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Abstract: The new modular approach to constrained control of higher-order processes with dominant
first-order dynamics using generalized controllers with automatic resets (ARCs) is addressed. The
controller design is based on the multiple real dominant pole (MRDP) method for the integrator plus
dead time (IPDT) process models. The controller output constraints are taken into account by inserting
the smallest numerator time constant of the controller transfer function into the positive feedback
loop representing the automatic reset (integral) term. In the series realization of the proportional–
integral–derivative–acceleration (PIDA) controller (and other controllers with even derivative degree),
the time constant mentioned is complex, so only the real part of the time constant has been used so
far. Other possible conversions of a complex number to a real number, such as the absolute value
(modulus), can be covered by introducing a tuning parameter that modifies the calculated real time
constant and generalizes the mentioned conversion when designing controllers with constraints.
In this article, the impact of the tuning parameter on the overall dynamics of the control loop is
studied by simulation. In addition, an evaluation of the stability of the closed-loop control system
is performed using the circle criterion in the frequency domain. The analysis has shown that the
approximation of the complex zero by its real part and modulus leads to a near optimal response
to the set point tracking. The disturbance rejection can be significantly improved by increasing the
tuning parameter by nearly 50%. In general, the tuning parameter can be used to find a compromise
between servo and regulatory control. The robustness and applicability of the proposed controller is
evaluated using a time-delayed process with first-order dominant dynamics when the actual transfer
function is much more complicated than the IPDT model. A comparison of the proposed MRDP-PIDA
controller with series PI, PID and PIDA controllers based on a modified SIMC method has shown
that the MRDP-PIDA controller performs better than the SIMC method, although the SIMC uses a
more complex process model.

Keywords: filtration; automatic reset; robustness; multiple real dominant pole method; derivative
action; constrained control; absolute stability

MSC: 37M10

1. Introduction

Proportional–integral–derivative–acceleration (PIDA) controllers, also referred to by
the order of derivatives applied (e.g., PIDD2 or PIDD2), and the PID controllers with serial
compensation (PIDC) [1–3] are increasingly becoming the focus of current research. The
increased number of controller parameters usually requires more sophisticated approaches
for controller tuning. Some of the approaches use optimization methods and/or artificial
intelligence to tune the increased number of coefficients of the controller [4–7]. Other ap-
proaches use controller optimization considering sensitivity constraints [8–11] or controller
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design by internal model control (IMC) [12–17]. Using a significantly different approach, it
is also possible to design higher-order controllers using fractional calculus [18–25]. How-
ever, the basic goal of such a design remains the same to increase the degrees of freedom in
tuning to achieve better overall performance.

This paper focuses on the design of parameterized PIDA controllers with constrained
series structure using the modified Multiple Real Dominant Pole (MRDP) method. By this
effort, it complements several recent papers that have focused on higher order controllers.
Thereby, the series structure was chosen regarding its acceptance in industrial control
systems. The MRDP method presented in [26–29] showed that the series PI and PID
controllers can be extended to the whole family of constrained controllers with higher-order
derivatives. In this way, we can create an alternative to the higher order PID controllers
that realize fractional order PID control [23]. However, the controllers with even derivative
degree (an example is the PIDA controller) and with constrained controller output have
certain specifics that need to be carefully studied. PIDA controllers are mainly developed
for high-end applications where PID controllers cannot guarantee the required control
performance and sufficient robustness of the control loop. As one of the examples, we
can mention the load frequency control of single or several power systems [12,30], where
even a 1% improvement in performance can bring a great economic effect. However, it
should be noted that in such high-end applications, the controller design must meet a
number of different requirements. The main contribution of this paper is the analysis of the
substitution of the complex zero of the controller transfer function derived with MRDP and
the generalization of the substitution, based on the modulus or the real part of the zero,
to a general tuning parameter that can be used to improve the closed-loop disturbance
performance. The analysis significantly expands and deepens the previous results of the
simulation in the time domain and from the application of the circle criterion of absolute
stability in the frequency domain.

The article is organized as follows. A detailed introduction to the control requirements
is given in Section 2. The formulation of the problem of a free tuning parameter and its
solution are described in Section 3. Section 4 gives a brief introduction to the SIMC controller
design [31] and its possible generalization. Examples of the possible application of the
developed constrained series PIDA controller and its comparison with SIMC controllers
are discussed in Sections 5 and 6. Discussion of the obtained results is given in Section 7,
while possible future work is outlined in the conclusions.

2. MRDP-Based PIDA Controller Design

Hardware implementation of PID controllers began to take shape in the 1930s. The in-
terest of the manufacturers was to keep the proprietary solutions to themselves. Therefore,
the descriptions of the operations were somewhat obfuscated [32]. As a result, published
interpretations may not always be accurate or concise. Today’s technology offers tremen-
dous implementation possibilities, so a re-evaluation of the aforementioned interpretations
could be valuable.

2.1. Parallel PIDA and PIDA Controllers with Automatic Reset

In [1,2], parallel PIDA controllers defined by the linear relation between the transfer
functions of a controller output U(s) and an input E(s) were discussed:

R(s) =
U(s)
E(s)

= KP + KDs + KAs2 +
KI
s

(1)

where the difference between the setpoint W(s) and the output Y(s)

E(s) = W(s)−Y(s) (2)

is called the control error. Note that some low-pass filters are additionally used in the
derivative and acceleration terms. The goal was to use the root-locus method to obtain
a third-order closed-loop transfer function with a desired dominant root region and the
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closed-loop root locations in the s-plane. For the third-order process, the state-space control
design (see, e.g., [33,34]) leads to a controller with a three-dimensional state vector. A
special case of the state vector can consist of the process output and its first two derivatives.
The addition of a parallel integrative component is already somewhat speculative, even
though its purpose is quite clear: In steady states, it is expected to reject constant input
(load) disturbances. If the poles of the closed loop are stable and within the specified area,
the transients will ensure the required settling time and peak time and will not exceed the
allowable overshoot. However, such a design says nothing at all about the performance
of the system in the case of constrained control, where excessive integration (windup) is
known to occur. In such cases, additional heuristic (anti-windup) measures must be taken
to prevent such integration.

Several recent works have shown that it is possible to design higher order constrained
controllers. These structures combine stabilizing controllers (using higher-order deriva-
tives) with automatic reset, guaranteeing disturbance reconstruction and compensation
of disturbances [26,27,35]. Automatic-reset and hyper-reset (pre-act)-based controllers
were invented before the World War II, although they have largely disappeared from the
literature due to the dominance of linear control theory. However, to this day their digital
realizations, referred to (somewhat confusingly) as series PI and PID controllers [36], can
be found in industrial controllers. If one studies the inner workings of series controllers
(see, e.g., [37,38]), their advantages become clearer. Namely, the automatic resetting mimics
an experienced process operator attempting to determine the unknown constant value of
the input disturbance by evaluating the detected steady-state value of the controller output.
The simplest transfer function that mimics the aforementioned operator is a first-order filter
FR(s) with a time constant Ti (Figure 1).

w u

+

�  

e y
RP(s)Qn(s) S(s)

FR(s)

uL
FP(s)

+

+

R(s)Qn(s)

+

+

di

+

+

δ 

Figure 1. Automatic-reset-based controller with the positive feedback filter FR(s), prefilter FP(s),
input disturbance di and the measurement noise δ.

Due to the interpretations by linear control theory, even the series controllers are not
well understood in practice. As a result, users are not aware of the role of disturbance
observers in automatic reset controllers, although it is important for optimal controller
tuning and constrained system control (see also [26,27,35,39]). Recently, clarification of
some key conceptual differences between series and parallel controllers with higher-order
derivatives has enabled substantial progress in the design of constrained controllers for
the simplest processes that can be adequately approximated by the first-order models with
dead time.

A stabilizing proportional-derivative acceleration (PDA) controller (see Figure 1)

RP(s) = Kp + Kds + Kas2 (3)

can form a series PIDA controller by introducing a positive feedback loop including a
low-pass filter with a time constant Ti (see, e.g., [26,27,35])

FR(s) =
1

1 + Tis
(4)

In general, this feedback is determined from a possibly constrained controller output.
For linear control, it is possible to calculate the resulting transfer function of the PIDA
controller as follows:
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R(s) =
U(s)
E(s)

=
RP(s)

1− FR(s)
=

(Kp + Kds + Kas2)(1 + Tis)
Tis

=

= KP + KDs + Kas2 +
Ki
s

; KP = Kp +
Kd
Ti

; KD = Kd +
Ka

Ti
; Ki =

Kp

Ti
.

(5)

Thus, the equivalence with the parallel PIDA controller (1) is possible only for the
linear control approaches. Moreover, the resulting coefficients of the proportional and
derivative components KP and KD change in comparison with the coefficients Kp and Kd
of the stabilizing controller RP(s). As a result, it is not possible to achieve all parameter
values of the parallel PIDA controller (1) with the series controller (5).

