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Abstract: In this paper, the solution to the Dirichlet problem for the wave equation on the star graph
is constructed. To begin, we solve the boundary value problem on the interval (on one edge of
the graph). We use the generalized functions method to obtain the wave equation with a singular
right-hand side. The solution to the Dirichlet problem is determined through the convolution of the
fundamental solution with the singular right-hand side of the wave equation. Thus, the solution
found on the interval is determined by the initial functions, boundary functions, and their derivatives
(the unknown boundary functions). A resolving system of two linear algebraic equations in the
space of the Fourier transform in time is constructed to determine the unknown boundary functions.
Following inverse Fourier transforms, the solution to the Dirichlet problem of the wave equation on
the interval is constructed. After determining all the solutions on all edges and taking the continuity
condition and Kirchhoff joint condition into account, we obtain the solution to the wave equation on
the star graph.

Keywords: star graph; boundary vertices; internal vertex; Dirichlet problem; Kirchhoff joint condition;
wave equation; Fourier transform; generalized functions
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1. Introduction

Some mathematical physics problems of complex systems consisting of elements with
different physical properties can be conveniently modeled by boundary value problems
on graphs. The study of differential equations on graphs (or networks) was derived from
various scientific sources. For the scattering problem of the free electrons, differential
equations on graphs were investigated in the works of B.S. Pavlov [1,2] using extensional
theory methods. Since then, there have been many papers studying the properties of
differential equations on geometric graphs. By applying the method of the separation
of variables to partial differential equations on a graph, we obtain a spectral problem of
the Sturm–Liouville type on a graph, which has been studied by many authors (we refer
the reader to the works of G. Lumer [3], J. von Below [4,5], S. Nicaise [6,7], and other
authors [8–11]. In particular, we note the work of V.V. Provotorov [12], in which a good
example of the application of the results of the Sturm–Liouville problem is given to model
the oscillatory processes of an elastic mast with supporting elastic braces.

The wave equation is a very general mathematical model for a large number of physical
processes that describe mechanical oscillations of various structures, electromagnetic field
oscillations, and the propagation of acoustic waves in liquids and gases. The study of
the wave equation on a geometric graph is relatively recent. One of the first works in
this direction was the monograph by F. Ali-Mehmeti “Nonlinear waves in networks” [13].
In this work, the solution to the wave equation in a d’Alembert-type form was obtained for
a graph with the structure of a cross composed of four identical edges. C. Cattaneo and
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L. Fontana [14] applied the idea of the d’Alembert formula and found the solution to the
Cauchy problem for the wave equation on finite-weighted networks. These works differ
from ours in that they used spectral theory, considered Cauchy problems, and obtained
solutions in the form of a series of sines and cosines. J. Friedman and J-P. Tillich [15]
studied the wave equation whose Laplacian is based on the edge on metric graphs. In this
case, the values of the solution were given in terms of the Chebyshev polynomials of the
normalized adjacency matrix. The difference between this paper and [16] is that in [16], a
solution that depends on the initial values was obtained by introducing a set of oriented
broken lines into the initial boundary value problem for the wave equation on a geometric
graph. Our solution differs in that it has an integral representation and is expressed using
the given initial and boundary values.

In the past few decades, most works have been devoted to the controllability, observ-
ability, and stabilization of elastic systems (we refer the reader to the works of Cox and
Zuazua [17] and other authors [18–20]). In applications, there are problems associated
with the generation of a certain mode of vibration in the system or with the damping of
existing unwanted vibrations in various structures. One of the most frequently used meth-
ods for solving these problems is boundary control, in which through some mechanisms,
the state of the system is controlled at the boundary or some part of it. In [21,22], the exact
and approximate boundary controllability of the wave equation on a graph was studied
and sufficient conditions were established on the spectrum of the Laplace operator on
the graph. K. Ammari and coauthors proved that the solution to the wave equation on a
tree graph decreases with time [23,24] if an absorbing boundary condition is imposed at
one of the ends, additionally requiring the mutual irrationality of the signal propagation
times through different sections (results of this kind in the literature are called solution
stabilization). Schmidt [25] introduced a graphical rule (a rule for the arrangement of signs)
that allows the solvability of the control problem for a linearized equation of plane oscil-
lations of a two-dimensional network of strings to be established. We especially mention
the works of S. Avdonin. A large number of works are devoted to control, observation,
identification, and inverse problems of the wave equation on metric graphs (also on star
graphs) (see [26–29]). The boundary control method, the leaf-peeling method, and the
distributed-parameter system have been used to investigate problems of controllability,
observability, and stability for the wave equation, but the method of generalized functions
has not been used. As we mentioned before, different ODE and PDE problems on star
graphs were considered in [12,13,29–31]. Now, let us explain how our work differs from
the works mentioned above.

