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Abstract: To model dynamic systems in various situations results in an ordinary differential equation

of the form
dy
dt

= g(y, t, θ), where g denotes a function and θ stands for a parameter or vector of
unknown parameters that require estimation from observations. In order to consider environmental
fluctuations and numerous uncontrollable factors, such as those found in forestry, a stochastic
noise process εt may be added to the aforementioned equation. Thus, a stochastic differential

equation is obtained:
dYt
dt

= f (Yt, t, θ) + εt. This paper introduces a method and procedure for
parameter estimation in a stochastic differential equation utilising the Richards model, facilitating
growth prediction in a forest’s tree population. The fundamental concept of the approach involves
assuming that a deterministic differential equation controls the development of a forest stand, and that
randomness comes into play at the moment of observation. The technique is utilised in conjunction
with the logistic model to examine the progression of an agricultural epidemic induced by a virus.
As an alternative estimation method, we present the Random Time Transformation (RTT) method.
Thus, this paper’s primary contribution is the application of the RTT method to estimate the Richards
model, which has not been conducted previously. The literature often uses the logistic or Gompertz
models due to difficulties in estimating the parameter form of the Richards model. Lastly, we assess
the effectiveness of the RTT Method applied to the Chapman–Richards model using both simulated
and real-life data.

Keywords: stochastic differential equations; Richards model; Random Time Transformation Technique;
maximum likelihood estimate; growth models

MSC: 37H10; 60H10; 65C20

1. Introduction

Least-squares or likelihood methods typically treat differential equations with error-
prone measurements based on diffusion-type stochastic modifications of the differential
equation. We study the performance of likelihood methods based on the substitution of a
Random Time Transformation (RTT) as an argument in the solution of the original determin-
istic differential equation. This method can be used to simultaneously estimate parameters
describing multiple differential equations based on data with dependent measurement er-
rors. We use this technique to estimate parameters in a stochastic differential equation based
on the Richards model. In this paper, we propose the use of the RTT technique applied for
the first time to the Chapman–Richards model for tree growth. Therefore, the aim of this
paper is to present some model-fitting methods based on stochastic differential equations.
The discussion is mainly inspired by the works of Delattre et al. [1], García [2,3], Gushchin
and Kuchler [4], Lacus [5], Kloeden and Platen [6,7] and Seber et al. [8], among others. Let

Mathematics 2023, 11, 4233. https://doi.org/10.3390/math11204233 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204233
https://doi.org/10.3390/math11204233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1861-3062
https://orcid.org/0000-0001-7374-4420
https://orcid.org/0000-0002-5231-6803
https://orcid.org/0000-0003-1448-7932
https://doi.org/10.3390/math11204233
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204233?type=check_update&version=1


Mathematics 2023, 11, 4233 2 of 19

us consider some growth models used for different applications, such as Gompertz, Von
Bertalanffy, Chapman–Richards, Weibull, Chanter or Fletcher. An ordinary differential
equation characterises their deterministic form to model the growth rate dy

dt = g(y, t, θ) or

the relative growth rate 1
y

dy
dt = g(y, t, θ), where θ is an unknown parameter that should be

estimated from empirical observations, equidistant or not, of one or more individuals of
the species. In addition, a process of stochastic noise ε = (εt) must be included to account
for fluctuations in the mean set and many other uncontrollable factors. Thus, in its more
general form, the process Y describing growth satisfies the following Stochastic Differential
Equation (SDE) model (1):

dYt

dt
= f (Yt, t, θ, εt) (1)

Generally, the process represented by ε is additive white noise giving origin to the
equation

dYt = a(Yt, t, θ)dt + b(Yt, t, θ)dWt (2)

where a and b are functions and dWt is the one dimensional standard Wiener process. It is
also possible to replace the white noise dWt for a colored noise dVt that satisfies an SDE
in turn dVt = (aVt + d(t))dt + dWt. For more details on non-white noise disturbances,
see Kashyap and Ramachandra Rao [9]. It is important to note that the model (2) would,
in principle, lead to the absurd situation where Yt decreases or becomes negative with
time; this is a price that must be paid for the mathematical treatment of the problem; see
García [2].

We observe that in Liang et al. [10], the research delves into a complex topic in
stochastic processes and statistical physics, exploring the intricate behaviour of fractional
Brownian motion when subjected to non-linear clocks. It examines how these non-linearities
affect various aspects of the motion, including diffusion, statistical properties and the
concept of aging. Understanding these phenomena is crucial for gaining insight into
complex systems where standard Gaussian assumptions and linear time scales may not
hold, such as in the study of turbulent flows, financial markets or biological processes. This
approach allows researchers to explore the intricate interplay between time transformations,
statistical properties and the dynamics of complex stochastic processes, shedding light
on the non-standard behaviour observed in systems with anomalous diffusion and non-
Gaussian statistics. Now, how does this work relate to random time transformation? RTT is
a broader concept that encompasses any transformation of time intervals or time scales in a
stochastic process. It can include various methods of changing the time variable to produce
different statistical behaviour. The introduction of non-linear clocks is effectively a form of
RTT because it transforms the standard time scale of fBm into a non-linear and potentially
random one.