Remark 1 (Automatic reset controller does not use an integrator). The PIDA transfer
function (5) describes the effect of the positive feedback loop from the output of the PDA con-
troller in the proportional band of the control when the total output of the controller does not exceed
the prescribed limits, i.e., when

u ∈ [Umin, Umax]. (6)

However, outside the range of proportional control, the automatic reset behaves completely
differently from the parallel PIDA controller with an explicit integrator. In order to prevent the
redundant integration of an explicit integrator from causing the controller windup, various anti-
windup measures must be applied [26,40]. On the other hand, some authors discuss anti-windup
measures [32,41] also for series PI and PID controllers, although they have inherent anti-windup
protection. When designing controllers with constraints, it is expected that the process output will
not overshoot the specified setpoint by more than the case without constraints when the saturation
nonlinearity is activated. This can be quantified experimentally by the performance measures
introduced later in the time domain. In the frequency domain, when a PIDA series controller is used,
correct operation under constraints can be guaranteed by satisfying the absolute stability conditions
imposed on the saturation nonlinearity block

u(t) = sat{uL} =
/
−
\

Umax ;
uL ;
Umin ;

u > Umax
Umin ≤ uL ≤ Umax,
u < Umin

(7)

and a modified linear part of the loop describing the relationship between u and uL (see Section 2.6).

2.2. Process Approximation by IPDT Model

Next, we will solve the problem of optimal setting of PIDA controllers for time-delayed
systems with dominant first-order dynamics. In numerous applications, they can be success-
fully approximated by an integrator plus dead time (IPDT) process model [42] in Laplace
form. In the next, we will solve the problem of optimal setting of PIDA controllers for
time-delayed systems with dominant dynamics of the first order. In numerous applications,
they can be successfully approximated by an integrator plus dead-time (IPDT) model [42]
with the output y(t) and the input u(t) related in Laplace transform by the transfer function

S(s) =
Y(s)
U(s)

= S0(s)e
−Tdps; S0(s) =

Ksp

s
(8)

Here U(s) and Y(s) are the Laplace transforms of the input and output signals of the
process. The model is specified by only two parameters: a gain Ksp and a dead time Tdp.
The “nominal” IPDT system is denoted by omitting the subscripts p in (8). Despite the
very simple model, for precise overtuned approximations (see e.g., [43]), PIDA controllers
derived from an IPDT model (8) can provide excellent performance for a much wider range
of processes possibly of higher order.

2.3. Speed- and Shape-Related Performance Measures

To compute the performance measures, we need to define a point in time at which the
steady state is reached. Of course, we do not have to wait indefinitely for the process to
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settle, but it is sufficient to wait until the process settles around the new steady state. Since
this settling time is not well defined, we should choose such performance measures that
do not depend critically on the chosen time of the experiment. One of these performance
measures is the integral of the absolute error (IAE)

IAE =
∫ ∞

0
|e(t)|dt ; e(t) = w(t)− y(t) (9)

In this paper, IAEs corresponds to setpoint steps with di(t) = 0, w(t) = 1 and y(0) = 0.
IAEd denotes the IAE value for the input disturbance steps with w(t) = 0, di(t) = 1 and
y(0) = 0.

However, IAE optimization usually leads to overshooting of the output and therefore
must be limited by some additional constraints. In the last decades, the SIMC approach [31]
(acronym for SIMple Control) has been discussed in numerous papers dealing with the
design of PID controllers. Its great influence is also due to the consistent and comprehensive
evaluation of the control performance. The SIMC method was one of the pioneering
approaches that considered the speed of transients (in terms of absolute error (IAE)) along
with the applied control effort. The control effort was measured in terms of total variation
(TV), which is represented by the sum of the absolute values of all increments of the
controller output:

TV =
∞

∑
i=0
|ui+1 − ui| (10)

However, the TV measure does not distinguish between useful control increments (to
bring the process to the new steady state) and superfluous increments, which represent
excessive control effort. To focus entirely on the excessive effort, the TV measure is reduced
by the useful control increments. Such a measure also has a clear geometric interpretation
in terms of monotonicity of responses. Such modified TV measures can also be used to
adjust the required process output increments with respect to the expected ideal output
shapes [27,44,45] and even for setpoint and input disturbance steps. There are recent
improvements to the SIMC method by adding sensitivity constraints [46].

To evaluate the deviation from monotonicity (usually applied to process output after set-
point steps), TV0 is defined by reducing TV by the sum of all signal increments corresponding
to the monotonic signal change from an initial value y0 = 0 to a final value y∞ → w.

Some ideal signal shapes may have more than one monotonic interval. For example,
the response of the process output to a disturbance signal change can be described by the
one-pulse (1P) shape. It has two monotonic intervals because the process output starting
from the initial value y0 6= w deviates from the reference value to a maximum or minimum
value ym and then returns to the final value y∞ (ideally equal to the reference value w). The
monotonicity of such a signal can be measured using the TV1 measure, which considers
two separate monotonic intervals. For example, the response of the process output to a
setpoint change (ys) and a disturbance change (yd) can be evaluated using the TV0 and TV1
measures as follows:

TV0(ys) = ∑∞
i=0|yi+1 − yi| − |y∞ − y0|

TV1(yd) = ∑∞
i |yi+1 − yi| − |2ym − y∞ − y0|; ym /∈ (y0, y∞)

(11)

Similarly, for a purely integrating process, the optimal process input corresponds to
the 1P waveform for both setpoint and disturbance step signals. The corresponding TV1(u)
measure is therefore defined in a similar way as TV1(yd) at the process output [44].

Remark 2 (Ideal responses with multiple input pulses). When the pure time delay e−Tds is
added to the loop with a single integrator and replaced by a finite number of terms of the Taylor
expansion, the degree of the corresponding process transfer function increases. As a consequence,
the dimensions of the state vector and the corresponding state controller also increase [35]. PIDA
controllers are particularly suitable for the third-order model. The question arises whether the output
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of the controller should be evaluated according to the ideal 1P shape (given by the delay-free process)
or according to the ideal 3P shape (with four monotonic intervals) by the TV3(u) measure [45]
according to Feldbaum’s theorem [47].

For various reasons, it is not easy to take a generally valid position on the above
question. For example, the PIDA controller may represent only one of the possible control
solutions. Therefore, using different performance measures to evaluate the output of the
particular controller (with different derivative orders) could be confusing in such a context.

The second reason for using TV1(u) is its proposed application to processes with
dominant first-order dynamics.

The third reason arises from a practical point of view. Namely, if performance measures
are applied to processes with non-negligible measurement noise, the differences could
become insignificant at higher indices of the performance measures.

From the above, we can conclude that in the search for the optimal controller, it is
reasonable to allow some reasonable deviations by reducing the penalty for multiple pulses
of the evaluated control signal.

Moreover, in addition to finding the minimum IAE values that are achieved while
maintaining the allowable deviations from the ideal shapes, we often want to evaluate the
price that must be paid for fast transients (in terms of the resulting excessive controller
effort). A realistic step response optimization should then use a cost function Jk that
combines the speed of the transients, expressed as IAE, with the input consumption
described by TV1(u):

Jk = IAEk TV1(u) (12)

The weighting coefficient k can be determined by the application requirements.

2.4. MRDP-PIDA Controllers for IPDT Models

For a nominal plant (8) with parameters Ks and Td, the series PIDA controller provides
the closed loop transfer function

Fc(s) =
Y(s)
W(s)

=
R(s)S(s)

1 + R(s)S(s)
=

Ks(Kp + Kds + Kas2)(1 + Tis)
s2TieTds + Ks(Kas2 + Kds + Kp)(1 + Tis)

Fi(s) =
Y(s)
Di(s)

=
S(s)

1 + R(s)S(s)
=

sKs

s2TieTds + Ks(Kas2 + Kds + Kp)(1 + Tis)
;

(13)

Tuning the higher order PID controllers based on the MRDP method provides the
fastest possible closed loop response with nearly ideal smooth shapes [40]. Because the
speed of transients dominantly depends on the slowest components of the solution, the
responses corresponding to MRDP can be considered as the fastest possible with nearly
ideal smooth shapes. The series MRDP-optimal PIDA controller corresponds to five-fold
real dominant pole so. The time constant To = −1/so is given by the parameters

so = −2/Td; To = −1/so = Td/2 (14)

Kp =
0.9323
KsTd

; Kd =
0.3885

Ks
;

Ka =
0.0451Td

Ks
; Ti = 2.5832Td

(15)

The corresponding time constants of the controller are

TD = Kd/Kp = 0.4168Td; T2
A = Ka/Kp = 0.0484T2

d (16)

The multiplicity of the dominant pole is given by the number of unknown parameters
of the controller plus one more unknown, namely the position of the pole itself. Thus, for
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the PIDA controller, there are five unknowns in total. To achieve the given dominant pole,
you have to make sure that the equations are satisfied:[

di

dsi A(s)
]

s=so

= 0; i = 0, 1, . . . , 4 (17)

where
A(s) = s2TieTds + (KsKas2 + KsKds + KsKp)(1 + Tis) (18)

is the characteristic quasi-polynomial of (13). The advantage is that the multiple poles
condition is (relatively) easy to satisfy. From d4 A(s)/ds4 = (12 + 8Tds + T2

d s2)TiT2
d eTds,

one obtains two roots −6/Td and −2/Td. The position of the dominant pole so is closer to
the imaginary axis, which specifies (14), together with the equivalent time constant To. By
solving the remaining equations (17), one obtains the controller parameters (15) and (16) [26].

As shown in [26,27,35], when run in the linear domain, and combined with an appro-
priate implementation filter, parameters (14)–(16) guarantee excellent transients for both
the setpoint and the disturbance step responses.

2.5. Design of Controller Filters

One of the most important and long-standing problems in the use of PID controllers
and their generalization to higher derivatives is filtering [27,40]. The design of ideal PDA
controllers with an improper transfer function (3) is not feasible and requires an implemen-
tation with low-pass filters so that the augmented controller is at least represented by a
proper transfer function.