We consider the Dirichlet problem for a non-homogeneous wave equation with non-
zero initial conditions on a star graph. The basic element for a wave equation on a graph is
a finite-length edge; therefore, Dirichlet problems are considered on each edge. The novelty
of this work is that a method of generalized functions has been developed to solve these
problems [32–34]. This method transforms the Dirichlet boundary value problems on each
edge into wave equations with a singular right-hand side in the space of generalized func-
tions. In this case, the initial and boundary conditions are included in the wave equation as
a density of simple and double layers on the right side. The fundamental solution to this
equation, which satisfies certain damping and radiation conditions, is used to construct the
solution to the original Dirichlet boundary value problem in the form of a convolution with
a singular right-hand side of the wave equation. The regular integral representation of this
convolution provides a solution to the Dirichlet problem. It allows us to construct resolving
singular boundary integral equations to determine the unknown boundary functions as we
approach the domain’s boundary. To solve these integral equations, we use the generalized
Fourier transform in time and then solve algebraic equations to determine the Fourier
transforms of the boundary functions. Following inverse Fourier transforms, solutions to
the Dirichlet problems of the wave equations on each edge are constructed. After finding all
solutions on all edges and taking into account the continuity and Kirchhoff joint conditions,
we obtain the solution to the wave equation on the star graph with one nodal point.
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The previous research conducted by the first author of this paper was related to
potential theory [35–39]. Due to its theoretical and practical importance, the authors of
this paper present the first joint study of the problem of partial differential equations in
graph theory.

2. Statement of the Dirichlet Problem on the Star Graph

Let G = (V, E) be a star graph with n edges, where V = {a0, a1, a2, ..., an} is a set of
vertices, E = {e1, e2, ..., en} is a set of edges, and each edge ej ∈ E (j = 1, n) is identified with
an interval (0, Lj) (see Figure 1). The set of boundary vertices (the vertices of degree one) is
denoted by Γ = {a1, a2, ..., an}, and the set of an internal vertex is V \ Γ = {a0}. On each
edge, we use the following notations: u1(0, t) = w1

1(t), u1(L1, t) = w1
2(t),

∂u1(0,t)
∂x = p1

1(t),
∂u1(L1,t)

∂x = p1
2(t), etc.

Figure 1. A star graph G.

Now, we associate the following initial boundary value problem (IBVP) for the 1D
wave equation on the graph G:

∂2uj

∂x2
j
− 1

c2
j

∂2uj

∂t2 = Gj(xj, t), 0 < xj < Lj, t > 0, (1)

with the initial conditions:

uj(xj, 0) = uj
0(xj), 0 ≤ xj ≤ Lj, t = 0, (2)

∂uj(xj, 0)
∂t

= υ
j
0(xj), 0 ≤ xj ≤ Lj, t = 0, (3)

and the Dirichlet boundary conditions:

uj(Lj, t) = wj
2(t), xj = Lj, t ≥ 0, (4)

and the continuity condition at the interior vertex (xj = 0)

u1(0, t) = u2(0, t) = ... = un(0, t), t ≥ 0, (5)

that is,
w1

1(t) = w2
1(t) = ... = wn

1 (t), t ≥ 0, (6)
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and the Kirchhoff joint condition at the interior vertex (xj = 0)

n

∑
j=1

∂

∂xj
uj(xj, t)|xj=0 =

∂

∂x1
u1(x1, t)|x1=0 +

∂

∂x2
u2(x2, t)|x2=0 + ... +

∂

∂xn
un(xn, t)|xn=0 = 0, t ≥ 0, (7)

that is,
p1

1(t) + p2
1(t) + ... + pn

1 (t) = 0, t ≥ 0. (8)

To solve the Dirichlet problem on a star graph G with n edges, we introduce the
concepts of shock waves, classical solutions, and generalized solutions. Then, we consider
a boundary problem on any one edge ej.

