed scheme to each class yielded a convergence order of p` 3. Remarkably,
the MET2,λ class exhibited outstanding efficiency, particularly in terms of computational
time, when compared to alternative approaches that do not utilize Jacobian matrices.
This observation reinforces the practical viability of our technique and its potential to
significantly accelerate numerical computations, supporting its relevance in academic
problem solving.

Table 2. Numerical results for Example 1.

xp0q Schemes
›

›

›
xpk`1q ´ xpkq

›

›

›

›

›

›
F
´

xpk`1q
¯
›

›

›
Iter ACOC e-Time

»

—

—

—

—

–

1
2
...
1
2

fi

ffi

ffi

ffi

ffi

fl

MET1,0.0001,7 5.97084ˆ 10´9 2.28557ˆ 10´56 3 7 36.042129
MET2,0.0001,6 1.49472ˆ 10´37 5.57149ˆ 10´220 4 6 29.970914
MET3,0.0001,7 6.24761ˆ 10´9 3.19194ˆ 10´56 3 7 35.809333
MET4,0.0001,7 3.21705ˆ 10´11 6.09164ˆ 10´73 3 7 32.057150
MET5,0.0001,9 2.59355ˆ 10´16 2.57919ˆ 10´139 3 9 35.072059

Table 3. Numerical results for Example 2.

xp0q Schemes
›

›

›
xpk`1q ´ xpkq

›

›

›

›

›

›
F
´

xpk`1q
¯
›

›

›
Iter ACOC e-Time

»

—

—

—

—

–

1
2
...
1
2

fi

ffi

ffi

ffi

ffi

fl

MET1,0.0001,7 4.79372ˆ 10´43 1.05769ˆ 10´292 3 7 62.517649
MET2,0.0001,6 4.0445ˆ 10´34 1.62857ˆ 10´197 3 6 41.767678
MET3,0.0001,7 4.99649ˆ 10´43 1.43001ˆ 10´292 3 7 60.174395
MET4,0.0001,7 3.79676ˆ 10´44 9.34063ˆ 10´301 3 7 59.730706
MET5,0.0001,9 8.03053ˆ 10´69 1.7569ˆ 10´608 3 9 61.974947
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Table 4. Numerical results for Example 3.

xp0q Schemes
›

›

›
xpk`1q ´ xpkq

›

›

›

›

›

›
F
´

xpk`1q
¯
›

›

›
Iter ACOC e-Time

»

—

—

—

—

–

3
2
...
3
2

fi

ffi

ffi

ffi

ffi

fl

MET1,0.0001,7 4.29798ˆ 10´13 1.74729ˆ 10´89 3 7 49.968165
MET2,0.0001,6 7.04681ˆ 10´10 1.88785ˆ 10´57 3 6 33.644034
MET3,0.0001,7 4.59589ˆ 10´13 2.84399ˆ 10´89 3 7 47.877513
MET4,0.0001,7 7.00027ˆ 10´17 7.71875ˆ 10´117 3 7 48.574717
MET5,0.0001,9 3.93811ˆ 10´25 4.0315ˆ 10´224 3 9 47.829303

Table 5. Numerical results for Example 4.

xp0q Schemes
›

›

›
xpk`1q ´ xpkq

›

›

›

›

›

›
F
´

xpk`1q
¯
›

›

›
Iter ACOC e-Time

»

—

—

—

—

–

3
2
...
3
2

fi

ffi

ffi

ffi

ffi

fl

MET1,0.0001,7 3.42900ˆ 10´23 1.73936ˆ 10´162 3 7 85.570920
MET2,0.0001,6 2.12985ˆ 10´17 1.49899ˆ 10´104 3 6 56.147216
MET3,0.0001,7 3.23467ˆ 10´23 2.78702ˆ 10´162 3 7 83.842336
MET4,0.0001,7 4.28905ˆ 10´27 1.69352ˆ 10´190 3 7 81.009858
MET5,0.0001,9 6.93376ˆ 10´42 8.80969ˆ 10´378 3 9 81.163539

Table 6. Numerical results for Example 5.

xp0q Schemes
›

›

›
xpk`1q ´ xpkq

›

›

›

›

›

›
F
´

xpk`1q
¯
›

›

›
Iter ACOC e-Time

»

—

—

—

—

–

3
4
...
3
4

fi

ffi

ffi

ffi

ffi

fl

MET1,0.0001,7 6.85093ˆ 10´36 4.40923ˆ 10´255 3 7 88.183026
MET2,0.0001,6 7.36696ˆ 10´31 1.36910ˆ 10´189 3 6 57.656010
MET3,0.0001,7 7.34097ˆ 10´36 7.15417ˆ 10´255 3 7 84.166798
MET4,0.0001,7 2.15009ˆ 10´37 1.29829ˆ 10´265 3 7 82.999383
MET5,0.0001,9 3.52145ˆ 10´57 4.99971ˆ 10´519 3 9 83.408546

3.3. Application of the Finite Difference Method on a Model of Nutrient Diffusion in a
Biological Substrate

Now, we focus on the detailed study of a nonlinear elliptic initial value and contour
problem, which was previously treated in [20]. To enrich and improve the analysis, we
introduce an additional term in the equation, namely |u|, which makes the problem non-
differentiable. The proposed partial differential equation has the ability to model a wide
range of nonlinear phenomena in physical, chemical and biological systems.