For our problem in the field of forestry, we know that efficient forest management is a
very complex issue. A natural forest is made up of trees of different ages, lands of diverse
qualities, and, in native forests, differing species. Good planning for forest management
requires reliable projections of growth and yield. In many situations, it is sufficient to
adjust a simple growth curve, to describe the course of stand variables over time. With
more intensive management, however, these variables are manipulated by silvicultural
interventions that can vary in date and intensity, and it becomes necessary to predict the
behaviour of stands in a variety of different circumstances.

The applications of stochastic differential equations (SDEs) in forest management
offer a wealth of valuable insights and problem-solving potential in a variety of scenarios.
While we have briefly touched on these applications earlier, let us now explore concrete,
real-world situations where these approaches can be used effectively, as SDEs are proving
invaluable in modelling the dynamics of forest growth, incorporating variables such as
climate, soil quality and tree species. By solving these equations, forest managers can
determine the ideal time to harvest trees, maximizing yield while maintaining sustainability
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principles. SDEs are also well suited to capturing the inherent uncertainty in forest growth
factors, including disease outbreaks, insect infestations and climate variability. Using these
models, forest managers can assess the risk associated with these events and implement
targeted mitigation strategies. In addition, forests act as important carbon sinks, and SDEs
facilitate the estimation of a forest’s carbon storage capacity over time. This supports
carbon credit calculations and ensures compliance with environmental regulations. By
incorporating ecological dynamics, SDEs enable forest managers to assess the impact of
different management approaches on biodiversity. This informs decisions that balance
timber production with conservation objectives. Within the forestry sector, SDEs are also
useful for optimizing the entire supply chain, from harvesting to transport to processing
plants. Given the uncertainty of factors such as transportation costs and demand, forest
companies can streamline operations and reduce costs. Finally, forests provide a range
of ecosystem services, including water purification, recreation and wildlife habitat. SDEs
facilitate the quantification of the economic value associated with these services, thereby
facilitating decision making and policy formulation.

The paper, besides Section 1, contains seven sections and is organised as follows. In
Sections 2 and 3, we provide the necessary theoretical background and concisely describe
the growth curve model used here. In Section 4, we present the estimation of the Richards
model using the Random Time Transformation. Section 5 is concerned with the likelihood
function of the variables Ỹi

tj
, 1 ≤ i ≤, 1 ≤ j ≤ n. The results are presented in Section 6.

Finally, some conclusions are given in Section 7.

2. Data and Fit of the Model

Different ways of observing Y give different ways of estimating θ. In this paper, fitting
the model (2) means estimating the parameter θ from observations of the process Y. Growth
data are usually cross-sectional or longitudinal. In a cross-sectional study, data are collected
from a population at one point in time. In a longitudinal study, data are collected from
the same sample over time. Often the information collected has both characteristics. For
example, each tree in a stand that is measured several times will produce data that we
call mixed. It is useful to distinguish between the growth model of an individual and the
probabilistic model of the data applied to it. Indeed, if we postulate the existence of a
growth model based on the SDE, the likelihood of the observed data (probabilistic model
of the observations) will take different forms depending on the observation strategy of
the process, whether it is continuous or discrete in time, or longitudinal or cross-sectional.
We then study the critical class of linear models and some special cases of growth models.
We then present a model and an estimation procedure for predicting the growth of a
group of trees. Our growth model is based on a deterministic differential equation where
randomness is introduced during the observation. To illustrate this technique, we use an
application to the Chapman–Richards growth model.

3. Richards Model

The model
dy
dt

= η yδ − γ y (3)

The von Bertalanffy growth model was proposed in 1938 [11] as a mechanistic model
of animal growth. The model is based on the difference between the metabolic forces of
anabolism and catabolism (Bertalanffy [12]). Richards (1959) [13] doubted the theoretical
validity and usefulness of the von Bertalanffy models as a description of the growth
mechanism. However, he noted that Equation (3) with δ treated as a free parameter
provided a flexible family of curves with an arbitrarily placed inflection point. In other
words, the von Bertalanffy growth model is a mathematical model that can be used to
describe the growth of animals. The model is based on the assumption that the rate
of growth is proportional to the difference between the animal’s current weight and its
maximum weight, and the model is flexible enough to fit a wide range of growth curves,
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and it is still widely used today in biology and other fields. It is easy to observe that
the growth rate is positive, but the final size constraint, δ and γ, in Equation (3), must

be negative if δ > 1. By imposing the condition
dy
dt

= 0 at y = α, we can write the
Equation (3) as

dy
dt

= κ y

[
(y/α)δ−1 − 1

1− δ

]
; δ 6= 1 (4)

where κ = η(1− δ)α(δ−1) is the rate of growth, δ is the inflection point, and α is the asymp-
totic height reached by the tree. See Seber et al. [8] for more details. This Richards model
includes the monomolecular model (δ = 0), von Bertalanffy model (δ = 2

3 ), logistic model
(δ = 2) and (by taking the limit as δ→ 1) Gompertz equation. A comprehensive Richards
function is often used in the quantitative analysis of plant growth; see, for example, [13–18].
The Richards function is very flexible and has a horizontal asymptote, and its graph has a
characteristic sigmoid shape. The Richards model can be transformed into a linear form.
However, the linear form of the Richards function cannot be used to determine its constant
parameters using analytical methods because the growth model under consideration has
up to three independent coefficients. The constant coefficients of the Richards function can
be calculated (after estimating their values) using numerical methods. The solution of (4) is

yt = α
[
1 + ((

y0

α
)1−δ − 1)e−κ(t−t0)