Remark 3 (Alternatives to solve the filter problem). Most of the existing works dealing with
the design of PID, PDA and PIDA controllers either do not solve this problem at all or solve it
inadequately. Namely, the filters must already be taken into account when approximating the process
with the IPDT or FOTD model, as in [35,39]), or the filtering problem is solved separately for the
derivative and for the acceleration component of the controller [14,16,17,48]. This unnecessarily
increases the number of filter time constants, and the inclusion of different delays in specific controller
channels complicates the analytical design. Therefore, to reduce the number of parameters and
simplify the solution, it is much easier to filter all controller terms with a single binomial filter Qn(s)

Qn(s) = Yf (s)/Y(s) = 1/
(

Tf s + 1
)n

= 1/Pn(s); n ≥ 2 (19)

with relative degree n ≥ 2 [35]. The delay of the filter can be approximated by a chosen delay
equivalence [26,49], thus increasing the process delay Tdp by an “equivalent” filter delay Te into the

“total” loop dead time
Td = Tdp + Te (20)

Different equivalences can be proposed to calculate Te, specified by the weighting parameter
N [49]

Te = nNTf ; N ∈ [0.5, 1] (21)

For simplicity, only the Te = nTf equivalence (with N = 1) is considered in this paper.

The filter parameters are important in tuning the controller parameters because they
change the dominance of the computed multiple pole. This relationship has been neglected
in most publications based on the MRDP methodology (see, e.g., [27,50,51]).

Remark 4 (Dominance of proposed poles). The closed-loop system with transport delay gener-
ally has an infinite number of complex conjugate poles that can affect the stability of the closed-loop
system. The stability of the dominant poles (14) is guaranteed by their negative sign. The stability
and performance of the entire closed loop can be most easily checked by evaluating the shape of
the Nyquist curve (see Figure 2). When the angular velocity ω (parameter of the Nyquist curve)
increases for all considered n, the curve passes through the critical point (−1, 0j) on the left side
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with a sufficient margin. As can be seen from the Nyquist curves, the neglected complex poles of
the circuit represented by the cycles around the origin, with the crossing points with the negative
real axis closer to the critical point, obviously do not reduce the stability. Thus, although there
are infinitely many stable conjugate complex poles, they do not significantly affect the linear step
responses. These remain smooth with a minimum number of monotonic intervals for setpoint and
disturbance step responses (see Figure 3). However, if the calculated Te is further reduced, the
influence of neglected poles could already lead to a shift of the intersection points of the Nyquist
curve closer to the critical point. In the time domain, this would contribute to a deformation of the
ideal waveforms and could even lead to an instability of the loop.
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Figure 2. Nyquist curves of the loop with IPDT process and PIDA-controllers tuned according to (15)
with Te = 1 and Te = 0.2; Ks = 1; Tdp = 1; filter Qn(s), n ∈ [2, 5] with Tf = Te/n.
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Figure 3. Unit setpoint and disturbance step responses of the IPDT system (8) (Tdp = 1, Ksp = 1) with
PIDA controllers, n ∈ [2, 5], Te = 1 (full curve) and Te = 0.2 (dotted), Tf = Te/n, Ts = 0.001, no noise.

Since small distortions in the control signal u(t) already occur at Te/Tdp = 0.2 (see
Figure 3), the following proposal can be formulated with respect to the settings of the
PIDA controller.
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Proposition 1 (Controller tuning considering the implementation filter). In order to ensure
stable closed-loop responses, the equivalent filter delay Te used in controller tuning according to (20)
cannot be reduced arbitrarily. In terms of stability and monotonic responses, it is recommended to
use the value Te ≥ Tdp/5, even in a situation with relatively low measurement noise and process
uncertainties. For higher measurement noise amplitudes, Te should be increased accordingly.

Compared to PI and the PID control, the PIDA controller contributes to the acceleration
of the transient response. This means that the need to deal with control signal limitations
increases. Large abrupt changes in the setpoint and disturbance variables can cause
overshoot of the process input and output signals without appropriate modifications to the
controller [26].

2.6. Basic Constrained Series MRDP-PIDA Modifications

In solving the MRDP optimal setting of constrained series PID controllers, it has
been shown that the typical overshoots in the process output and input signals caused by
the control constraints, can be eliminated. This is accomplished by selecting the smallest
numerator time constant of the MRDP optimal controller transfer function as the time
constant Ti within the automatic reset filter (4) [27,39].

Contrary to popular belief, [39] has also shown that controllers based on simpler IPDT
process models can perform better than controllers based on more complex first-order
time-delayed (FOTD) models.

MRDP-optimal PID controller design can also be extended to constrained controllers
with higher order derivatives [26,27,35]. However, for controllers with even derivatives
(such as the PIDA controller), only approximate factorization can be performed by replacing
complex numerator zeros with real ones. The aim of this article is to analyze in more detail
the problem of approximating the complex zeros of the PIDA controller (started in [28]) and
its impact on the obtained control performance. In addition, this article also investigates
the limitations of the IPDT model in more complex time-delayed systems with dominant
first-order dynamics and compares its performance with alternative design methods.

In [26], the optimal removal of overshoots in the case of constrained control was
investigated using the performance portrait method. This was accomplished by examining
the closed-loop responses for a grid of controller parameters using a “computer-aided
trial-and-error method”. For a grid with a large number of PIDA controller parameters,
the number of simulations required to obtain an estimate of the desired optimum was also
very high. The number of trials required to obtain a relatively accurate optimal controller
setting was over 10,000 [26].

From a practical point of view, this is very time consuming and it is better to find
suboptimal tuning methods. Of course, these should be sufficiently accurate with a much
smaller number of simulations. One possible approach is to modify the setup presented
in [26,35], where the automatic reset time constant Ti is chosen as the smallest time constant
in the controller’s numerator. An attempt to generalize this approach to the PIDA controller
encountered the problem of the complex conjugate controller numerator. Since the controller
numerator (5) T2

As2 + TDs + 1 = 0.0484s2T2
d + 0.4168Tds + 1 gives the complex zeros

s1,2 = (−4.305785124± 1.456492874j)/Td = 4.5455e±j0.3262/Td, (22)

it does not allow us to assign the corresponding time constant to the automatic reset. How-
ever, neglecting the imaginary part, one obtains a double real pole s1,2 = −4.305785124/Td
and the corresponding double real time constant T2 << Ti = 2.5832Td, enumerated as

T2 = Td/4.305785124 = 0.232Td (23)

Of course, we should remember that replacing a complex number with its real part (23)
is only one possibility. Another way is to replace a complex number by its absolute value
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(module) s1,2 = −4.5455/Td. It would then be possible to deal with the corresponding
double real time constant

T2 = Td/4.5455 = 0.22Td (24)

For the MRDP-PIDA controller parameters Ti, Kp, TD, T2
A (15) and a new automatic

reset time constant Ti = T2, the new set of controller parameters specified as Ti, Kp, TD, T2
A,

or Ti, Kp, Kd, Ka, which nearly preserve the MRDP-optimal controller transfer function, can
be calculated as follows:

Kp = Kp
T2

Ti
;

TD = Ti + T2; Kd = KpTD;
T2

A = TiT2; Ka = KpT2
A;

Ti = T2.

(25)

After replacing the numerator of controller (5) with T2
As2 + TDs + 1 = 0.0484s2T2

d +
0.4168Tds+ 1 ≈ (T2s+ 1)2, the new controller parameters (denoted by overline) correspond
to a new automatic reset time constant Ti = T2. At the same time, the previously derived
transfer function of the MRDP controller specified by parameters (15) was retained, as can
be seen from the comparison of the corresponding parameters of the approximating and
the new controller:

KP
(1 + T2s)2(1 + Tis)

Tis
=

= KP
(1 + T2s)(1 + Tis)(1 + T2s)

T2s
=

KP
(1 + TDs + T2

As2)(1 + Tis)
Tis

(26)

The substitution of T2 (23) and the MRDP parameters (15) yields a new set of parameters:

Ti = 0.232Td; Kp =
0.9323 0.232
2.5832KsTd

=
0.0837
KsTd

;

TD = 2.815Td; Kd =
0.236

Ks
;

T2
A = 0.599T2

d ; Ka =
0.0502Td

Ks
;

(27)

By replacing the complex numerator zero (22) with its module (suggested by an
anonymous reviewer) corresponding to the simpler numerical value τ2 = 0.22 (24), we add
the second possible “basic” set of controller parameters:

Ti = 0.22Td; Kp =
0.9323 0.22
2.5832KsTd

≈ 0.0794
KsTd

;

TD ≈ (0.22 + 2.58)Td = 2.8Td; Kd =
0.2223

Ks
;

T2
A = 0.22 2.5832T2

d ≈ 0.568T2
d ; Ka =

0.0451Td
Ks

;

(28)

The contribution of the two modified controller settings (27) and (28) can be verified
by simulation, but also by the circle criterion of absolute stability.

2.7. Absolute Stability Test

The saturation nonlinearity u = sat(uL) represents a special case of the sector nonlin-
earity [α, β], when for all uL holds α < sat(uL)/uL ≤ β, where for large values uL α → 0
and β = 1

0 <
∆u

∆uL
≤ 1 (29)
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Thus, the critical circle intersecting the points (−1, 0j) and (−1/ε, 0j) and correspond-
ing to the sector [ε, 1] is projected for ε → 0 onto the circle with an infinite radius as a
vertical line passing through the point (−1, 0j).