In the following, we delve into an applied problem concerning the modeling of
nutrient diffusion in a biological substrate. We state the problem and discuss the potential
implications that solving it could have for researchers in various fields and for farmers, as
well as the interpretation of its solution.

In the context of agriculture and biotechnology, let us consider a two-dimensional bio-
logical substrate that represents a cultivation area or a growth medium for microorganisms.
We aim to understand how nutrients diffuse and distribute within this substrate, impacting
the growth and health of the organisms present,

$

’

’

&

’

’

%

B2u
Bx2 `

B2u
By2 “ upx, yq3 ` |upx, yq|, with Ω “

 

px, yq P R2 : x, y P r0, 1s
(

,

upx, 0q “ 2x2 ´ x` 1, upx, 1q “ 2, 0 ď x ď 1,
up0, yq “ 2y2 ´ y` 1, up1, yq “ 2, 0 ď y ď 1.

(33)

In this scenario, upx, yq represents the concentration of nutrients at each point px, yq
within the substrate. The equation reflects how nutrients diffuse within the substrate, while
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the term upx, yq3 ` |upx, yq| incorporates the interaction between nutrient concentration
and the biochemical processes present in the substrate.

The boundary conditions are derived from the conditions at the edges of the cultivation
area. The conditions at the lateral edges (x “ 0 and x “ 1) could reflect the initial nutrient
concentration or the constant input of nutrients into the substrate. The conditions at the
upper and lower edges (y “ 0 and y “ 1) could represent nutrient absorption by plant
roots or interaction with microorganisms on the surface.

Solving this problem would enable researchers and farmers to understand how nutri-
ents are distributed within the substrate and how they impact the growth and health of the
organisms present, providing valuable insights for optimizing agricultural practices and
enhancing biological yields.

As an illustrative example, we solve this equation for a small system, employing a
block-wise approach to represent it as follows.

We create a mesh for discretizing the problem h “
1

n` 1
, k “

1
m` 1

; we also have

the mesh point pxi, yjqwith xi “ ih, i “ 0, . . . , n` 1 and yi “ jk, j “ 0, . . . , m` 1, such that

uxxpxi, yjq ` uyypxi, yjq “ upxi, yjq
3 `

ˇ

ˇupxi, yjq
ˇ

ˇ.

Therefore, by approximating the partial derivatives by central divided differences,
we have

upxi`1, yjq ´ 2upxi, yjq ` upxi´1, yjq

h2 `
upxi, yj`1q ´ 2upxi, yjq ` upxi, yj´1q

k2 “ upxi, yjq
3 ` |upxi, yjq|,

for i “ 1, . . . , n and j “ 1, . . . , m.
Now, we denote u

`

xi, yj
˘

“ ui,j. Simplifying the notation, we obtain

2
´

λ2 ` 1
¯

ui,j ´ λ2
´

ui,j`1 ` λ2ui,j´1

¯

´
`

ui`1,j ` ui´1,j
˘

` h2
´

u3
ij `

ˇ

ˇuij
ˇ

ˇ

¯

“ 0, (34)

with λ “
h
k

, i “ 1, . . . , n and j “ 1, . . . , m.
Equation (34) together with the boundary and initial conditions form a nonlinear

system of size pnmq ˆ pnmq is given by

τupx, yq ` h2ν
´

upx, yq
¯

“ W,

where

τ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

A B 0 ¨ ¨ ¨ 0

B A B . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . B

0 ¨ ¨ ¨ 0 B A

˛

‹

‹

‹

‹

‹

‹

‹

‚

, A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

2
`

λ2 ` 1
˘

´1 0 ¨ ¨ ¨ 0

´1 2
`

λ2 ` 1
˘

´1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . ´1

0 ¨ ¨ ¨ 0 ´1 2
`

λ2 ` 1
˘

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

B “ ´λ2 ¨ Inˆn, u “ pu1, . . . , udq
T , νpuq “

`

u3
1, . . . , u3

d
˘T
`

´

|u1|, . . . , |ud|
¯T

, with d “ nm.
In addition, W denotes a vector containing the boundary conditions. We can set the
nonlinear system as follows:

Ppuq “ τupx, yq ` h2v
´

upx, yq
¯

´W “ 0. (35)
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Let us define the differentiable part as Fpuq “ h2pu1, . . . , udq ` h2`u3
1, . . . , u3

d
˘T
´W, and

the non-differentiable part as Gpuq “ h2p|u1|, . . . , |ud|q
T, so that equation Fpuq ` Gpuq “ 0 holds.