] 1
1−δ ; y0 = yt0 (5)

where we need κ, δ positive and (1− δ)e−κt0 . ≤ 1; see Seber et al. [8] for more details.
The following Figures 1 and 2 show two Richards model simulations and the exact

solution based on an Euler scheme for different values of the parameters; the thick line is
the exact solution. Certainly, it is possible to use other scheme methods such as Milstein or
other alternatives. The stochastic version of the Richards model is given by:

dYt = κ Yt

(
(Yt

α )
δ−1 − 1

1− δ

)
dt + dWt (6)

For the simulation, we use the Euler scheme

Yi = Yi−1 + κYi−1

(
(

Yi−1
α )δ−1 − 1

1− δ

)
h + ∆Wi i = 2, . . . , n + 1 Y1 = Y0 (7)

where the increments ∆Wi are identically and independently distributed random variables
N (0, h) in each subinterval ti ≤ t ≤ ti+1.

Figure 1. Simulated Trajectories, T = 10, δ = 0.5.
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Figure 2. Simulated Trajectories, T = 100, δ = 0.5.

The two-parameter models have a growth rate per capita that is symmetric near the
inflection point at the midpoint of the carrying capacity. However, this is not the case for
n populations of large mammals; see Fowler [19]. A three-parameter model, such as the
Richards model, may fit better to an asymmetric growth rate per capita because of the
additional form parameter (see Sibly et al. [20]) and the focus on stochastic differential
equations to model growth as presented as an alternative to the classical models. The study
by Ghosh et al. [21] examines the Richards four-parameter non-linear growth model, which
is a very versatile framework for characterizing various growth phenomena. Typically,
this model is formulated as a non-linear differential equation. However, a transforma-
tion exists which converts it into a solvable linear differential equation. Alternatively, a
more comprehensive approach involving stochastic differential equations (SDEs) can be
adopted. These SDEs are generally derived by introducing a stochastic component into the
differential equation of the deterministic model. Consequently, this stochastic component
is often assumed to follow a Gaussian white noise stochastic process. In addition, the
approximating SDE can simplify the model by eliminating one parameter, reducing the
four-parameter stochastic differential equation Richards model to a linear SDE model that
can be solved using Ito calculus. In particular, fitting the Richards model to data has
historically encountered challenges related to poor conditioning and convergence. These
problems often arise when there is insufficient observable curve data to provide a reliable
initial estimate of the final magnitude parameter, α. Overcoming these challenges typically
involves numerical methods to solve the non-linear least squares problem, as described in
Dennis et al. [22]. However, it remains a complex endeavor to establish the existence of a
least squares estimate for non-linear least square problems. Theorems on the existence of
such estimates for certain functions can be found in [23,24]. For these reasons, we study an
alternative method for estimating the parameters of the Richards model.

4. Estimation of the Richards Model

White et al. [25], consider the estimates in the Richards model to be based on a discrete
approach to the error term. The estimate is calculated using the method of non-linear
squares. On the other hand, García [2] considers it convenient to use ordinary ordinary
differential equations as the basis for modelling the growth of trees, specifically equations
of the form

dY
dt

= g(Y) (8)

where Y is the height and t is the time. In his paper, García affirms that growth is affected
by fluctuations in the environment and adds a term for random error to the term of random
error into the equation, leading to a stochastic differential equation. He then integrates the
SDE, the solution of which is discretizing the solution to estimate the parameters using
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maximum likelihood. In this case, the estimation of the parameters of interest seems to
be insensitive to changes in the variance. He also points out that the properties of these
estimates are uncertain and possibly inconsistent. As an estimation alternative, we propose
a method of Random Time Transformation (RTT), credited to Bassan et al. [26], which
was used with the logistic model to study the evolution of an agricultural plague. The
model is applied to fit disease progression curves using actual data obtained from disease
assessments of melon plants afflicted with the Zucchini Yellow Mosaic Virus (ZYMV). The
parameter estimation approach used in this study corresponds to an inference problem
in a stochastic process, where the dynamics of the growth of a tree or group of trees is
modelled by an Ordinary Differential Equation, (ODE), where randomness is introduced at
the time of observation of the process. This is equivalent to a calibration problem. In fact,
most linear regression problems involving prediction or estimation require the determina-
tion of the Y corresponding to a given X. The calibration problem (or inverse estimation
or discrimination) is the inverse of the above, where we have a given value of Y and
want to determine X. Random time transformations find extensive application in Ergodic
Theory and Topological Dynamics, which are often linked to skew product transforma-
tions, as exemplified in Adler et al. [27]. More specifically, the concept of Random Time
Transformation (RTT) is rooted in ergodic theory, a branch of mathematics and statistical
physics concerned with the long-term behaviour of dynamical systems. The ergodic theory
focuses on understanding how systems evolve and how they approach equilibrium or
invariant distributions. Asymmetric transformations are an essential part of this theory,
as they represent transformations that do not preserve symmetry or invariance, making
them particularly relevant for understanding real-world processes where randomness and
asymmetry play a significant role. RTT emerges as a mathematical tool to bridge the gap
between ergodic theory and asymmetric transformations. It addresses the idea that in
many real-world scenarios, the underlying dynamics are not symmetric, and traditional
methods of analysis may not apply. RTT introduces randomness into the time parameter of
a dynamical system, reflecting the intrinsic stochasticity or uncertainty present in many nat-
ural processes. In this way, RTT allows us to study how a system’s behaviour evolves over
random, asymmetric time intervals, capturing the complex dynamics that may be missed
by traditional symmetric approaches. In essence, RTT extends the scope of ergodic theory
to better model and analyse systems subject to asymmetry and randomness, providing
valuable insights into a wide range of scientific and practical applications. The underlying
concept of random time transformation becomes evident through practical instances. For
instance, when assessing the age of a machine, it is more accurately represented by the
number of hours it has operated rather than the time since its purchase. Similarly, the age
of a car is better described by its mileage rather than the year it was manufactured. In
cases where plant diseases are transmitted by insects, modelling the infection’s incidence
at a time t within area A is more precise when considering the total number of insect
hours rather than t alone. Moreover, if local environmental or climatic conditions lead
to a temporary increase in the insect population, time effectively speeds up, as discussed
in Bassan et al. [26]. An interesting application of the RTT method is due to the recent
work of Alon et al. [28], on the SIR epidemiological equations, which model new infected
and removed cases as roughly proportional to the current number of infected cases in an
attempt to uncover the growth pattern of COVID-19. In our case, the essential idea of the
method consists of supposing that a deterministic differential equation governs the growth
of a tree and that randomness is introduced at the time of the observation. Moreover, the
randomness enters at the time of observation. We use the Richards equation to present
the method in our forestry context. We assume, therefore, that the growth of each tree is
governed by the ordinary differential equation:

dYi
t = Ai(Yi

t )dt, i = 1, 2, · · · , p (9)

where p is the total numbers of trees and the function Ai depends on some unknown
parameter θi, but Yi

t is not observable. However, what is observed is the process Ỹi
t = Yi

Tt
,
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where Tt is a process of time change, which does not necessarily increase. For example,
Tt may be a Brownian movement or Ornstein–Uhlenbeck process. In this paper, we will
use the Brownian time change; we chose the Random Time method for its easiness to
estimate the parameters in the Richards model, since if we work with the diffusion method
that additively incorporates a process of error to estimate the parameters, serious numeric
difficulties are presented to estimate the parameter δ (inflection point of the curve). Then, δ
is close to one, as shown in Lipser and Shiryayev [29]. RTT is used for the first time to model
the growth of trees based on the Richards model, which presents a major challenge in the
estimation of its parameters as indicated in Ratkowski [30]. An alternative to estimating
the Richards model appears in the work of Román–Román and Torres–Ruiz [31]. In their
paper, a stochastic diffusion model related to a reformulation of the Richards growth curve
is proposed and the problem of the maximum likelihood estimation for the parameters of
the process is considered using metaheuristic optimisation algorithms such as simulated
annealing and variable neighborhood search.

5. The Likelihood Function

Following the main ideas of Bassan et al. in [26], the likelihood function of the variables
(Ỹi

tj
, 1 ≤ i ≤ p, 1 ≤ j ≤ n) are represented using the elementary method of transforming

variables, assuming increments of independent and identically distributed normal times
with a covariance matrix of Σ and real times. In dj = tj − tj−1, we will use as basic random
variables the Gaussian increments z = (zi,j; 1 ≤ i ≤ p, 1 ≤ j ≤ n) where

zi,j = d−
1
2

j (Ti(tj)− Ti(tj−1)− dj); 1 ≤ i ≤ p, 1 ≤ j ≤ n (10)

We will follow an approach that is technically similar to diffusion in the sense that
it is based on modelling a likelihood for the increments of the observed process, and
conceptually similar to the calibration approach in that the randomness is modelled as
inherent in the time lag between the apparent time and chronological time.

The observed process is viewed as the solution to the deterministic differential equa-
tion but it is applied to a random time transformation of chronological time t. The density
of these basic random variables is evaluated at z = (zi,j; 1 ≤ i ≤ p, 1 ≤ j ≤ n), where

zi,j = d−
1
2

j (Y−1
i (yij)−Y−1

i (yi,j−1)− dj) = d−
1
2

j

∫ yij

yi,j−1

dy
Ai(y)

− d
1
2
j (11)

corresponds to a Brownian time change, where yij are the sizes of the trees at different
times and Y−1

i (yij) is the observed time at time i. By the method of variable transformation,
the density function of the random variables (Ỹi

tj
, 1 ≤ i ≤ p, 1 ≤ j ≤ n), is expressible as

the product of two terms, the density function of the basic random variables (10) and a
Jacobian matrix. By defining zj = (z1,j, . . . , zp,j)

′
and Σ = σ2 I as the covariance matrix of zj,

the likelihood function can be expressed as

L (y; θ, Σ) = f (z, θ, Σ) J(y; θ), (12)

where J is the Jacobian matrix. In (9), the Jacobian as the determinant of the matrix

∂zr,s

∂yi,j
=



1√
dj Ai(yi,j)

; i f (r, s) = (i, j)

− 1√
dj Ai(yi,j)