The circle criterion of absolute stability can be considered as a generalization of the
Nyquist criterion for nonlinear time-varying circuits, which can be transformed into a
sector nonlinearity and a linear part ([52–56], see Figure 4).

0

+

uL

LS(s)
�uL

 �u ��uL
 

0< � 1
sat(uL)

Figure 4. Nonlinear standard form of the loop with the linear part Ls(s) (31) and the saturation
nonlinearity from the sector [ε, 1], ε > 0.

Definition 1 (Absolute stability). Absolute stability (introduced by [57]) means that we can find
c > 0 and δ > 0 such that any closed loop solution of the system x(t) satisfies the following relation
of a monotonic decrease

|x(t)| ≤ ce−δt|x(0)|, ∀t > 0 (30)

In other words, the envelope of the resulting solution x(t) is expected to have an
exponential decay, typical for systems with dominant first-order dynamics with a time
constant of 1/δ. The circle criterion of absolute stability allows us to check the conditions
for its fulfillment based on the position of the Nyquist curve with respect to the critical
circle. In this case, the critical point (−1, 0j) of the Nyquist criterion is replaced by the
critical circle, which has as its diameter the segment [−1/α,−1/β] on the real axis.

Considering series PIDA controller [26,27] with the filter Qn(s) (19), the PDA controller
(3) and the positive feedback FR(s) = 1/(1 + Tis) (4) from the controller output, we obtain
an equivalent linear system:

Ls(s) =
∆uL
∆u

=
1

1 + Tis
− RP(s)Qn(s)S(s) (31)

With respect to the critical point (−1, 0j), the Nyquist curve of the MRDP-PIDA
controller (15) in Figure 5 satisfies the stability condition in linear control. However, due to
the presence of the saturation nonlinearity (which is a sector nonlinearity), the loop with
the MRDP-PIDA controller does not satisfy the absolute stability requirement (30). This
can lead to more complex responses with oscillations or even instability. On the other hand,
the critical loop is not affected by the Nyquist curves of the modified PIDA controller with
tuning in expression (27). Thus, satisfying the conditions of absolute stability for arbitrarily
large uL when α → 0 is in good agreement with the ideal shapes of the step responses
obtained by simulation.

For the modified controller tuning (28), the corresponding Nyquist curves are almost
unchanged.
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Figure 5. Nyquist curve of the linear part Ls(s) (31) for the modified PIDA tuning (27) (full) and
MRDP tuning (15) calculated with (21) for n ∈ [2, 5](dotted), Tf = Te/n; Te = Tdp = 1.

2.8. Design of Prefilter

Since the one degree of freedom (1DoF) PIDA controller leads to setpoint step re-
sponses with high overshoots, a 2DoF controller can be designed by introducing a reference
filter (prefilter) that removes the zeros from the Fc(s) (13)

FP(s) =
Np(s)
Dp(s)

=
b3s3 + b2s2 + b1s + 1

(T2
As2 + TDs + 1)(Tis + 1)

(32)

For constrained control, the simplest and most robust choice is to set:

b3 = 0; b2 = 0; b1 = 0; Np(s) = 1 (33)

Following [58], accelerated setpoint step responses can be achieved by having the
numerator of FP(s) cancel a closed loop time constant To (14)

b3 = 0; b2 = 0; b1 = To = Td/2. (34)

3. Problem Formulation

When setting up constrained series MRDP-PIDA controllers for IPDT models, the
applied low-pass filter of the stabilizing controller and the setpoint prefilter must also
be considered. The selected performance measures are used to evaluate transients with
the optional T2 parameter. In addition, the specified control constraints should allow the
achievement and maintenance of a steady state for all constant inputs considered. To
verify the effect of the control constraints, the evaluations should be repeated with different
control limits, or the obtained simulation results should be analyzed with the circle criterion
of absolute stability.

In this regard, the existence of two basic mappings of the complex controller zero
into the real value motivated the study of the properties of the controller factorization
considering a wider interval of T2 values in [28]. In this work, this analysis is extended in
terms of optimality by trying to improve the constrained performance of MRDP-PIDA by
modifying the basic solutions, i.e., by choosing T2 6= 0.232Td, or T2 6= 0.22Td.

3.1. Effects of the Tuning Parameters on Absolute Stability

The first step in developing the parameterized constrained controller MRDP-PIDA
with a free tuning parameter T2 (25) is to test whether the constrained IPDT process is
absolutely stable using controller tuning (25) for all values Te/Tdp ∈ [0.2, 1] (recommended
for linear unconstrained control according to Proposition 1). The parameter τ2 = T2/Td is
thus extended to a wider range of values, including mappings of the complex controller
numerator zero (23).
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The canonical circuit in Figure 6, which consists of the linear part Ls(s) (31) gener-
ated by the modified constrained MRDP-PIDA controller with tuning (25) and saturation
nonlinearity from sector [0, 1], is absolutely stable at least for all τ2 = T2/Tdp ∈ [0.2, 0.3].

The absolute stability is graphically proven by the Nyquist curves in Figure 6, which
for the given values lie to the right of the vertical line passing through the point (−1, 0j)
representing the limiting case of the critical circle centered in (−∞, 0j) and radius R→ ∞.
For Te/Tdp = 0.2 and T2/Tdp = 0.13, the Nyquist curve almost touches the critical circle.
For Te/Tdp = 0.2 and T2/Tdp = 0.38, the Nyquist curve already intersects the critical circle.
This proves that a further increase in the value of T2/Tdp is generally no longer useful.

At Te/Tdp = 1, of course, the safety margin increases. In this case, it would be
possible to partially extend the range of usable values of T2 (see Figure 7). It can also be
shown that for higher values of Te/Tdp, the area of absolute stability with respect to T2/Tdp
increases further.
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Figure 6. Verification of absolute stability of PIDA-controllers tuned according to (25) with
τ2 = T2/Td ∈ [0.13, 0.38], (20) for different orders of the filter Qn(s) (19), Tf = Te/n, n ∈ [2, 5]
and Te = 1 (above) and Te = 0.2 (below); Ks = 1; Tdp = 1.
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Figure 7. Performance measures of constrained series PIDA-controller tuned according to (25) with
τ2 = T2/Td ∈ [0.13, 0.44], ∆τ2 = 0.01, (20) and Te = 1 (above) and Te = 0.2 (below); Ks = 1; Tdp = 1;
filter Qn(s), Tf = Te/n, n ∈ [2, 5], Ts = 0.001 and prefilter (33); Umax = 0.1, Umin = −0.1 for setpoint
responses and Umax = 0.1, Umin = −1.1 for disturbance step responses with the minimal IAE values
determined for admissible shape deviations (40) and (41) denoted by o and x.

3.2. Quantitative Evaluation of the Effects of the Tuning Parameters

The cost function for optimizing the controller with respect to the free tuning parameter
can be based on the setpoint step responses:

Js = IAEs, (35)

disturbance step responses with the cost function

Jd = IAEd, (36)



Mathematics 2023, 11, 4229 15 of 32

or on a combined cost function by selecting a trade-off between servo and regulatory
control with m ∈ [0, 1]:

Jm = m
IAEs

IAEs,min
+ (1−m)

IAEd
IAEd,min

; m ∈ [0, 1]. (37)

Here, IAEs,min and IAEd,min represent the minimum values that can be obtained under
the shape-related constraints in the form

TV0(ys) ≤ εys; TV1(yd) ≤ εyd; TV1(us) ≤ εus; TV1(ud) ≤ εud. (38)

Remark 5 (Acceptable deviations from ideal step responses). An optimal PIDA controller
should guarantee the minimum of the chosen cost function J that is achievable under the given
constraints on the shape-related deviations of the input and output variables (38).

Similarly, as stated in [44], the optimal PIDA performance should be defined by the tolerable
deviations from ideal responses, ideally by

ε = εys = εyd = εus = εud → 0. (39)

The closed-loop responses with the linear MRDP-optimal PIDA controller (15) and (16) with
the filter (19) tuned according to (20), where Te = nTf , and with a sufficiently long Te (e.g.,
Te ≈ Tdp), seem to satisfy the requirements. To verify the closed-loop properties in the constrained
case, a simulation is usually used. However, due to the limited precision of computer simulations,
some “sufficiently” small positive limits should be chosen instead. For example, to allow multiple
control pulses at the output of the controller, its allowable deviations should be chosen proportionally
higher than at the process output, e.g., according to

εy = εys = εyd = 0.001; εu = εus = εud = 10εy = 0.01 (40)

Obviously, this“ad hoc” choice has a significant impact on the resulting performance, but
it represents a compromise between performance in practice and computational cost and does not
preclude additional refinements by choosing other relevant limits. For practical purposes, the looser
requirements for allowable shape deviations

εy = εys = εyd = 0.004; εu = εus = εud = 10εy = 0.04 (41)

can also be tested.

Note that the above weakening of the control signal shapes requirements can provide
additional degrees of freedom in optimizing higher order controller modes. This is similar
to the weakening of the absolute stability requirements (30).

3.3. One-Dimensional Performance Test

Here, we will analyze the effects of the free parameter T2 in (25) and determine the
range of its allowable values under constraints. The deviations at the plant input and
output are defined by the performance limits (40) and (41), for n ∈ [2, 5], Tf = Te/n
and Te/Tdp ∈ [0.2, 1.0], Tdp = 1, Ksp = 1. We will also test the difference between the
realizations (23) and (24).