3. Generalized Solutions to the Wave Equation, Shock Waves

We consider the 1D wave equation:

∂2u
∂x2 −

1
c2

∂2u
∂t2 = G(x, t), x ∈ R, t ∈ R, (9)

where G(x, t) is a local integrable function. Equation (9) is strictly hyperbolic and the class of
its solutions contains discontinuous functions in the derivatives ut and ux. The discontinuity
surfaces F(x, t) in Equation (9) are characteristic surfaces that satisfy the characteristic
equation in R2 = {(x, τ = ct)}:(

∂F
∂t

)2
+

(
∂F
∂x

)2
= 0, on F(x, t) = 0. (10)

Here,
(

∂F
∂t , ∂F

∂x

)
is the normal vector to F(x, t). It corresponds to the following charac-

teristics: x± ct = const. Thus, the wave fronts Ft move at speed c in R1. Such wave fronts
satisfy Hadamard’s conditions:

[u(x, t)]Ft = 0, [ut(x, t)]Ft = −c[ux(x, t)]Ft , (11)

where we denote the jump of f on Ft by [ f (x, t)]Ft :

[ f (x, t)]Ft = f+(x, t)− f−(x, t) = lim
ε→0

( f+(x + ε, t)− f−(x− ε, t)), x ∈ Ft. (12)

The class of similar hyperbolic equation solutions is known as shock waves because
functions and derivatives of functions have a jump on their fronts.

We consider functions u(x, t) that are continuous with derivatives up to the second
order almost everywhere, with the exception of a finite or countable number of discontinu-
ity surfaces, sufficiently smooth almost everywhere, and satisfy Hadamard’s conditions.
We call such solutions classic solutions. It can be shown that these classic solutions are
generalized solutions to (9) (see [32]).

4. Statement of the Dirichlet Problem on One Edge

We consider the 1D wave equation in the domain Ω = {0 < x < L, t > 0}:

∂2u
∂x2 −

1
c2

∂2u
∂t2 = G(x, t), 0 < x < L, t > 0, (13)

with the initial conditions:

u(x, 0) = u0(x), 0 ≤ x ≤ L, t = 0, (14)
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ut(x, 0) = υ0(x), 0 ≤ x ≤ L, t = 0, (15)

and Dirichlet boundary conditions (IBVP1):

u(0, t) = w1(t), x = 0, t ≥ 0, (16)

u(L, t) = w2(t), x = L, t ≥ 0. (17)

Let us move on to the space of generalized functions of slow growth S′(R2) to solve the
Dirichlet problem on the interval (0, L). For this purpose, we introduce the characteristic
function of the domain of the solution:

H(x)H(L− x)H(t), (18)

where

H(x)H(L− x) =


1
2 , x = 0, x = L,
1, x ∈ (0, L),
0, x 3 (0, L),

is a set characteristic function and

H(t) =


1
2 , t = 0,
1, t > 0,
0, t < 0,

is the Heaviside function.
We also introduce regular generalized functions

ũ(x, t) = u(x, t)H(x)H(L− x)H(t), G̃(x, t) = G(x, t)H(x)H(L− x)H(t),

where u(x, t) is a classic solution to the problem.
To solve this Dirichlet problem, we use the method of generalized functions [32–34].

For a regular function ũ(x, t) in the space of generalized functions of slow growth S′(R2),
we obtain a wave equation with a singular right-hand side:

∂2ũ(x, t)
∂x2 − 1

c2
∂2ũ(x, t)

∂t2 = F̃(x, t), (19)

where

F̃(x, t) = G(x, t)H(x)H(L− x)− 1
c2 [u0(x)H(x)H(L− x)δ′(t) + ϑ0(x)H(x)H(L− x)δ(t)]−

w2(t)H(t)δ′(x− L) + w1(t)H(t)δ′(x)− p2(t)H(t)δ(x− L) + p1(t)H(t)δ(x), (20)

and δ is a singular delta function.
The solution ũ(x, t) to the wave Equation (19) is determined using a convolution of

the fundamental solution E(x, t) and the right-hand side F̃(x, t). As a fundamental solution,
we use the function E(x, t), which satisfies the following equation:

∂2E
∂x2 −

1
c2

∂2E
∂t2 = δ(x, t), (21)

and also satisfies the radiation conditions:

E(x, t) = 0, t < 0; E(x, t) = 0, |x| > ct. (22)
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The solution to Equation (21) is the Riemann function:

E(x, t) = − c
2

H(ct− |x|). (23)

A generalized solution to the given BVP is obtained using a convolution of the Rie-
mann function with the right-hand side of the equation:

ũ(x, t) = E(x, t) ∗ F̃(x, t) =

E(x, t) ∗ G̃(x, t) + E(x, t) ∗ p1(t)H(t)δ(x)− E(x, t) ∗ p2(t)H(t)δ(x− L)+

E(x, t) ∗ w1(t)H(t)δ′(x)− E(x, t) ∗ w2(t)H(t)δ′(x− L)−
1
c2

(
E(x, t) ∗ u0(x)H(x)H(L− x)δ′(t) + E(x, t) ∗ ϑ0(x)H(x)H(L− x)δ(t)

)
=

E(x, t) ∗ G̃(x, t) + E(x, t) ∗
t

p1(t)H(t)− E(x− L, t) ∗
t

p2(t)H(t)+

∂E(x, t)
∂x

∗
t

w1(t)H(t)− ∂E(x− L, t)
∂x

∗
t

w2(t)H(t)−

1
c2

(
∂E(x, t)

∂t
∗
x

u0(x)H(x)H(L− x) + E(x, t) ∗
x

ϑ0(x)H(x)H(L− x)
)

. (24)

Using the property of convolutions with a delta function, we obtain the following
integral results:

I1 = − c
2

H(ct− |x|) ∗ −1
c2 u0(x)H(x)H(L− x)δ′(t) =

1
2
[u0(x + ct)H(x + ct)H(L− (x + ct)) + u0(x− ct)H(x− ct)H(L− (x− ct))]. (25)

I2 = − c
2

H(ct− |x|) ∗ −1
c2 ϑ0(x)H(x)H(L− x)δ(t) =

1
2c

∫ L

0
ϑ0(ξ)H(ct− |x− ξ|)dξ. (26)

I3 = − c
2

H(ct− |x|) ∗ w2(t)H(t)δ′(x− L) =
1
2

sgn(x− L)w2(t−
|x− L|

c
)H(t− |x− L|

c
). (27)

I4 = − c
2

H(ct− |x|) ∗ w1(t)H(t)δ′(x) =
1
2

sgn(x)w1(t−
|x|
c
)H(t− |x|

c
). (28)

I5 = − c
2

H(ct− |x|) ∗ p2(t)H(t)δ(x− L) = − c
2

∫ t

|x−L|
c

p2(t− τ)dτ. (29)

I6 = − c
2

H(ct− |x|) ∗ p1(t)H(t)δ(x) = − c
2

∫ t

|x|
c

p1(t− τ)dτ. (30)

I7 = − c
2

H(ct− |x|) ∗ G(x, t)H(x)H(L− x)H(t) =

− c
2

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
G(ξ, τ)H(ξ)H(L− ξ)dξdτ. (31)

Due to the DuBois–Reymond lemma, we obtain the following theorem.

Theorem 1. The solution u(x, t) to (13)–(17) is defined by the following integral representation:

2u(x, t) = [u0(x + ct)H(x + ct)H(L− (x + ct)) + u0(x− ct)H(x− ct)H(L− (x− ct))]+

c−1
∫ L

0
ϑ0(ξ)H(ct− |x− ξ|)dξ + c

(∫ t

|x−L|
c

p2(t− τ)dτ −
∫ t

|x|
c

p1(t− τ)dτ

)
−
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sgn(x− L)w2(t−
|x− L|

c
)H(t− |x− L|

c
) + sgn(x)w1(t−

|x|
c
)H(t− |x|

c
)−

c
∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
G(ξ, τ)H(ξ)H(L− ξ)dξdτ. (32)

By analogy with the representation of solutions to the Laplace equation, this formula
can be called the dynamic analog of Green’s formula.