; i f (r, s) = (i, j + 1)

0 ; otherwise
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is

J(y; θ) =
[ n

∏
j=1

dj

]− p
2
[ p

∏
i=1

n

∏
j=1

Ai(yij)
]−1

(13)

and the density of the basic random variables (10) is given by

f (z, θ, Σ) = (2π)−
np
2 | Σ |−

n
2 exp{−1

2

n

∑
j=1

z′j Σ−1zj} (14)

where the coordinates of zj are explicitly given by (11). In the case of the Richards model,
θ = (α1, . . . , αp, δ, κ, σ) is the vector of parameters, where αi is the height of the tree, δ is
the inflection point, κ is the growth rate, σ is the standard deviation and Y = (yij ; 1 ≤ i ≤
p, 1 ≤ j ≤ n) are the sizes of the trees at different times. Presently, considering

dj = 1, j = 1, . . . , n, zij =
∫ yij

yi,j−1

dy
Ai(y)

− 1 (15)

with (by Equation (6))

Ai(yij) = κ yij

[
(yij/αi)

δ−1 − 1
1− δ

]
, (16)

we have that the likelihood function can be written as

L (y, θ, σ2) = (2π)−np/2 σ−np exp
(
− 1

2σ2

n

∑
j=1

z′j zj

)[ p

∏
i=1

n

∏
j=1

Ai(yij)

]−1

(17)

The idea is to express the likelihood function in terms of a single parameter, optimizing
it for each step and then estimating the parameters recursively. Other criteria are possible,
such as least squares fitting, but we will not explore them in this paper.
We will now show the strategies for estimating the parameters σ, κ and δ in our model.
The recursive procedure generates a surface by the optimal parameters of the likelihood
function at each step, and the parameters are updated according to the following rules:

• σ is updated by minimizing the mean squared error between the observed data and
the predicted data;

• κ is updated by maximizing the likelihood function;
• δ is updated by minimizing the Kullback–Leibler divergence between the prior and

the posterior distribution.

Strategies to Estimate the Parameters

(a) σ Substitution
For the function L defined by (17), we find that the maximum of L (y; θ, σ2), with

respect to σ2, is given by

σ̂2 =
1

np

n

∑
i=1

p

∑
j=1

z 2
ij =

1
np

n

∑
j=1

z ′jzj (18)

and replacing this value in L , we have

L̂ (y; α1, . . . , αp, δ, κ, σ̂2) = (2πe)−
np
2 σ̂−np J(y; θ) (19)

On the other hand, given that

t = t0 +
1
κ

log
[( y0

αi
)1−δ − 1]

[( y
αi
)1−δ − 1]

(20)
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and supposing increments of real-time dj = 1, j = 1, . . . , n, we obtain that z i,j is given
by

z i,j = Y−1
i (yij)−Y−1

i (yi,j−1)− 1 =
1
κ

log
[(

yi,j−1
αi

)1−δ − 1]

[(
yi j
αi
)1−δ − 1]

− 1 (21)

Thus, replacing relation (21) in Equation (18), we obtain, finally,

σ̂2 =
1

κ2np

p

∑
i=1

n

∑
j=1

log
[(

yi,j−1
αi

)1−δ − 1]

[(
yij
αi
)1−δ − 1]

− κ

2

(22)

We notice that the estimate of σ will be available when κ, δ, α1, . . . , αp have been
estimated.

(b) κ Substitution
Let L̂1(y; α1, . . . , αp, δ, κ) = L̂ (y, α1, . . . , αp, δ, κ, σ̂), then we obtain

L̂1 = C D(y)

 1
np

p

∑
i=1

n

∑
j=1

(log
[
( yi,j−1

αi

)1−δ
− 1]

[(
yij
αi
)1−δ − 1]

− κ)2


−np

p

∏
i=1

n

∏
j=1


( yij

αi

)δ−1
− 1

1− δ


−1

(23)

where C = (2πe)−
np
2 and D(y) =

[ p

∏
i=1

n

∏
j=1

yij

]
−1. Note that when maximizing L̂1

with respect to κ, it is equivalent to minimise the first term in brackets of Equation (23)

1
np

p

∑
i=1

n

∑
j=1

[
log

[(
yi,j−1

αi
)1−δ − 1]

[(
yij
αi
)1−δ − 1]

− κ
]2

(24)

Thus, the optimum of (24) is reached in

κ̂ =
1

np

p

∑
i=1

n

∑
j=1

log
[(

yi,j−1
αi

)1−δ − 1]

[(
yij
αi
)1−δ − 1]

=
1

np

p

∑
i=1

log
[( yi0

αi
)1−δ − 1]

[( yin
αi
)1−δ − 1]

(25)

We obtain, in this form, the estimate of κ̂, which is a function of α1, . . . , αp and 1− δ.
(c) α1, . . . , αp Substitution

Let us define L̂2(y, α1, . . . , αp, δ) = L̂1(y, α1, . . . , αp, δ, κ̂). We want to find the maxi-
mum of L̂2 with respect to α1, . . . , αp. However, this is equivalent to minimizing the
denominator of L̂2. Thus, the following function is minimised

L̂3 =

 1
np

p

∑
i=1

n

∑
j=1

{
(log

[
( yi,j−1

αi

)1−δ
− 1]