The analysis of the influence of the tuning parameter τ2 = T2/Td is an extension of
the original study from [28]. By considering a wider range of filters and performance
measures, it shows several new results. The first extension is defined by the range of the
dimensionless parameter

τ2 = T2/Td ∈ [0.13, 0.44]; ∆τ2 = 0.01 (42)

Any evaluation of the setpoint and input disturbance step responses corresponding to
some values τ2 requires appropriate controller transfer functions with RP(s) extended by
a filter Qn(s), n ≥ 2. Since the filter of the controller suppresses the measurement noise,
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four different values of n ∈ [2, 5] are considered in the analysis. However, to determine
the influence of the filters on the closed-loop response, the analysis is initially performed
without the measurement noise.

The benefits of the modified setting become apparent only when the control signal
saturates. In order to study the responses under different constraints, the limits for the
setpoint step responses are set:

Umax = 0.1, Umin = −0.1 (43)

selected separately from the limits for the response to input disturbance:

Umax = 0.1, Umin = −1.1 (44)

This choice makes it possible to obtain stable steady states with a sufficient control
signal span before and after the transients.

3.4. Evaluation of the Controller Tuning

The choice of the equivalent delay of the filter Te and the time constant T2 leads to a
set of tuning pairs that can be used to set the appropriate closed loop dynamics. To reduce
the number of experiments, we will use a relatively aggressive controller with Te/Tdp = 0.2
and a“softer” controller with Te/Tdp = 1. This second setting will be referred to as the
“default” in the following text.

The effects of the tuning parameter τ2 = T2/Tdp on the cost functions (35)–(37) for the
allowable shape deviations defined by (40) and (41) are shown in Figures 7 and 8.

By reducing Te, it was possible to reduce both IAE values: IAEs (from about 7.6 to
6.46) and even more IAEd (from 20 to 10). Reducing Te not only improves IAE values, but
also allows specified shape deviations with lower τ2 values.

For Te = 1 and εy = 0.001, the allowable shape deviations of the target responses
(depending on n) for τ2 are achieved in the range of 0.16–0.20 and up to 0.23. For the
disturbance responses, the allowable range is 0.13–0.33. For εy = 0.004, the τ2 intervals
corresponding to the allowable shape deviations increase to 0.15–0.25 for the setpoint
responses. For the disturbance responses, the allowable range is 0.13–0.37 and up to 0.4.

For Te/Tdp = 0.2 and εy = 0.001, the allowable shape deviations of the setpoint
responses (depending on n) for τ2 are reached between 0.15–0.23. For the disturbance
responses, the allowable range is 0.13–0.22. For εy = 0.004, τ2 increases to 0.15–0.27
for the setpoint responses and to 0.13–0.27 and up to 0.28 for the disturbance responses,
corresponding to the allowable shape deviations.

Using the combined cost function (37) under the allowable constraints (40) and (41)
shows that it is possible to increase the value of τ2 by about 50% (to τ2 ≈ 0.3) from the
values recommended for the setpoint step responses, while the slope of the reduction
increases as the weighting coefficient m is reduced. Such modification of the controller
corresponds to improved disturbance rejection performance. Therefore, taking into account
the simplest possible numerical parameters, the following proposition can be formulated.

Proposition 2 (Recommended numerator time constant of the controller τ2 = T2/Tdp).
“MRDP-optimal” values for the setpoint step responses are τ2 = 0.232 (23), or τ2 = 0.22 (24)–(28).
The values increased by 50% (τ2 = 0.348 and τ2 = 0.33, respectively) can be recommended as“near
optimal” for the disturbance step responses.

Based on experiments, the recommended values could be even simpler: τ2 = T2/Tdp = 0.2 for
the near-optimal tracking response and τ2 = 0.3 for the near-optimal disturbance rejection response.
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Figure 8. Combined cost function (37) of constrained series PIDA-controllers tuned according to
(25) with τ2 = T2/Td ∈ [0.13, 0.44], ∆τ2 = 0.01, (20) and Te = 1 (right) and Te = 0.2 (left); Ks = 1;
Tdp = 1; filter Qn(s), Tf = Te/n, n ∈ [2, 5], Ts = 0.001 and prefilter (33); Umax = 0.1, Umin = −0.1
for setpoint responses and Umax = 0.1, Umin = −1.1 for disturbance step responses; IAEs,min and
IAEd,min correspond to (40) (above) and (41) (below).

The above approximations were obtained by evaluating the simulations with “smooth”
Te = Tdp (20) and “aggressive” Te = Tdp/5. For the setpoint responses (see Figure 7,
top left), the lowest values of the IAEs from the experiments agree well with the values
corresponding to the controller zero approximations using the module approach (24).

For TV0(ys), it would be more accurate to consider τ2 ≈ 0.232 (23) for n = 2, but to
make it easier to remember, we can choose τ2 = 0.22 as the (optimal) default value. This is
also suitable for a much more aggressive controller setting given by the filtering parameter
Te = Tdp/5 (Figure 7, bottom left). Since the experimentally determined optimal IAEs
values lie in the flat part of the measured dependencies, we can simply choose the default
value τ2 = 0.2.

For disturbance suppression, the IAEd value decreases as soon as τ2 increases suffi-
ciently (depending on Te). For the smoother setting with Te = Tdp, the optimal values are
τ2 > 0.35, but for a more aggressive setting of Te, the default value of τ2 = 0.33 can be
chosen. This is 1.5 times the value recommended by the optimal setpoint responses (see
Figure 7, right). Therefore,

τ2 = 0.2 ∗ 1.5 = 0.3 (45)

can be recommended as a simplified default setting.
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Proposition 3 (Three sets of recommended PIDA controller settings). Settings (27) and (28)
are denoted by the symbols PIDAw0, or PIDAwm, respectively. They ensure near-minimum values
of the IAEs for the setpoint step responses, with allowable deviations from the ideal shapes of the
input and output process signals. The setting corresponding to the numerically simplest value
τ2 = 0.2 can be calculated as follows:

Ti = 0.2Td; Kp =
0.0722
KsTd

;

TD = 2.7832Td; Kd =
0.2009

Ks
;

T2
A = 0.5166T2

d ; Ka =
0.0373Td

Ks
;

(46)

For the disturbance responses, the recommended settings when increasing the value of τ2 (23)
by a factor of 1.5 are as follows:

Ti = 0.348Td; Kp =
0.126
KsTd

;

TD = 2.931Td; Kd =
0.368

Ks
;

T2
A = 0.899T2

d ; Ka =
0.113Td

Ks
;

(47)

and are indicated by the symbol PIDAd0. The abbreviation PIDAdm can be used for modified settings
based on (24) and corresponding to the following values:

Ti = 0.33Td; Kp
0.1191
KsTd

;

TD = 2.91Td; Kd =
0.3466

Ks
;

T2
A = 0.8525T2

d ; Ka =
0.1015Td

Ks
;

(48)

Finally, the simplified setting that complements PIDAw, specified by (45)

Ti = 0.3Td; Kp =
0.1083
KsTd

;

TD = 2.8832Td; Kd =
0.3122

Ks
;

T2
A = 0.7750T2

d ; Ka =
0.0839Td

Ks

(49)

can be designated as PIDAd.

It is obvious that the controller tuning PIDAd0, PIDAdm and PIDAd result in a “tighter”
control with a more noisy controller output than PIDAw0, PIDAwm and PIDAw. Similarly,
a pair of settings based on approximating the complex zero by its real part will result in
slightly tighter control than when replaced by the modulus. Of course, the parameter
τ2 ∈ [0.2, 0.33] can still be considered as a free tuning parameter, used to modify the overall
dynamics of the closed loop in terms of the trade-off between servo and control [44,59–63].

4. SIMC Controller Design

The first method for setting controllers with automatic reset and derivative terms was
published shortly after hyper-reset controllers were introduced to the market [64]. In the
following decades, a large number of different “optimal” methods have been proposed for
the design of both controllers with automatic reset and PID controllers with parallel integral
action. O’Dwyer attempted to summarize these efforts in his publication [42], but since
many more have been added recently, it is not possible to compare even the most basic
approaches. Since this paper focuses on the design of constrained series PIDA controllers
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for IPDT models, the new approach will be compared with the SIMC method. When the
SIMC method was developed, it had the ambition to become “probably the best simple
PID tuning rules in the world” [31,65]. The motivation to choose this approach is due to
some similarities with the proposed approach. The SIMC method is also based on the
required first-order closed-loop dynamics, it deals with the design of series PIDs (i.e., with
automatic reset), and its results have already been compared with several other well-known
control design methods, which further increases the impact of the obtained evaluation. Last
but not least, we wanted to ensure that the proposed methodology successfully improves
the dead-time approximation. Therefore, it can be an alternative for building a modular
approach that allows the gradual increase in the controller order and its efficiency.

4.1. Simplified Process Modeling

This last expectation may not be obvious, because the method incorporates several
aspects of process modeling and performance evaluation to simplify calculations. The
application to higher order process transfer functions begins with a reduction in process
order by applying the so-called “half-rule” method. In the simplest case, a first-order
time-delayed transfer function (FOTD)

F1(s) =
Y(s)
U(s)

=
Ke−Tds

1 + T1s
(50)

is achieved. It consists of the largest original process time constant in the denominator. The
second largest neglected time constant in the denominator of the original process transfer
function is partially added to the original process time delay (if any) and to the already
mentioned largest time constant equally. Any shorter time constants in the original process
denominator are added exclusively to the time delay by increasing it to a new estimate of Td.