As a result, the solution found u(x, t) depends on the initial functions, the boundary
functions, and their derivatives (the unknown boundary functions). Now, we use the
Fourier transform in time to determine the unknown boundary functions p1(t) and p2(t).

5. Fourier Transform of the Solution with Respect to Time

It is convenient to use the direct Fourier transform in time and the inverse Fourier
transform to solve the boundary equations, which have the following forms for ũ(x, t):

û(x, ω) = H(x)H(L− x)
∫ ∞

0
u(x, t)eiωtdt, u(x, t) =

1
2π

∫ ∞

−∞
û(x, ω)e−iωtdω, (33)

where ω is the Fourier variable with respect to time. Using the properties of the Fourier
transform of convolutions and derivatives, we obtain the Fourier transform of ũ(x, t)
from (24):

û(x, ω) = − 1
c2

(
−iωÊ(x, ω)∗xu0(x)H(x)H(L− x) + Ê(x, ω)∗xϑ0(x)H(x)H(L− x)

)
−

∂Ê(x− L, ω)

∂x
ŵ2(ω) +

∂Ê(x, ω)

∂x
ŵ1(ω)− Ê(x− L, ω) p̂2(ω) + Ê(x, ω) p̂1(ω)+

Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x). (34)

Here, Ê(x, ω) is the Fourier transform of the Riemann function in time.
For the 1D wave equation

∂2E(x, t)
∂x2 − 1

c2
∂2E(x, t)

∂t2 = δ(x)δ(t), (35)

the Fourier transform with respect to t yields

d2

dx2 Ê(x, ω)− 1
c2 (−iω)2Ê(x, ω) = δ(x),

d2

dx2 Ê(x, ω) + k2Ê(x, ω) = δ(x), k =
ω + i0

c
. (36)

The fundamental solution to Equation (36) is

Ê(x, ω) =
1
2k

sin(k|x|), Êx(x, ω) =
1
2

cos(k|x|)sgn(x),

where

sgn(x) =


1, x > 0,
0, x = 0,
−1, x < 0.

Consequently, we obtain the following solution in Fourier space:
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û(x, ω) =
iω
c2

1
2k

sin(k|x|)∗xu0(x)H(x)H(L− x)− 1
c2

1
2k

sin(k|x|)∗xϑ0(x)H(x)H(L− x)−

1
2

sgn(x− L) cos(k|x− L|)ŵ2(ω) +
1
2

sgn(x) cos(k|x|)ŵ1(ω)−
1
2k

sin(k|x− L|) p̂2(ω) +
1
2k

sin(k|x|) p̂1(ω) +
1
2k

sin(k|x|)∗xĜ(x, ω)H(x)H(L− x). (37)

If x in this formula tends to the left and right boundaries of the interval (0, L), we obtain
linear algebraic equations to determine the unknown boundary functions ∂u(0,t)

∂x = p1(t)

and ∂u(L,t)
∂x = p2(t).

For x → 0, we obtain:

1
2

ŵ1(ω) =
1
2

cos(kL)ŵ2(ω)− 1
2k

sin(kL) p̂2(ω) + Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x)|x=0+

1
c2

1
2k

(iω sin(k|x|)∗xu0(x)H(x)H(L− x))− sin(k|x|)∗xϑ0(x)H(x)H(L− x))|x=0, (38)

or

ŵ1(ω)− cos(kL)ŵ2(ω) + k−1 sin(kL) p̂2(ω) = 2Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x)|x=L+

1
c2

1
k
(iω sin(k|x|)∗xu0(x)H(x)H(L− x))− sin(k|x|)∗xϑ0(x)H(x)H(L− x))|x=L. (39)

For x → L, we obtain:

1
2

ŵ2(ω) =
1
2

cos(kL)ŵ1(ω) +
1
2k

sin(kL) p̂1(ω) + Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x)|x=L+

1
c2

1
2k

(iω sin(k|x|)∗xu0(x)H(x)H(L− x))− sin(k|x|)∗xϑ0(x)H(x)H(L− x))|x=L, (40)

or

ŵ2(ω)− cos(kL)ŵ1(ω)− k−1 sin(kL) p̂1(ω) = 2Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x)|x=L+

1
c2

1
k
(iω sin(k|x|)∗xu0(x)H(x)H(L− x))− sin(k|x|)∗xϑ0(x)H(x)H(L− x))|x=L. (41)