[(
yij
αi
)1−δ − 1]

− κ̂
}2


np

p

∏
i=1

n

∏
j=1

 ( yij
αi
)δ−1 − 1

1− δ

 (26)

Nevertheless, L̂3 reaches the global minimum when α̂i = max
j

(yi j), that is,

L̂3(y; α̂1, . . . , α̂p, δ) = 0, ∀ δ. (27)

Moreover, neither delta nor the other parameters can be estimated. However, the
minimisation method available in MATLAB converge to a local minimum where the
initial point is not close to α̂i, i = 1, 2, . . . , p. The problem is that L̂2 is unbounded
as an α1, . . . , αp function and the maximum does not exist. In this case, we solve a
constraint problem every time that αi reaches the maximum of yij. It is not difficult to
show that the likelihood function L̂2 is unbounded for δ 6= 1.
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(d) δ Estimate
We define L̂4(y; δ) = L̂2(α̂1, . . . , α̂p, δ). Then, this function is maximised and δ̂ is
obtained. With this, δ̂ is a numeric value, and L̂4(y; δ) is a function of y, from
which we obtain α̂1(δ̂), . . . , α̂p(δ̂). Moreover, in this stage, we recover κ̂ as κ̂ =

(α̂1(δ̂), . . . , α̂p(δ̂), δ̂) and later σ̂ as σ̂ = σ̂(α̂1(δ̂), . . . , α̂p(δ̂), κ̂, δ̂).

Remark 1. We note that there is another alternative for estimating the parameters in the SDE,
which is to use the Radon–Nikodym theorem to find the likelihood function, maximise it to find the
maximum likelihood estimators, and finally approximate the integral using numerical methods and
Itô’s calculus.

6. Results

We will examine the performance of the (RTT) method applied to the Richards model,
which we will analyse with simulated data, as one of the concerns of researchers is whether
a particular model fits the data well. Nine cases were studied with known parameters to
observe the behaviour of the bias in the parameters. For us, bias will be the difference
between the exact values of the parameters and the values returned by the method, in this
case by the simulations and not in the classic sense of the definition of bias. The instability
in the estimation process can also result from the correlation between some parameters,
as shown in the figures below. The instability of the variance can be due to the data and,
in this case, very little can be conducted to improve these instabilities. We have to keep
in mind that data are derived from living organisms which are typically correlated. Next,
some simulated cases are presented. For each case, twenty runs were made considering
eight trees and eight observations for each tree with the following graph being obtained.
Now, we show the simulations for each one of the parameters of our model.

6.1. Simulated Data

Here, we provide a brief description of our simulations. Nine cases were analysed
with known parameters to study how the method behaves, and to measure whether there is
bias or not. Beginning with the simulation, we have to enter the number of data per tree (p)
and the total number of trees (q). Then, a matrix M normally distributed N (0, 1) i.i.d. of
p× q, where each column corresponds to one tree, has to be generated. The Random Time
is generated by the matrix NRT = Ti × ones(p, q), with the order of p× q, where Ti is a
square matrix with the order p with ones below the diagonal and zeros above the diagonal,
and ones(p, q) correspond to a matrix with order p× q. Finally, there is the generation of
the matrix X of (p + 1)× q, using the explicit solution of the Chapman–Richards model
and Random Time. The matrix X contains the simulated to given values of δ, α, κ, and σ.
For each case, runs considering q = 8 trees and p = 8 observations for each tree have been
conducted, obtaining the following behaviour.

1. Simulation 1: α = 20 (all trees), κ = 0.2, δ = 0.2, and σ = 0.01

In Figure 3, we observed that in the estimates of α, the random time estimates the
alpha values (maximum heights) relatively well. The fluctuations goes from 19.8 m to
20.12 m and the bias is the minimum in most of the cases. Figure 4 shows the appropriate
behaviour of the δ parameter, although evidence exists in some cases that the method
overestimates and underestimates the δ parameter simultaneously.
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Figure 3. Simulated data for α.

Figure 4. Simulated data for δ.

In Figure 5, we observe that the method is a good approximation to estimate the
parameter κ. With regard to the bias not being important in most of the cases, in Figure 6,
we observe clearly that the method underestimates the σ value, however, the bias is not
important. In most of the simulated cases, the method has the same behaviour for the
parameter. The next figures show a new simulation with the same parameters; however, in
this case, we consider σ = 0.1.

Figure 5. Simulated data for κ.



Mathematics 2023, 11, 4233 12 of 19

Figure 6. Simulated data for σ.

2. Simulation 2: Alfa = 20 (all trees), κ = 0.2, δ = 0.2, σ = 0.1

In Figure 7, we observed that in the estimates of α, the random time method estimates
the alpha values (maximum heights) relatively well. The fluctuations go from 18.4 m
to 20.52 m and the bias is the minimum in most of the cases. Figure 8 shows us the
appropriate behaviour of the δ parameter, although evidence exists some cases that the
method overestimates and underestimates the δ parameter simultaneously.

Figure 7. Simulated data for α.

Figure 8. Simulated data for δ.
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In Figure 9, we observe that the method is a good approximation to estimate the
parameter κ. With regard to the bias, it not important in most of the cases. In Figure 10,
we observe clearly that the method underestimates the σ value; however, the bias is
not important. In most of the simulated cases, the method has the same behaviour for
the parameter.