To obtain the FOTD model (50), the zeros of the original process can also be substituted.
For example, for a stable process with zero

P(s) = 2
15s + 1

(20s + 1)(1s + 1)(0.1s + 1)2 (51)

according to (15s + 1)/(20s + 1) ≈ 3/4 and the half rule, [31] gives the FOTD model

F1(s) = 1.5
e−0.15s

1.05s + 1
. (52)

F1(s) (52) is preferably used for the design of series PI controller.
The series PID controller usually starts with the transfer function of the second-order

time-delay (SOTD) model

F2(s) =
Y(s)
U(s)

=
Ke−Tds

(1 + T1s)(1 + T2s)
. (53)

The reduction of the denominator of the process begins by dividing the third largest
time constant and adding it to the second largest original constant and to the time delay in
equal parts. For the process (51), this results in

F2(s) = 1.5
e−0.05s

(s + 1)(0.15s + 1)
. (54)

By generalizing the above procedures, the series PIDA series controller can begin with
the third-order time-delay (TOTD) model transfer function

F3(s) =
Y(s)
U(s)

=
Ke−Tds

(1 + T1s)(1 + T2s)(1 + T3s)
. (55)

For (51), for example, one could obtain a simplified third-order model:
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F3(s) =
1.5

(s + 1)(0.1s + 1)2 . (56)

4.2. Design of the SIMC Controller

The next step following the SIMC method is to define the desired closed loop transfer
function. To minimize the number of optional parameters, a simple FOTD model with the
time constant Tcl was chosen:

Fcl(s) =
Y(s)
W(s)

=
1

1 + Tcls
e−Tds. (57)

While the process time delay Td is usually unavoidable and therefore kept the same as
in the process, the time constant Tcl can be used as a tuning parameter. The exponential
term of the pure time delay in the controller

R(s) =
Fcl(s)

(1− Fcl(s))F(s)
(58)

can be approximated with different approaches. It is therefore possible to obtain different
types of controllers.

In the simplest case, the first-order Taylor series expansion according to

e−Tds ≈ 1− Tds (59)

results into the series proportional-integral (PI) controller:

1R1(s) =
U(s)
E(s)

=
1 + T1s

K(Tcl + Td)s
= Kc(1 +

1
Tis

),

Ti = T1 > 0; Kc =
T1

K(Tcl + Td)
.

(60)

In the controller form with automatic reset, it is implemented with a gain C1(s) = Kc
and with a feedback filter

FAR(s) =
1

1 + Tis
. (61)

The first-order Padé approximation of the dead-time term with:

e−Tds ≈ 1− sTd/2
1 + sTd/2

(62)

yields a PID controller transfer function:

1R2(s) = Kc

(
1 +

1
Tis

)
1 + TDs
1 + Tf 1s

,

Ti = T1; TD = Td/2;

Kc =
T1

K(Tcl + Td)
; Tf 1 =

TclTd
2(Tcl + Td)

,

(63)

which consists of a filtered PD controller C2(s) = Kc(1+ TDs)/(1+ Tf 1s) and is augmented
by an automatic reset (61) that modifies its output.

Similarly, the second-order Padé approximation

e−Tds ≈
1− Td/2s + T2

d s2/12
1 + Td/2s + T2

d s2/12
(64)

results into the proportional–integral–derivative–acceleration (PIDA) controller [45]
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1R3(s) = Kc

(
1 +

1
Tis

)
1 + TD1s + TD2s2

1 + Tf 1s + Tf 2s2 ;

TD1 =
Td
2

; TD2 =
T2

d
12

; T = Tcl + Td; Ti = T1;

Kc =
T1

KT
; Tf 1 =

TclTd
2T

; Tf 2 =
0.0833TclT2

d
T

.

(65)

It may consist of a PDA controller C3(s) = Kc(1 + TD1s + TD2s2)/(1 + Tf 1s + Tf 2s2)
and an automatic reset (61) with a positive feedback loop.

Remark 6 (Basic SIMC constraint). Note that the model-based design (58), which is based on the
cancellation of the process transfer function F(s), is applicable only to stable models. Therefore, the
SIMC method [31] has been significantly improved in practice by an ad hoc requirement of a double
real dominant pole of a delay-free loop. In this way, the applicability of the method could be extended
at least for integrating process models. Such models can also be interpreted as a limiting case of
systems with a long dominant time constant, if, e.g.,

S1(s) =
Y(s)
U(s)

=
K/T1e−Tds

s + 1/T1
≈ Kse−Tds

s
. (66)

The application to IPDT models proposed in [31] for a delay-free process (8) (Td = 0)
leads to a double real dominant pole of the closed loop with

Ti = 4/(KsKc); Kc = 1/(2KsTcl) (67)

For a nominal process (8) with Td > 0 and Tcl = Td in (57), expressions (66), (67) and (60)
yield a simple SIMC tuning

Kc = 1/(2KsTd) ; Ti = 8Td (68)

To further demonstrate the impact of the choice of Tcl , we also consider Tcl = Td/2,
which leads to the following results:

Kc = 2/(3KsTd) ; Ti = 6Td (69)

4.3. SIMC Design for Higher-Order Models

In attempting to generalize SIMC design [31] for higher order process models, we
encounter several unsystematic steps in [31]. This complicates the application and general-
ization of the solutions already proposed [45].

1. The first-order transfer function requirement (57) for the second-order plant
models (53) in [31] leads to an improper controller that is not feasible in practice.

2. The actual controller design for second-order processes (53), with a minimum number
of optional parameters, can be implemented [45] by choosing

2Fcl(s)=
1

(1 + Tc2s)2 e−Tds. (70)

3. Once the desired closed-loop transfer function (57) has been chosen, the filter time
constant Tf , which is required to implement the controller, should be systematically
added to the process model using the aforementioned half-rule. Instead, the imple-
mentation of a series PID controller with an additional first order filter Tf = TD/100
was proposed in [31]

U(s) = Kc
Tis + 1

Tis

(
W(s)− TDs + 1

Tf s + 1
Y(s)

)
(71)

The author admitted that in practice (especially for noisy processes) larger values of
Tf ∈ [TD/10, TD/5] have to be used. However, it is not clear why the filter was not
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systematically included in the design using the half rule. Indeed, the design of the
controller without considering Tf is not accurate, especially if you use a higher-order
filter to reduce the noise level.

4. The controller design is based on the setpoint response requirements, so the perfor-
mance of disturbance responses can only be considered indirectly.

5. The SIMC design does not address possible control signal (or state) constraints.
6. As pointed out in [45] and in Remark 5, when higher order models are used, adjust-

ments to the performance measures are required. The use of total variation proposed
in [31] penalizes control responses with multiple control intervals, which are required
in higher order process models.

For a consistent comparison of the proposed MRDP-PIDA with the SIMC design,
several aspects in the SIMC approach need to be changed or added. Therefore, it is more
appropriate to rename it as the comparison with the SIMC-inspired design. There are
several ways to achieve the necessary generalizations when higher order process models
are used. Here, the modifications that require minimal changes to the original design are
preferred, e.g., using the required closed-loop transfer function (57) for higher-order process
models as well, with the aim to obtain the dominant first-order dynamics. In addition, the
filters required to achieve feasible controller transfer functions will already be included in
the process model and the setpoint prefilters will also be used.

For the second-order plant models (53) and the dead time approximated by Taylor, [31]
derived the second type of series PID controller

2R2(s) = Kc

(
1 +

1
Tis

)
1 + TDs

(1 + Tf s)n ;

Ti = T1; TD = T2; Kc =
T1

K(Tcl + Td)
; n ≥ 1.

(72)

By using the first-order Padé approximation (62), it might be possible to derive the
second type of PIDA controllers.

2R3(s) = Kc

(
1 +

1
Tis

)
(1 + TD1)(1 + TD2s)
(1 + Tf 1s)(1 + Tf s)n ;

Ti = T1; TD1 = T2; TD2 =
Td
2

; Tf 1 =
TclTd

2(Tcl + Td)
; Kc =

T1

K(Tcl + Td)
; n ≥ 1.

(73)

In both cases, the n-tuple filter time constant Tf must be included in the process model (53),
according to the half-life rule.

Similarly, for the third-order plant models (55), one could derive the third type of
PIDA controller

3R3(s) = Kc

(
1 +

1
Tis

)
(1 + TD1s)(1 + TD2s)

(1 + Tf s)n ,

Ti = T1; TD1 = T2; TD2 = T3; Kc =
T1

K(Tcl + Td)
; n ≥ 2.

(74)

together with the inclusion of the n-tuple filter time constant Tf in the process model (55).
For the processes with a long time constant T1 and for integrating processes, a modifi-

cation can also be derived along the lines of (66), (67) and (60).

4.4. Prefilter in SIMC Design

In [31], no prefilter FP(s) is considered to remove the zeros from the Fc(s) (such as (32))
necessary to eliminate overshoot. However, such a prefilter can always be added with a
denominator equal to the controller used and a numerator equal to Np(s) = 1. The use of
the controller (71) avoids the differentiation of the setpoint signal and represents another
possible alternative to eliminate the initial control overshoots in setpoint step responses.
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5. IPDT System Control

A brief comparison of the responses of SIMC-PI and the entire family of series-
automatic based controllers with derivative degree m ∈ [0, 5] was discussed in [27]. The
comparison is now extended with modified MRDP-based constrained series PIDAw0 and
PIDAd0 controllers and with SIMC-based PI, PID, and PIDA controllers derived for an
IPDT model (denoted 1R1, 1R2 and 1R3, respectively). For the setpoint and disturbance
step responses, the control signal constraints were chosen differently to allow the final
steady states to be reached. Of the three options recommended in Proposition 3, the most
aggressive controller setting (PIDAw0 and PIDAd0) was chosen to highlight the differences
between the compared methods.