To solve Equation (35), we employ the iterative method MET2,λ,6 ´Mod. We gener-
ate an initial approximation up0q “ p1, 1, . . . , 1q of the exact solution upx, yq. During the
execution of the iterative process, we use variable precision arithmetics with a precision
of 100 digits. We define the stopping criterion as the difference between two consecutive
iterations, such that

›

›

›
upn`1q ´ upnq

›

›

›
ă 10´8 and also

›

›

›
P
´

upkq
¯
›

›

›
ď 10´8. The technical

specifications of the computer used to solve this case are identical to those employed in
solving academical problems. In this instance, we select n “ m “ 25.

Solving the system associated with this PDE, we write the solution of the system
represented in the following matrix.

upxi, yjq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0.96449704 ¨ ¨ ¨ 0.911242 0.89349112 ¨ ¨ ¨ 1.78106509 1.88757396 2
0.96449704 0.94077958 ¨ ¨ ¨ 0.89904994 0.88363618 ¨ ¨ ¨ 1.18118983 0.86468611 2
0.93491124 0.91837384 ¨ ¨ ¨ 0.8853521 0.87175486 ¨ ¨ ¨ 0.80447293 0.49872502 2
0.9112426 0.89904994 ¨ ¨ ¨ 0.87168096 0.85914444 ¨ ¨ ¨ 0.57490717 0.3266623 2

0.89349112 0.88363618 ¨ ¨ ¨ 0.85914444 0.8468333 ¨ ¨ ¨ 0.43058144 0.23355179 2
0.8816568 0.87257659 ¨ ¨ ¨ 0.84851767 0.83559769 ¨ ¨ ¨ 0.33553995 0.17732774 2

...
...

...
...

...
...

...
...

...
0.93491124 0.90648025 ¨ ¨ ¨ 0.84363755 0.8109766 ¨ ¨ ¨ 0.1225449 0.06200892 2
0.96449704 0.9290334 ¨ ¨ ¨ 0.85300742 0.81435483 ¨ ¨ ¨ 0.10830767 0.05468412 2

...
...

...
...

...
...

...
...

...
1.49704142 1.27264469 ¨ ¨ ¨ 0.89476719 0.75181019 ¨ ¨ ¨ 0.03252994 0.01627615 2
1.58579882 1.29317295 ¨ ¨ ¨ 0.83884556 0.68304563 ¨ ¨ ¨ 0.02596847 0.012988 2
1.68047337 1.27872037 ¨ ¨ ¨ 0.73904355 0.5790819 ¨ ¨ ¨ 0.01945358 0.00972662 2
1.78106509 1.18118983 ¨ ¨ ¨ 0.57490717 0.43058144 ¨ ¨ ¨ 0.01296163 0.00647928 2
1.88757396 0.86468611 ¨ ¨ ¨ 0.3266623 0.23355179 ¨ ¨ ¨ 0.00647928 0.00323844 2

2 2 ¨ ¨ ¨ 2 2 ¨ ¨ ¨ 2 2 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

After three iterations, the obtained solution satisfies
›

›

›
up3q ´ up2q

›

›

›
ă 5.34 ˆ 10´5,

and the norm of the nonlinear operator Ppuq evaluated at the last iteration is such that
›

›

›
P
´

up3q
¯
›

›

›
ď 7.035eˆ 10´34. The approximate solution in R625, resized to a 25ˆ 25 matrix

for i, j “ 1, . . . , 25, and then embedded in the solution matrix within the grid bounded by
the boundary conditions, is presented in the matrix above.

We can affirm that the values upxi, yjq obtained fall within the range 0 ă upxi, yjq ă 1.3. In
the context of the posed problem involving the diffusion of nutrients in a two-dimensional
biological substrate, these observations take on fundamental significance. The concentration
of nutrients upxi, yjq demonstrates a trend in which values are bounded between 0 and
1.3. This limitation in concentration implies a biological equilibrium in the system, where
absorption, diffusion, and biochemical reactions harmonize. This characteristic suggests
that the system is stable and well-regulated in terms of nutrient availability.

The coherence between the obtained values and the initial and boundary conditions
of the problem reinforces the validity of the solution. This indicates that the nutrient
distribution aligns with the influences of the boundary conditions, thus supporting the
biological interpretation of the model.

The influence of the differential equation upx, yq3 ` |upx, yq| is reflected in the limited
concentration range. This implies that biochemical interactions between nutrients and
present species are influencing nutrient distribution in the substrate.

In summary, the observation that the internal values of the solution matrix upxi, yjq lie
within the range of 0 to 1.3 suggests a balanced, stable, and regulated biological system in
terms of nutrient concentration. The alignment with the conditions of the problem and the
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influence of biochemical interactions endorse the validity of the obtained results and their
interpretation in the context of agriculture and biotechnology.

4. Conclusions

In this paper, we presented an innovative proposal that shows an ability to increase the
order of convergence from p to p` 3, without relying on Jacobian matrices. Our validation
was solidly supported by consistently obtaining this three-unit increase, as evidenced in
various academic problems. This approach generated equally significant results, translating
into an increase in the order of convergence by p` 3 units in each of the iterative classes
we used to perform our numerical tests as we already assumed. Finally, we successfully
tackled the resolution of a problem modeled by a nonlinear partial differential equation
describing the phenomenon of nutrient diffusion in a biological substrate.
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