Figure 9. Simulated data for κ.

Figure 10. Simulated data for σ.

3. Simulation 3: Alfa = 20 (all trees), κ = 0.2, δ = 0.2, σ = 0.5

The next figures show a new simulation with the same parameters; however, in this
case, we consider σ = 0.5. We observe in Figures 11–14 that in these cases the method
does not estimate the parameters well; it underestimates the σ value (as well as α values),
but, on the other hand, it overestimates the κ value (as well as the δ value). This shows
that this technique is very sensitive to big values on the variance. This has effects on the
trajectories of the solution of the stochastic differential equation. By increasing the variance,
the trajectories will move away from the mean of the process. If the variance is small,
the trajectories will evolve around the mean. A way to control the variability and ensure
bounded growth is to fix a bound for the variance from a sampling of the process.
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Figure 11. Simulated data for α.

Figure 12. Simulated data for δ.

Figure 13. Simulated data for κ.
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Figure 14. Simulated data for σ.

6.2. Real Data

The data consist of observation conducted on 69 trees of the species Pine Radiata
distributed in 6 areas. Areas 1, 3 and 5 correspond to a coastal zone, and areas 2, 4 and
6 correspond to interior zones. In each zone, some trees have one disposition NE (dry
exposure) and others SW (humid exposure). The method was applied to four sets of data
considering the type of exposure and the zone. The first one (Expo1) consists of 36 trees
with 8 observations per tree under dry exposure (NE); the second one (Expo2) contains 33
trees with 8 observations per tree under humid exposure (SW). The third set of data consists
of 36 trees with 8 observations per tree that correspond to a coastal dry land (Seccos), and
the fourth corresponds to an interior dry land (Secint) and contains 33 trees. The method
considers some global parameters (κ, σ, y δ) and some other locals, as in the case of “top
height” (αi). The results for κ, σ and δ are shown in Table 1, where we can appreciated that
the values for κ, σ and δ are slightly better for data of dry exposition 2 and the coastal zone.

Table 1. Value parameters.

Zone κ δ σ

Expo1 0.1365 0.3538 0.4460
Expo2 0.0930 0.3263 0.4223
Seccos 0.1271 0.3798 0.4221
Secint 0.0830 0.2395 0.4525

The graphics analysis in Figures 15 and 16 shows a comparison of the real height and
top height for data of the exposure 1 and exposure 2. The method is slightly better for the
data of exposure 2, for which there is an obtaining of a minor variance (σ = 0.4223). It is
important to point out that the real data of the trees’ height spans eight years; therefore, we
must be careful with the interpetation of the graphics. Nevertheless, the tree heights are
reasonable. The conclusions obtained in this paper have no difference in comparison with
the ones presented by Ratkowski [30] and Seber et al. [8] in relation to Richards model, and
independently of the techniques of the estimation used, particulary in the δ parameter.
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Figure 15. Real data for expo1.

Figure 16. Real data for expo2.

7. Conclusions

The field of height growth modelling has predominantly relied on regression-based
approaches, often neglecting the explicit modelling of error structures and associated
fitting criteria. However, this study presents an innovative approach that views growth
trajectories as realisations of a stochastic process. By doing so, it naturally incorporates the
error structure into the fitting process, offering a fresh perspective on modelling height
growth dynamics. This novel approach utilises Random Time Transformation (RTT) to
estimate the parameters of Richards growth model, departing from traditional methods.
Unlike classic modelling approaches, the focus here centers on Stochastic Differential
Equations (SDE) to characterise growth. The estimation of parameters in Richards growth
model has been a challenging endeavor when employing traditional methods. Standard
approaches in height growth modelling often struggle to provide accurate parameter
estimates due to the inherent complexity of the model and the intricate growth patterns
exhibited by real-world data. The primary reasons behind the difficulty in parameter
estimation with conventional methods can be attributed to several factors. Firstly, Richards
model is known for its flexibility, offering four parameters (α, β, γ, and δ) that allow it to
fit a wide range of growth patterns. While this flexibility is a strength, it also introduces a
significant challenge. The intricate interplay of these parameters necessitates a nuanced
and adaptable approach to the estimation. Traditional methods may falter in capturing
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the nuances of growth when attempting to estimate these parameters. Secondly, the
richness and variability of real-world data pose challenges. Growth trajectories of trees are
influenced by numerous environmental factors, including soil quality, climate conditions,
and competition with neighboring vegetation. These factors introduce variability and
complexity that are not always well-captured by standard modelling techniques. The
Random Time Transformation (RTT) method is a new approach to parameter estimation
in Richards model. It treats growth trajectories as realizations of a stochastic process,
which naturally incorporates the error structure into the fitting process. This stochastic
formulation aligns with the inherent variability observed in real-world data, making it a
valuable tool for parameter estimation. RTT introduces an element of randomness, allowing
for the modelling of random environmental variations that influence growth patterns. This
adaptability is particularly advantageous when dealing with complex and variable growth
dynamics. The method’s sensitivity to changes in variance (σ) provides insights into
the data’s behaviour, aiding in the estimation process. While traditional methods may
struggle to provide accurate parameter estimates for the Richards growth model, the RTT
method offers a promising alternative. Its stochastic approach, coupled with the modelling
of random environmental influences, makes it better suited to capture the intricacies of
growth patterns. RTT’s adaptability and sensitivity to variance changes contribute to more
reliable parameter estimation, marking a significant step forward in the modelling and
understanding of tree growth dynamics. This paradigm shift opens up new possibilities
for modelling and understanding growth dynamics with increased flexibility and accuracy.
An in-depth analysis of the results sheds light on the sensitivity of RTT to variations in
the variance parameter (σ). Notably, the technique displays some limitations, particularly
when σ approaches 0.5, rendering it less reliable under such conditions. Concerning the
limitations if σ = 0.5, it is necessary to explain that in the context of RTT, σ is a crucial
parameter that characterises the variance of the random time transformation. When σ = 0.5,
it signifies a specific condition where the variance becomes particularly problematic. Here
is why this is an issue: when σ is precisely 0.5, it implies a particular distribution of time
transformations. In this case, the RTT method becomes highly sensitive to changes in this
variance. Small variations in the variance can lead to significant fluctuations in the results.
This sensitivity makes the method unreliable in such cases. Another problem associated
with σ = 0.5 is that the likelihood function, which is essential for parameter estimation,
becomes unbounded as a function of the δ parameter when δ is close to one. This means that
as δ approaches one, the likelihood function increases without a limit, making it challenging
to estimate δ accurately. Additionally, when working with RTT and σ = 0.5, there can
be numerical difficulties in finding local minimisers during optimisation. This happens
because the form of the likelihood function becomes hard to predict and optimise. The
sensitivity to the values of other parameters, such as αi, further complicates the optimisation
process. Therefore, when σ = 0.5 poses challenges in parameter estimation using RTT, we
typically seek alternatives that enhance the method’s reliability and accuracy. This often
involves adjusting parameters, exploring alternative models, using hybrid approaches,
employing advanced optimisation techniques, and conducting thorough simulation studies
to ensure robust results. The choice of alternatives will depend on the specific characteristics
of the dataset and research goals.