5.1. Setpoint and Disturbance Responses without Measurement Noise

As can be seen in Figure 9, the setpoint step responses of the PIDAw0 and PIDAd0
controllers (index 0 omitted for simplicity) for the IPDT process are almost indistinguishable.
However, PIDAd0 has a much better disturbance rejection response. The advantages of the
MRDP design are most evident in the higher speed of disturbance reconstruction in the
setpoint step responses.

As shown by the setpoint step responses of the SIMC controllers (Figure 9) with
Tcl = Td, the use of higher order dead time approximations in 1R2 and 1R3 does not yield
significant improvements compared to the 1R1 controller. A partial improvement was
achieved in the disturbance rejection by 1R2 and 1R3. The advantages of using the 1R2

and 1R3 SIMC-PID and PIDA controllers become more apparent when faster closed-loop
responses with Tcl = Td/2 (dashed responses) are selected. In such cases, however, the PI
controller shows a slight overshoot.
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Figure 9. Unit setpoint and disturbance step responses of the IPDT system (8) (Tdp = 1, Ksp = 1)
with the constrained PIDAw0 and PIDAd0 controllers with n = 4, Te = 0.5, Tf = Te/n and SIMC-PI,
PID and PIDA controllers (1R1, 1R2 and 1R3) with Tcl = Tdp (dotted) and Tcl = Tdp/2 (dashed),
u ∈ [−0.1, 0.1] for setpoint responses and u ∈ [−1.1, 0.1] for disturbance responses, Ts = 0.001,
no noise.

It has already been stated in [27] that “the SIMC-PI controller derived using ad hoc
assumptions for the IPDT model gives quite good results”. We can also agree with [31] that
the choice of a double real pole in the closed loop in the original model-based approach for
a delay-free system is one of the main advantages of the SIMC approach compared to IMC.
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5.2. Measurement Noise Generated by the Uniform Random Number Noise Generator

In Matlab/Simulink, the measurement noise was generated by the Uniform Random
Number block with sampling period Ts = 0.001 and amplitude ∆n = 0.01. To improve
signal filtering, the equivalent filter time constant was increased to Te = 1. The shapes of
the responses are similar to those without noise, except that the control signals are covered
by noise (in some cases it is very high). Therefore, the responses in Tables 1 and 2 are
interpreted quantitatively.

The fastest control speed for setpoint step changes (low IAEs) is achieved with the
1R1

b controller with Tcl = Td/2. However, the advantage of a simple PI-controller structure
(which does not use filtering) is lost due to the presence of measurement noise (high
TV1(u) value). Disturbance rejection is most optimal with PIDAd0 (with the lowest value
of maximum deviation) at the cost of high excessive control effort. However, using the
combined cost function (12) can give you the freedom to choose the optimal solution. If you
use the cost function J1 with a relatively low weight for IAE, the optimum depends mainly
on TV1(u). If you use a relatively high weight for IAE (J10), the optimum depends mainly
on IAE, which (for the disturbance responses) also correlates with lower values of max(|e|).

Thus, the conclusion is that although the constrained PIDAw0 and PIDAd0 controllers
give optimal performance in some cases, their design is more complex. Since, in this
paper, only the modification with derivative degree m = 2 and a specific configuration of
the implementation filter (n = 4, Te = 1, Tf = Te/n) is addressed, the real impact of the
proposed innovation will only become clear after a more comprehensive evaluation of the
capabilities of the new modular system. This will allow us to choose the most appropriate
solution for each practical situation, whereby the simplest alternatives will not be excluded.

Table 1. IPDT system: Performance measures of unit setpoint step responses of PIDAw0, PIDAd0,
1R1

a , 1R1
b, 1R2

a , 1R2
b, 1R3

a and 1R3
b controllers introduced in Figure 9 left in the case of measurement

noise with amplitude of the Uniform Random Number noise generator ∆n = 0.01; Te = 1. Minimum
(best) values are marked in bold and maximum (worst) in red.

Contr. PIDAw0 PIDAd0
1R1

a
1R1

b
1R2

a
1R2

b
1R3

a
1R3

b

IAEs 7.5825 7.7300 8.0912 6.7992 8.9700 7.4049 8.9746 7.4864

TV0y 0.0258 0.0620 0.0048 0.0297 0.0191 0.0630 0.0202 0.0661

TV1u 64.9307 148.6229 84.7714 97.4245 193.2384 206.3019 190.3595 203.8954

J1.10−3 0.4923 1.1489 0.6859 0.6624 1.7333 1.5276 1.7084 1.5264

J10.10−11 0.4079 1.1321 1.0194 0.2057 6.5164 1.0226 6.4522 1.1275

Table 2. IPDT system: Performance measures of unit input disturbance step responses of PIDAw0,
PIDAd0, 1R1

a , 1R1
b, 1R2

a , 1R2
b, 1R3

a and 1R3
b controllers introduced in Figure 9 right in the case of

measurement noise with amplitude of the Uniform Random Number noise generator ∆n = 0.01;
Te = 1. Minimum (best) values are marked in bold and maximum (worst) in red.

Contr. PIDAw0 PIDAd0
1R1

a
1R1

b
1R2

a
1R2

b
1R3

a
1R3

b

max(|e|) 1.5701 1.3409 1.9613 1.7008 1.6964 1.4748 1.6583 1.4253

IAEd 14.7998 10.9181 23.6137 17.5308 18.3922 12.9293 18.6143 12.0474

TV1y 0.0431 0.1380 0.0473 0.1763 0.0098 0.0793 0.0114 0.0746

TV1u 137.269 358.8607 36.4205 55.4752 104.4270 140.6965 106.0107 146.4343

J1.10−3 2.0316 3.9181 0.8600 0.9725 1.9206 1.8191 1.9733 1.7641

J10.10−15 0.0692 0.0086 1.9633 0.1521 0.4625 0.0184 0.5294 0.0094
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Therefore, we proceed with the robustness test of the two new PIDA modifications
and a comparative SIMC control created by controlling a stable process (51) considered
in [31,66].

6. Stable Process Control

The SIMC design in [31] was illustrated using a transfer function (51) with significantly
different time constants. Obtaining such a model with sufficient accuracy from real experi-
ments is difficult. Moreover, such an approach is also questionable due to the simplifications
of the obtained process model in the next stage. Finally, it leads to models (52), (54), or (56),
which still need to be modified due to the controller filter required for the physical imple-
mentation and noise attenuation.

6.1. Step Response Based Approximation of Stable Process by IPDT Model

For the design of MRDP-PIDA, the IPDT model (8) of the process (51) can be obtained
from its open-loop step response by generalizing the method of Ziegler and
Nichols [35,39,67]. The original approach of Ziegler and Nichols uses the tangent line
passing through the inflection point of the measured process response. However, due to
the poor numerical properties of such an approach and the robust stability analysis in [43],
the following approximation

F(s) = 1.01
e−0.12

s
(75)

is used in [29]. It successively approximates segments of the measured step response of
different lengths by the IPDT model using the least squares method. Finally, following [43],
the solution with the maximum possible value of the parameter Ks was chosen.

6.2. Setpoint and Disturbance Responses—No Noise

An overview of the compared controllers can be found in Figure 10.
When setting the PIDAw0 and PIDAd0 controllers, the values n = 4 and Tf = Te/n

were again chosen, where Te = Tdp = 0.12 corresponds to the IPDT model (75). The
SIMC PI, PID and PIDA controllers labeled 1R1, 1R2 and 1R3 are based on the FOTD
transfer function (52) with Tcl = 0.75Tdp, where Tdp = 0.15. Other types of PID and
PIDA controllers labeled 2R2 and 2R3 then correspond to the SOTD model (54). They use
Tcl = 0.5Tdp, where Tdp = 0.05 + Te. Te = Tf = 0.12 is used to set the controller filter to
the same equivalent delay as the PIDAw0 and PIDAd0 controllers. Controllers 2R2

a and 2R2
b

have mutually exchanged the numerical values of model time constants T1 and T2.
Although the adjustment of the PIDAd0 controller was obtained to optimize the distur-

bance responses of the IPDT system, the higher robustness of this solution in controlling a
stable system with internal feedback acting as a disturbance is reflected in Table 3 by a lower
value of IAEs. However, smaller gains of the PIDAw0 controller are reflected in a lower
value of the excessive controller effort TV1u, which finally leads to the lowest value of J1
for this controller. At the same time, the PIDAw0 controller also has the highest TV0y value,
which is due to a very low overshoot (less than 0.0072/2). Thanks to the higher robustness
of the PIDAd0 controller, its maximum output deviation is lower. However, it should be
noted that these overshoots are much lower than the amplitude of the measurement noise
∆n = 0.01. The noise of the controller is completely smoothed at the output thanks to
the filtering properties of the process. However, as you can see from the TV1u values, the
noise at the controller output can be quite high for some controllers. It is also worth noting
that controllers 2R2

b and 2R3 provide the fastest reconstruction of the equivalent distur-
bance. The reconstructed disturbance at steady state is different from zero for all tested
setpoint step responses, although the actual disturbance is zero. This happens because the
reconstruction of a disturbance from the steady states is based on integrating models, even
though the controller design is based on a stable process model [37].
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Figure 10. Unit setpoint and disturbance step responses of the stable process (51) with the constrained
PIDAw0 and PIDAd0 controllers, n = 4, Tdp = 0.12, Ksp = 1.01, Te = Tdp, n = 4, Tf = Te/n, and
SIMC-PI, PID and PIDA controllers based on the first-order models (52) with Tcl = 0.75Tdp, Tdp = 0.15
(dotted) and the second-order models (54) with Tcl = 0.5Tdp, Tdp = 0.05 + Tf , Tf = 0.12 (dashed),
u ∈ [−1.1, 1.1], Ts = 0.001, no noise.