We can determine the unknown functions directly using Equations (39) and (41):

p̂1(ω) = − F̂2(ω)+cos(kL)ŵ1(ω)−ŵ2(ω)
k−1 sin(kL) ,

p̂2(ω) = F̂1(ω)+cos(kL)ŵ2(ω)−ŵ1(ω)
k−1 sin(kL) ,

(42)

or Equations (39) and (41) can be rewritten in matrix form

{
1, − cos(kL), 0, k−1 sin(kL)

− cos(kL), 1, −k−1 sin(kL), 0

}
ŵ1(ω)
ŵ2(ω)
p̂1(ω)
p̂2(ω)

 =

{
F̂1(ω)

F̂2(ω)

}
, (43)

where
F̂1(ω) = 2Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x)|x=0+

1
c2k

(
iω sin(k|x|) ∗

x
u0(x)H(x)H(L− x)− sin(k|x|)∗xϑ0(x)H(x)H(L− x)

)
|x=0,

F̂2(ω) = 2Ê(x, ω)∗xĜ(x, ω)H(x)H(L− x)|x=L+

1
c2k

(
iω sin(k|x|) ∗

x
u0(x)H(x)H(L− x)− sin(k|x|)∗xϑ0(x)H(x)H(L− x)

)
|x=L.
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are known as right-hand sides.
Equation (43) connects four boundary functions and allows us to determine two

unknown boundary functions if any two are given. We substitute the inverse Fourier
transforms of the boundary functions p̂1(ω) and p̂2(ω) into Formula (32) after determining
their inverse Fourier transforms. As a result, we find the solution u(x, t) on the interval
(0, L).

6. Determination of the Unknown Boundary Functions on the Graph with n Edges

For each edge ej (j = 1, n), we obtain linear algebraic equations to determine the
unknown boundary functions:

{
1, − cos(kLj), 0, k−1 sin(kLj)

− cos(kLj), 1, −k−1 sin(kLj), 0

}
ŵj

1(ω)

ŵj
2(ω)

p̂j
1(ω)

p̂j
2(ω)

 =

{
F̂j

1(ω)

F̂j
2(ω)

}
, (44)

We also have continuity conditions at the interior vertex (xj = 0):

w1
1(t) = w2

1(t) = ... = wn
1 (t), t ≥ 0, (45)

and the Kirchhoff joint condition at the interior vertex (xj = 0):

p1
1(t) + p2

1(t) + ... + pn
1 (t) = 0, t ≥ 0. (46)

For Equations (44)–(46), we obtain the following theorem.

Theorem 2. The resolving system of equations for the transformants of the Dirichlet problem on
a star graph G with n edges has the form

A · D(ω) = F(ω), (47)

where

A =



1, − cos(kL1), 0, sin(kL1)
k , ... 0, 0, 0, 0

− cos(kL1), 1, sin(kL1)
−k , 0, ... 0, 0, 0, 0

... ... ... ... ... ... ... ... ...
0, 0, 0, 0, ... 1, − cos(kLn), 0, sin(kLn)

k
0, 0, 0, 0, ... − cos(kLn), 1, sin(kLn)

−k , 0
1, 0, 0, 0, ... 0, 0, 0, 0
... ... ... ... ... ... ... ... ...
0, 0, 0, 0, ... 0, 0, 0, −1
0, 0, 1, 0, ... 0, 0, 1, 0
0, 1, 0, 0, ... 0, 0, 0, 0
... ... ... ... ... ... ... ... ...
0, 0, 0, 0, ... 0, 1, 0, 0



(48)
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and

D(ω) =



ŵ1
1(ω)

ŵ1
2(ω)

p̂1
1(ω)

p̂1
2(ω)
...

ŵn
1 (ω)

ŵn
2 (ω)

p̂n
1 (ω)

p̂n
2 (ω)


, F(ω) =



F̂1
1 (ω)

F̂1
2 (ω)

F̂2
1 (ω)

F̂2
2 (ω)
...

F̂n
1 (ω)

F̂n
2 (ω)

F̂n
1 (ω)

F̂n
2 (ω)

0
...
0

ŵ1
2(ω)
...