These insights are drawn from experiments involving real-world data collected from
69 trees across 6 distinct areas, classified as coastal and interior dry land, each experiencing
varying levels of sun exposure. The model incorporates both global parameters (κ, σ, and
δ) and local parameters (αi), providing a comprehensive framework for growth estima-
tion. Consistent with simulations, the variance was found to be approximately 0.42 in
both coastal and interior dryland areas. One noteworthy challenge encountered when
employing the RTT method is the unbounded nature of the likelihood function concerning
the σi parameter, particularly when δ approaches one. However, when reasonable initial
values for α are available, the method demonstrates satisfactory convergence. Additionally,
there are instances of numerical complexities when seeking local minimisers due to the
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unknown form of the likelihood function. The utilisation of the RTT method offers an
enticing alternative for modelling tree growth, as it accommodates the influence of random
environmental variations on growth dynamics. Ongoing research explores the potential of
applying RTT to other time-change processes and compares it with Brownian time. The
Random Time Transformation method transcends its initial application in tree growth
modelling and finds relevance in a multitude of research domains. Its ability to incorporate
stochasticity and random environmental factors into modelling makes it a powerful tool for
gaining deeper insights, making predictions, and optimizing processes across diverse fields
of study. Furthermore, we are investigating its applicability in diverse fields, including
investment finance, option pricing, seismology and structural mechanics, underscoring its
versatility and potential for transformative insights. The adaptability of RTT continues to
open new avenues for innovative research and problem-solving.

Most published works on height growth modelling are regression-based, but do not
explicitly model error structures and use the corresponding fitting criteria. In contrast, there
is an approach that takes growth trajectories as realisations of a stochastic process, with
the error structure to be used in the fitting process arising naturally out of the stochastic
formulation. Thus, the most important contribution of this paper is that for the first time
a RTT method has been applied to the estimation of the Richards model, and the focus is
based on SDE to model the growth as an alternative to the classic models. The application
of the Richards model for estimating growth in a group of trees constitutes a challenge
involving estimating the parameters, allowing for greater flexibility. The analysis of the
obtained results shows us that the RTT is highly sensitive to changes in the variance. This
technique is unreliable for values of σ at 0.5. Moreover, the experiments are based on
real-life data points of69 trees in 6 areas, which were classified as coastal and interior dry
land, with different sun exposure. The model considers some global parameters (κ, σandδ)
and other local (αi) parameters. We obtained a variance of approximately 0.42 in both areas,
which is consistent with the simulations. One difficulty with the RTT method is that the
likelihood function is not bounded as a function of the δ parameter when δ is close to one.
However, the convergence of the method is satisfactory when we have a reasonable starting
point for α. In some cases, there are numerical difficulties in finding local minimisers, since
it is impossible to know the form of the likelihood function. We should also highlight that
the method of optimisation used to minimise the likelihood is very sensitive to the values
of αi. The use of the RTT method is an attractive alternative for modelling the growth of
trees, as it allows for the consideration of the random environmental variation that affects
growth. At present, we study the alternative of using it in another time-change process and
compare it with the Brownian time. Moreover, we are studying the use of RTT in other
types of problems in different fields, for example, investment finance and option price, as
well as seismology and structural mechanics.
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