Some relatively small overshoots are also detected by the TV1y values for disturbance
responses with PIDAy0 and PIDAd0 controllers (see Table 4). PIDAd0 also provides the mini-
mum value of IAE, max(|e|) and J10 for disturbance responses. However, PIDAd0 is slightly
more noisy than the PIDAy0 controller. The latter provides the lowest values for TV1u and J1.
Again, the 2R3 controller provides the fastest reconstruction of the equivalent disturbance.

Table 3. System (51): Performance measures of unit setpoint step responses of PIDAw0, PIDAd0, 1R1,
1R2, 1R3, 2R2

a, 2R2
b and 2R3 controllers introduced in Figure 10 left in the case of measurement noise

with amplitude of the Uniform Random Number noise generator ∆n = 0.01 and measured for t ∈ [0, 6].
Minimum (best) values are marked in bold and maximum (worst) in red.

Contr. PIDAw0 PIDAd0
1R1 1R2 1R3 2R2

a
2R2

b
2R3

IAEs 0.9143 0.8853 1.2911 1.3661 1.3661 1.3852 1.3852 1.5053

TV0y 0.0072 0.0045 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TV1u 0.7706 1.4956 104.4903 247.3481 245.3201 128.4475 128.4475 390.3932

J1 0.7045 1.3241 134.9062 337.8936 335.1256 177.9287 177.9287 587.6513

J10.10−4 0.0000 0.0000 0.1345 0.5598 0.5552 0.3341 0.3341 2.3317



Mathematics 2023, 11, 4229 27 of 32

Table 4. System (51): Performance measures of unit input disturbance step responses of PIDAw0,
PIDAd0, 1R1, 1R2, 1R3, 2R2

a , 2R2
b and 1R3 controllers introduced in Figure 10 right in the case of

measurement noise with amplitude of the Uniform Random Number noise generator ∆n = 0.01,
measured for t ∈ [0, 6]. Minimum (best) values are marked in bold and maximum (worst) in red.

Contr. PIDAw0 PIDAd0
1R1 1R2 1R3 2R2

a
2R2

b
2R3

max(|e|) 0.2639 0.2267 0.3192 0.2922 0.2915 0.3054 0.3054 0.2598

IAEd 0.2523 0.2101 0.4002 0.3940 0.3939 0.3851 0.392 0.3827

TV1y 0.0057 0.0052 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

TV1u 0.6915 1.5711 97.3952 244.2080 242.4337 123.0300 124.4798 389.8184

J1 0.1744 0.3301 38.9787 96.2102 95.4964 47.3735 48.8860 149.1859

J10 0.0000 0.0000 0.0103 0.0220 0.0218 0.0088 0.0109 0.0263

7. Discussion of the Results Obtained

In terms of a more complex design, the advantages of the new MRDP-based con-
strained PIDA modifications do not seem entirely obvious when controlling the IPDT
system. However, when applied to the stable process, the performance of the new proposed
method is surprisingly much better. This observation holds even for setpoint responses
where the required shape of the signals is included in the SIMC design. The problem with
the IPDT system is that the required curve of setpoint responses (57) does not adequately
describe the curves (obtained with the PIDAw0 and PIDAd0 controllers) that we consider
optimal. The corresponding optimal control waveforms, which approach the rectangular
shapes of the time-optimal control as the degree of derivative increases, cannot be approxi-
mated with sufficient accuracy by the first-order waveforms resulting from the required
output shape (57).

Remark 7 (Differences in strictly first-order and dominant first-order dynamics). While the
proposed methods for setpoint and disturbance rejection responses allow faster modes for controlling
real processes with higher orders, the SIMC method does not have such an option. Moreover,
refinement of the dead-time element approximation by higher-order controllers in SIMC leads to
excessive controller effort due to the mismatch between the actual and desired first-order dynamics.

Therefore, the success of the model-based SIMC approach based on requirement (57)
is limited to the simplest situations where such a requirement is sufficient. And the success
of the SIMC design for integrating processes and processes with long time constants is
due to the fact that it has partially abandoned this restrictive requirement and replaced
it with a looser requirement of several equally fast terms of delay-free response. This
actually represents a step toward MRDP-based design. Otherwise, providing more accurate
information about the process and using a higher order approximation of the dead time
term only leads to an unnecessary increase in excessive control effort.

The requirements for first-order delayed responses could be reasonable at the control
hardware level of the distant past. Today, however, embedded controls, a variety of pro-
grammable devices, or field-programmable arrays (FPAAs) make it possible to increase
the requirements even further. Of course, this is only possible if there is a clear techno-
logical and economic benefit. As the SIMC method is updated to meet increasing control
performance requirements, it should have to accept more complex target system behavior.

8. Conclusions

For a long time, PI and PID controllers were industrial tools that focused on smoothing
transients rather than speed of response. To increase closed-loop speed, relay (on-off or
bang-bang) controllers [47,68] were used instead.
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Alternatively, variable-structure controllers were used, in which time-optimal control
was applied only when there were large deviations from the setpoint [69,70]. With con-
strained series PID controllers with higher order derivatives, it is possible to extend the
automatic reset methodology to time-optimal control including disturbance compensation.
Such an approach increases the robustness of the controller in dealing with external and
internal disturbances resulting from the imperfection of the process model used. However,
the extension of traditional PI and PID controllers to minimum time control definitely re-
quired the addition of performance measures traditionally used in different areas of control.

The work [27] showed that for the IPDT models, it is possible to design a whole family
of controllers with an increasing degree of derivatives that improve the control performance
and speed up transients. All of these controllers were tuned using the MRDP method. In
this paper, we extend it to controllers with even powers of the highest derivative (e.g.,
the PIDA controller). It is shown that we can modify the MRDP parameters to eliminate
overshoots that occur in constrained control. For setpoint step responses, the applied
modification, introducing a double dominant numerator zero, in which the imaginary part
of the complex numerator zero is neglected, has been shown to be sufficient [28]. The
complex numerator can also be replaced by an absolute value (module), or by a more
general tuning parameter. The controller parameters are recalculated so that the automatic
reset time Ti is defined by the time constant corresponding to the created double zero of
the controller numerator. The transfer function of the controller remains almost unchanged
compared to the MRDP method.

In terms of disturbance behavior, it seems optimal to increase the value of Ti calculated
by the modification of the MRDP method by a factor of 1.5 (i.e., by about 50%, [28]). Modi-
fications of constraint controllers for higher even orders of derivative degrees can be solved
in a similar way. A comparison with SIMC design showed the advantages and disadvan-
tages of both approaches. SIMC assumes first order closed loop dynamics with a delay. The
controller is calculated by approximating the delay with Taylor or Padé series. As it stands,
it is suitable for the simplest applications without additional signal filtering. However, it
turns out that the use of more accurate dead-time approximations is ineffective because,
due to the given dynamics of the first-order closed-loop dynamics, the control performance
cannot be increased. Therefore, the higher order approximations only lead to an excessive
controller effort. It was also shown that the proposed solution significantly increases the
robustness even when tuned for disturbance rejection, especially when compared to the
design of constrained PIDA controllers based on the IPDT model. Further work should
include comparison with fractional order PID control [18–25]. The latter is similar to the
design of automatic reset controllers with higher order constraints by its objectives and
the use of higher-order controller approximations. It would also be interesting to compare
the disturbance observer in automatic reset controllers with the state-space approach [48],
with active disturbance rejection control (ADRC) solutions [71–75], or with intelligent PID
using finite impulse response filters (FIR) to reconstruct disturbances [76]. Robust control
of constrained systems is also solved using sliding mode control (SMC) [77–83], in which
permanent oscillations can be deliberately imposed on the circuit, reminding constrained
PIDA controllers with more aggressive settings. Similarly, comparisons with recent mod-
ifications of the Smith predictor would also be interesting [84,85]. Various applications
in time-delayed systems [84,86–92] and Industry 4.0 (as in [93]) are also envisioned. In
addition, extensions of the proposed method based on double integrator plus dead-time
models compared to alternative approaches (e.g., Model Predictive Control (MPC) [94–96])
are also in preparation.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-Pulse, response with 2 monotonic segments (1 extreme point)
3P Three-Pulse, response with 4 monotonic segments (3 extreme points)
ARC Automatic-Reset Controller
FOTD First-Order Time-Delayed
IAE Integral of Absolute Error
IMC Internal Model Control
IPDT Integrator Plus Dead-Time
MRDP Multiple Real Dominant Pole
PDA Proportional-Derivative-Accelerative
PI Proportional-Integral
PIDA Proportional-Integral-Derivative-Accelerative
SIMC SIMple Control
SOTD Second-Order Time-Delayed
TOTD Third-Order Time-Delayed
TV Total Variation
TV0 Deviation from Monotonicity
TV1 Deviation from 1P Shape
TV3 Deviation from 3P Shape
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