ŵn
2 (ω)



. (49)

Here, A = {A}4n×4n, D(ω) = {D(ω)}4n×1, F(ω) = {F(ω)}4n×1.
And the solution to System (47) is determined using the formula

Dj(ω) =
∆j(ω)

∆(ω)
. (50)

Here, ∆(ω) is the determinant of matrix A, and ∆j(ω) is the determinant of a matrix
determined by the simple Cramer rule for each Dj(ω).

After determining all the boundary functions, we can determine the solutions of the
graph G on each edge, as shown above for the solution on the interval. As a result, we have
determined the solution u(x, t) = (u1(x1, t), u2(x2, t), ..., un(xn, t))T of the wave equation
on the star graph G.

7. An Example

In this section, we show how to determine the unknown boundary functions and en-
sure the satisfaction of continuity and the Kirchhoff conditions for a graph with two edges.

For edge e1, we obtain two linear algebraic equations to determine the unknown
boundary functions p̂1

1(ω) and p̂1
2(ω):

{
1, − cos(kL1), 0, k−1 sin(kL1)

− cos(kL1), 1, −k−1 sin(kL1), 0

}
ŵ1

1(ω)
ŵ1

2(ω)
p̂1

1(ω)
p̂1

2(ω)

 =

{
F̂1

1 (ω)

F̂1
2 (ω)

}
, (51)

and to determine the unknown boundary functions p̂2
1(ω) and p̂2

2(ω) of the edge e2:

{
1, − cos(kL2), 0, k−1 sin(kL2)

− cos(kL2), 1, −k−1 sin(kL2), 0

}
ŵ2

1(ω)
ŵ2

2(ω)
p̂2

1(ω)
p̂2

2(ω)

 =

{
F̂2

1 (ω)

F̂2
2 (ω)

}
. (52)

We also have a continuity condition at the interior vertex (xj = 0):

w1
1(t) = w2

1(t), t ≥ 0, (53)

and the Kirchhoff joint condition at the interior vertex (xj = 0):

p1
1(t) + p2

1(t) = 0, t ≥ 0. (54)
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Theorem 3. The resolving system of equations for the transformants of the Dirichlet problem on a
star graph G with two edges has the form

A · D(ω) = F(ω), (55)

where

A =



1, − cos(kL1), 0, sin(kL1)
k , 0, 0, 0, 0

− cos(kL1), 1, sin(kL1)
−k , 0, 0, 0, 0, 0

0, 0, 0, 0, 1, − cos(kL2), 0, sin(kL2)
k

0, 0, 0, 0, − cos(kL2), 1, sin(kL2)
−k , 0

1, 0, 0, 0, −1, 0, 0, 0
0, 0, 1, 0, 0, 0, 1, 0
0, 1, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0


, (56)

and

D(ω) =



ŵ1
1(ω)

ŵ1
2(ω)

p̂1
1(ω)

p̂1
2(ω)

ŵ2
1(ω)

ŵ2
2(ω)

p̂2
1(ω)

p̂2
2(ω)


, F(ω) =



F̂1
1 (ω)

F̂1
2 (ω)

F̂2
1 (ω)

F̂2
2 (ω)

0
0

ŵ1
2(ω)

ŵ2
2(ω)


. (57)

And the solution to System (55) is found using the formula

Dj(ω) =
∆j(ω)

∆(ω)
, (58)

∆(ω) =
cos(kL1) sin(kL1)(sin(kL2))

2 + cos(kL2)(sin(kL1))
2 sin(kL2)

k3 . (59)

This is the determinant of matrix A.

We obtained the following results:

∆1(ω) =
−F̂1

2 (ω) sin(kL1)(sin(kL2))
2 + ŵ1

2(ω) sin(kL1)(sin(kL2))
2

k3 +

−F̂2
2 (ω)(sin(kL1))

2 sin(kL2) + ŵ2
2(ω)(sin(kL1))

2 sin(kL2)

k3 , (60)

w1
1(ω) =

∆1(ω)

∆(ω)
. (61)

∆2(ω) =
ŵ1

2(ω) cos(kL1) sin(kL1)(sin(kL2))
2 + ŵ1

2(ω) cos(kL2)(sin(kL1))
2 sin(kL2)

k3 , (62)

w1
2(ω) =

∆2(ω)

∆(ω)
= w1

2(ω). (63)

∆3(ω) =
F̂2

2 (ω) cos(kL1) sin(kL1) sin(kL2)− ŵ2
2(ω) cos(kL1) sin(kL1) sin(kL2)

k2 +

−F̂1
2 (ω) cos(kL2) sin(kL1) sin(kL2) + ŵ1

2(ω) cos(kL2) sin(kL1) sin(kL2)

k2 , (64)
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p1
1(ω) =

∆3(ω)

∆(ω)
. (65)

∆4(ω) =
sin(kL2)

2[F̂1
2 (ω)− ŵ1

2(ω) + ŵ1
2(ω) cos(kL1)

2 + F̂1
1 (ω) cos(kL1)]

k2 +

sin(kL2) sin(kL1)[F̂2
2 (ω)− ŵ2

2(ω) + F̂1
1 (ω) cos(kL2) + ŵ1

2(ω) cos(kL1) cos(kL2)]

k2 , (66)

p1
2(ω) =

∆4(ω)

∆(ω)
. (67)

∆5(ω) =
−F̂1

2 (ω) sin(kL1)(sin(kL2))
2 + ŵ1

2(ω) sin(kL1)(sin(kL2))
2

k3 +

−F̂2
2 (ω)(sin(kL1))

2 sin(kL2) + ŵ2
2(ω)(sin(kL1))

2 sin(kL2)

k3 , (68)

ŵ2
1(ω) =

∆5(ω)

∆(ω)
=

∆1(ω)

∆(ω)
= ŵ1

1(ω), (69)

Formula (69) shows that the continuity condition is satisfied at the interior vertex
(xj = 0), (j = 1, 2).

∆6(ω) =
ŵ2

2(ω) cos(kL1) sin(kL1)(sin(kL2))
2 + ŵ2

2(ω) cos(kL2)(sin(kL1))
2 sin(kL2)

k3 , (70)

w2
2(ω) =

∆2(ω)

∆(ω)
= w2

2(ω). (71)

∆7(ω) =
−F̂2

2 (ω) cos(kL1) sin(kL1) sin(kL2) + ŵ2
2(ω) cos(kL1) sin(kL1) sin(kL2)

k2 +

F̂1
2 (ω) cos(kL2) sin(kL1) sin(kL2)− ŵ1

2(ω) cos(kL2) sin(kL1) sin(kL2)

k2 , (72)

p̂2
1(ω) =

∆7(ω)

∆(ω)
= −∆3(ω)

∆(ω)
= − p̂1

1(ω), (73)

Formula (73) shows that the Kirchhoff joint condition is satisfied at the interior vertex
(xj = 0), (j = 1, 2).

∆8(ω) =
sin(kL1)

2[F̂2
2 (ω)− ŵ2

2(ω) + ŵ2
2(ω) cos(kL2)

2 + F̂2
1 (ω) cos(kL2)]

k2 +

sin(kL2) sin(kL1)[F̂1
2 (ω)− ŵ1

2(ω) + F̂2
1 (ω) cos(kL1) + ŵ2

2(ω) cos(kL1) cos(kL2)]

k2 , (74)

p2
2(ω) =

∆8(ω)

∆(ω)
. (75)

We use the inverse Fourier transforms to find the solutions for each edge. Then, we
obtain the solution u(x, t) = (u1(x1, t), u2(x2, t))T to the wave equation on the graph G
with two edges.

8. Conclusions

In this work, we obtained the resolving system of equations using the generalized
functions method and Fourier transforms for the solutions on each edge. This system
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connects four boundary values—the values of the function and its derivatives at the
boundary points of each edge—and allows us to find a solution on each edge. Thus,
the solution to the Dirichlet problem for the wave equation is constructed on the star graph
with one nodal point where the continuity and Kirchhoff joint conditions are satisfied.

The constructed solutions in the space of Fourier transforms provide a solution to
boundary value problems for stationary oscillations of a specific frequency, so they can be
used to study the dynamics of structures under periodic impacts, which is also common
in practice. It is also possible to study resonance phenomena in rod structures, which are
associated with an increase in the amplitude of vibrations at certain frequencies, potentially
leading to a loss of strength and the destruction of structures containing such rod elements.
Simply find the control system’s determinant by frequency to accomplish this.
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